
Reduction of Lattice Bases

Curtis Bright

April 29, 2009

Abstract

A study of multiple lattice basis reductions and their properties,
culminating in LLL introduced via recursive projection.

1 Introduction

A point lattice (or simply lattice) is a discrete additive subgroup of Rn. A
basis for a lattice L ⊂ Rn is a set of d linearly independent vectors b1, . . . , bd ∈
Rn whose ‘integer span’ generates L. When B ∈ Rd×n is a full-rank matrix
with row vectors b1, . . . , bd we write

L(B) =
{ d∑

i=1

xibi : xi ∈ Z
}

and say the lattice is generated by the basis B. In particular this report
considers the case when B ∈ Zd×n.

A lattice L(B) where d = 1 has only the single basis B (up to sign),
but otherwise a lattice admits an infinite number of distinct bases. Most are
cumbersome to work with, for example consider the two bases

B =

−32 27 99 92
−74 8 29 −31
−4 69 44 67


B′ =

−4339936 −682927 −2330272 −6748685
268783718 42311760 144378994 418036006
47833660 7038229 23910075 72218282



1

where we actually have L(B) = L(B′). This can be seen by the existence of
the change-of-basis matrix

U =

−46154 78658 −957
2859121 −4871793 59273
488235 −858094 10444


which satisfies B′ = UB as well as B = U−1B′ where U−1 has integer entries.

In fact, in general if L(B) = L(B′) then any row of B′ can be written as
a Z-linear combination of the rows of B and vice-versa, so a matrix U always
exists such that U,U−1 ∈ Zd×d. Such matrices are called unimodular and
since det(U) and det(U−1) = 1/det(U) are both integers, det(U) = ±1.

It follows that the volume of the d-dimensional parallelotope formed by
the [0, 1)-span of the basis vectors depends only on the lattice, not on the
choice of basis:

vol(L(B′)) =
√

det(B′B′T)

=
√

det(UBBTUT)

=
√

det(BBT)

= vol(L(B))

Though mathematically B and B′ describe the same lattice, computation-
ally B is generally much nicer to work with. This suggests that we develop
the following:

1. A method of ranking the bases of a lattice in some desirable order.

2. A way to find desirable bases of a lattice when given one of its other
bases, i.e., an algorithm for basis reduction.

2 Minkowski Reduction

The best possible basis b1, . . . , bd of L would have b1 the shortest possible
nonzero vector in L and in general bi the shortest possible nonzero vector
such that b1, . . . , bi are linearly independent (the lengths of such vectors are
called the successive minima of L). Although such vectors b1, . . . , bd ∈ L of
course always exist, it is perhaps surprising that if d ≥ 4 such vectors do not
necessarily form a basis of L.

2

For example, consider the lattice L generated by the following basis:
2

2
. . .

2
1 1 · · · 1 1

 ∈ Zn×n

Note for n ≥ 5 the shortest nonzero vector in L has a norm of 2 and since
2bn−

∑n−1
i=1 bi =

[
0 0 · · · 0 2

]
, there are exactly n vectors (disregarding

sign) which reach that minimum. These vectors are linearly independent but
generate (2Z)n rather than L.

Since we can’t use the shortest possible linearly independent vectors in
L as our criterion for a desirable basis, we insert a clause which ensures the
previous case cannot occur.

Definition. A basis b1, b2, . . . , bd of L is Minkowski reduced if bi is the
shortest possible vector such that b1, . . . , bi may be extended into a basis for
each 1 ≤ i ≤ d.

Unfortunately, the computation of a Minkowski reduced basis leads to
a combinatorial problem with an exponential search space in d. Even the
computation of b1 in a Minkowski reduced basis (known as the Shortest
Vector Problem or SVP) seems infeasible: it is NP-hard with respect to the
maximum norm [6]. With respect to the Euclidean norm, SVP is NP-hard
under a randomized (opposed to deterministic) reduction [1].

3 Lagrange Reduction

Before moving to the general case it will be useful to consider a simple re-
duction in two dimensions. Historically this was the first lattice reduction
considered (by Lagrange in 1773), and it gives rise to a simple algorithm,
rather similar in style to Euclid’s famous gcd algorithm: the norms of the
input vectors are continually decreased by subtracting appropriate multiples
of one vector from the other.

If ‖b1‖ ≤ ‖b2‖ then the “appropriate multiplier” here is the v ∈ Z which
minimizes ‖b2 − vb1‖. Optimally, this minimum would have value∥∥b2 − projb1(b2)

∥∥ =
∥∥b2 − 〈b1,b2〉‖b1‖2

b1
∥∥

3

and so v = 〈b1,b2〉
‖b1‖2

, except that this may well not be an integer, and in which

case b2− vb1 /∈ L. Instead, taking the closest integer to 〈b1,b2〉‖b1‖2
will ensure we

remain in L while also minimizing ‖b2 − vb1‖. In the case
∣∣ 〈b1,b2〉
‖b1‖2

∣∣ ≤ 1
2

there
is no multiplier we can use to strictly decrease the norm.

Definition. A basis b1, b2 of L is Lagrange reduced if ‖b1‖ ≤ ‖b2‖ and∣∣ 〈b1,b2〉
‖b1‖2

∣∣ ≤ 1
2
.

Based on this definition, an obvious iterative algorithm presents itself:

Algorithm 1 LagrangeReduce

Input: A basis b1, b2 of a lattice L
Output: A Lagrange reduced basis of L
1: repeat
2: if ‖b1‖ > ‖b2‖ then swap b1 and b2
3: b2 := b2 − round

(〈b1,b2〉
‖b1‖2

)
b1

4: until ‖b1‖ ≤ ‖b2‖
5: return (b1, b2)

In fact, a Lagrange reduced basis is also a Minkowski reduced basis. For
arbitrary b = αb1 + βb2 in L it may be shown using simple algebra (see [5])
that a Lagrange reduced basis satisfies(

α2 − αβ + β2
)
‖b1‖2 ≤ ‖b‖2 (1)(

β2 − 1
) (
‖b2‖2 − ‖b1‖2

)
+ ‖b2‖2 ≤ ‖b‖2 (2)

If b is nonzero then αβ 6= 0, so 1 ≤ α2−αβ+β2 and (1) implies ‖b1‖ ≤ ‖b‖,
i.e., b1 is the shortest possible nonzero vector in L. If b is linearly independent
with b1 then β 6= 0, so 1 ≤ β2 − 1 and (2) implies ‖b2‖ ≤ ‖b‖, i.e., b2 is the
shortest possible vector linearly independent with b1.

3.1 Cost of LagrangeReduce

To estimate the complexity, let µ = 〈b1,b2〉
‖b1‖2

and v = round(µ) after line 2 of

some iteration which is not the first or the last. Clearly we have v 6= 0 and
‖b1‖ > ‖b2 − vb1‖, otherwise the until statement will evaluate to true and
this would be the last iteration.

4

Now, if v = 1 then we have ‖b1‖ > ‖b2 − b1‖, which means after line 3
of the previous iteration we would have had ‖b2‖ > ‖b1 − b2‖ = ‖b2 − b1‖.
This is impossible since it means we could’ve decreased b2 even more by
subtracting off another copy of b1, but line 3 always chooses v such that the
decrease in b2 is maximized.

Similarly for v = −1, so we know that |v| ≥ 2, |µ| ≥ 3
2

and of course
|µ− v| ≤ 1

2
. Let b′2 denote the component of b2 orthogonal to b1. Then from

b2 = µb1 + b′2 we have:

b2 − vb1 = (µ− v)b1 + b′2

‖b2 − vb1‖2 = (µ− v)2 ‖b1‖2 + ‖b′2‖
2

≤ 1
4
‖b1‖2 + ‖b′2‖

2 (3)

Again from b2 = µb1 + b′2 we have:

‖b2‖2 = µ2 ‖b1‖2 + ‖b′2‖
2

≥ 9
4
‖b1‖2 + ‖b′2‖

2

≥ 2 ‖b1‖2 + ‖b2 − vb1‖2 from (3)

> 3 ‖b2 − vb1‖2

using that ‖b1‖ > ‖b2 − vb1‖ since this isn’t the last iteration. Therefore,
we have that when b2 is reassigned in step 3 its norm decreases by a factor of
at least

√
3 (except possibly on the first and last iterations, where it at least

doesn’t increase). Since ‖b2‖ ≥ 1 we have that the number of loop iterations
is O(log√3 ‖b2‖), where b2 is the second vector before its first decrease.

As a crude upper bound, we know that the arithmetic operations in each
loop take O(log2 ‖b2‖) bit operations, so overall the algorithm runs with
O(log3 ‖b2‖) bit operations.

Actually, each loop costs only O(log ‖b2‖ (1 + log ‖b2‖ − log ‖b1‖)) and
summing over all iterations (while updating the values taken by b1 and b2)
leads to a cascade resulting in a O(log2 ‖b2‖) cost, as described in [4].

4 Recursive Projections

The reductions we will see in arbitrary dimension will generally have similar
conditions for d basis vectors as Lagrange reduction did for 2 basis vectors,
but there will be an extra recursive component: the conditions will also apply

5

to the basis vectors of the lattice of degree d − 1 formed by projecting all
lattice points orthogonally to the first basis vector. As previously mentioned,
the basis of a lattice with d = 1 is always reduced and will serve as our base
case for the recursion.

To this end, it will be helpful to make the following definition which
applies to the vectors of a basis b1, . . . , bd.

Definition. Define the “kth recursive projection” of bi as

b
(k)
i :=

{
bi if k = 0

proj
span(b(k−1)

k)
⊥
(
b
(k−1)
i

)
if k ≥ 1

.

We will also use the following shorthand:

b′i := b
(1)
i

b∗i := b
(i−1)
i

Although this will be a convenient definition for our formulations of re-
cursive reductions, the following lemma shows we also have a nice iterative
form for b

(k)
i which is easier to actually work with.

Lemma.
b
(k)
i = projspan(b∗1,b∗2,...,b∗k)⊥(bi)

Proof. By induction on k. If k = 0 then we are projecting onto ∅⊥ = Rn and
hence b

(0)
i = bi as required.

Assume the lemma holds for some k ≥ 0. Then by definition, hypothesis,
and a property of projection,

b
(k+1)
i = projspan(b∗k+1)

⊥

(
b
(k)
i

)
= projspan(b∗k+1)

⊥

(
projspan(b∗1,b∗2,...,b∗k)⊥(bi)

)
= projspan(b∗1,b∗2,...,b∗k,b∗k+1)

⊥(bi)

and the lemma holds for k + 1 as well.

It follows that the vectors b∗i are in fact the standard Gram-Schmidt
orthogonalization defined by

b∗i = projspan(b∗1,...,b∗i−1)
⊥(bi) = bi −

i−1∑
j=1

µi,jb
∗
j with µi,j =

〈bi, b∗j〉
‖b∗j‖

2 .

6

And b
(k)
i for 1 ≤ k ≤ i−2 is the ‘truncated’ Gram-Schmidt orthogonalization

b
(k)
i = bi −

∑k
j=1 µi,jb

∗
j .

5 Korkin-Zolotarev Reduction

If b1, . . . , bd are a basis for L then we previously defined b′2, . . . , b
′
d to be

the components of b2, . . . , bd orthogonal to b1, i.e., their projections over the
orthogonal component of span(b1). As a natural extension of this notation,
define L′ to be the lattice generated by b′2, . . . , b

′
d.

Definition. A basis b1, b2, . . . , bd of L is Korkin-Zolotarev reduced if

• b1 is the shortest possible nonzero vector of L

• b′2, . . . , b
′
d is a Korkin-Zolotarev reduced basis of L′

• b2, . . . , bd are as short as possible without changing b′2, . . . , b
′
d, i.e.,

|µi,1| ≤ 1
2

for 2 ≤ i ≤ d

Again we have a reduction which requires solving SVP and so shouldn’t
be expected to be practical for large d. However, Korkin-Zolotarev reduced
do have some nice properties, for example:

d∏
i=1

‖bi‖ ≤
(
4
3

)d(d−1)/4
vol(L)

Later we will show that Hermite reduced bases satisfy this bound and simul-
taneously get it for Korkin-Zolotarev bases (since they are Hermite reduced
bases as well). Note the similarity with Hadamard’s bound (which follows
from Gram-Schmidt):

vol(L) ≤
d∏

i=1

‖bi‖

with equality if and only if the bi are orthogonal. So intuitively

d∏
i=1

‖bi‖ / vol(L)

measures the amount of “nonorthogonality” in a basis and is sometimes called
the orthogonality defect. We would like to show that the basis reductions we
consider have a bounded orthogonality defect which only depends on some
function of the lattice dimension d.

7

5.1 Size Reduction

Notice that while the second KZ condition ensures that b′2, . . . , b
′
d are short

vectors, this does not ensure that b2, . . . , bd are short vectors since there are
an infinite number of possible ways to ‘lift’ the b′i ∈ L′ into bi ∈ L (most of
them yielding huge bi). We of course want the shortest possible ‘lifts’ from
L′ to L, so this is what the third condition ensures.

The condition that |µi,j| ≤ 1
2

for all 1 ≤ j < i is sometimes called size
reduction. This property is not explicitly stated in recursive formulations but
may be inferred from the third condition: for every 1 ≤ j < i we consider
the jth recursive lattice and see that the definition requires

1

2
≥
∣∣∣∣〈b(j−1)i , b∗j〉
‖b∗j‖

2

∣∣∣∣ =

∣∣∣∣〈bi −∑j−1
k=1 µi,kb

∗
k, b
∗
j〉

‖b∗j‖
2

∣∣∣∣ =

∣∣∣∣〈bi, b∗j〉‖b∗j‖
2

∣∣∣∣ = |µi,j| ,

using that 〈b∗k, b∗j〉 = 0 for k 6= j.
It is simple to transform any basis into a size reduced one by using the

same technique that was used in Lagrange’s algorithm, i.e., adding a suitable
multiple of one vector to another. For example, if |µi,j| > 1

2
, then we replace

bi with bi−bµi,je bj; the new value of µi,j will then be µi,j −bµi,je ∈ [−1
2
, 1
2
].

Since this is such a straightforward method of reduction it will continue to
be used in the following reductions we will see.

6 Hermite Reduction

Hermite was apparently the first person to consider reduction in arbitrary
dimension when in 1845 he described a general reduction in a letter to Jacobi

(as noted in [3]). The first basis vector satisfies ‖b1‖ ≤
(
4
3

)(d−1)/4
vol(L)1/d

but otherwise the reduction lacks desirable properties like a bound on the
orthogonality defect. However, in a second letter Hermite proposed a differ-

ent reduction which bounds the orthogonality defect by
(
4
3

)d(d−1)/4
. We give

his second reduction here.

Definition. A basis b1, b2, . . . , bd of L is Hermite reduced if

• ‖b1‖ ≤ ‖bi‖ for all i

• b′2, . . . , b
′
d is a Hermite reduced basis of L′

• b2, . . . , bd are lifted from L′ minimally: |µi,1| ≤ 1
2

for 2 ≤ i ≤ d

8

Before showing the orthogonality defect is bounded we show the following
helpful lemma.

Lemma. If b1, b2, . . . , bd is a Hermite reduced basis then

‖bi‖2 ≤ 4
3
‖b′i‖

2
.

Proof. In the following we use the inequalities µ2
i,1 ≤ 1

4
and ‖b1‖ ≤ ‖bi‖, as

well as the fact that b1 and b′i are orthogonal.

bi = b′i + µi,1b1

‖bi‖2 = ‖b′i‖
2

+ µ2
i,1 ‖b1‖

2

‖bi‖2 ≤ ‖b′i‖
2

+ 1
4
‖bi‖2

3
4
‖bi‖2 ≤ ‖b′i‖

2

‖bi‖2 ≤ 4
3
‖b′i‖

2

Applying this lemma recursively yields

‖bi‖2 ≤ 4
3
‖b′i‖

2 ≤
(
4
3

)2 ‖b(2)i ‖
2 ≤

(
4
3

)3 ‖b(3)i ‖
2 ≤ · · · ≤

(
4
3

)i−1 ‖b∗i ‖2 ,
and it follows

d∏
i=1

‖bi‖2 ≤
d∏

i=1

(
4
3

)i−1 ‖b∗i ‖2 =
(
4
3

)∑d−1
i=0 i

vol(L)2 =
(
4
3

)d(d−1)/2
vol(L)2,

where
∏d

i=1 ‖b∗i ‖ = vol(L) because the Gram-Schmidt change-of-basis matrix
has determinant 1 and the b∗i are orthogonal. Taking the square root yields
the promised orthogonality defect bound

d∏
i=1

‖bi‖ ≤
(
4
3

)d(d−1)/4
vol(L).

Also, from ‖b1‖ ≤ ‖bi‖ we have ‖b1‖d ≤
∏d

i=1 ‖bi‖, so taking the dth root
yields

‖b1‖ ≤
(
4
3

)(d−1)/4
vol(L)1/d,

which is actually the same bound satisfied by the reduction in Hermite’s first
letter.

It is unknown if Hermite’s basis reduction can be computed in polynomial
time in d or not.

9

7 Optimal-LLL Reduction

The lack of a provable polynomial time algorithm for Hermite basis reduction
suggests we should weaken the reduction conditions even farther, and indeed
the optimal-LLL reduction is a natural weakening of Hermite’s reduction.

Definition. A basis b1, b2, . . . , bd of L is optimal-LLL reduced if

• ‖b1‖ ≤ ‖b2‖

• b′2, . . . , b
′
d is a optimal-LLL reduced basis of L′

• b2, . . . , bd are lifted from L′ minimally: |µi,1| ≤ 1
2

for 2 ≤ i ≤ d

As usual, we would like to be able to find a bound for the orthogonality
defect for optimal-LLL reduced bases. The lemma ‖bi‖2 ≤ 4

3
‖b′i‖

2 which was
used in the Hermite case no longer holds, but as it turns out we can still show
exactly the same orthogonality defect bound! To start off we use a different
lemma.

Lemma. If b1, b2, . . . , bd is an optimal-LLL reduced basis then

‖b∗i ‖
2 ≤ 4

3
‖b∗i+1‖

2 .

Proof. Using condition 1 recursively, we get

‖b∗i ‖ ≤ ‖b
(i−1)
i+1 ‖

= ‖b∗i+1 + µi+1,ib
∗
i ‖

‖b∗i ‖
2 ≤ ‖b∗i+1‖

2 + µ2
i+1,i ‖b∗i ‖

2

‖b∗i ‖
2 ≤ ‖b∗i+1‖

2 + 1
4
‖b∗i ‖

2

3
4
‖b∗i ‖

2 ≤ ‖b∗i+1‖
2

‖b∗i ‖
2 ≤ 4

3
‖b∗i+1‖

2

10

From bi = b∗i +
∑i−1

j=1 µi,jb
∗
j and the orthogonality of the b∗j we have:

‖bi‖2 = ‖b∗i ‖
2 +

i−1∑
j=1

µ2
i,j ‖b∗j‖

2

≤ ‖b∗i ‖
2 +

i−1∑
j=1

1
4

(
4
3

)i−j ‖b∗i ‖2
= ‖b∗i ‖

2 + ‖b∗i ‖
2

i−1∑
j=1

1
4

(
4
3

)j
= ‖b∗i ‖

2
(

1 +
(
4
3

)i−1 − 1
)

=
(
4
3

)i−1 ‖b∗i ‖2
And

∏d
i=1 ‖bi‖ ≤

(
4
3

)d(d−1)/4
vol(L) follows, as in the Hermite case. Also,

repeatedly using the lemma yields

‖b1‖2 ≤ ‖b∗1‖
2 ≤ 4

3
‖b∗2‖

2 ≤
(
4
3

)2 ‖b∗3‖2 ≤ · · · ≤ (43)d−1 ‖b∗d‖2
so
∏d

i=1 ‖b1‖
2 ≤

∏d
i=1

(
4
3

)i−1 ‖b∗i ‖2 =
(
4
3

)d(d−1)/2
vol(L)2 and like in the Her-

mite case we still have the bound ‖b1‖ ≤
(
4
3

)(d−1)/4
vol(L)1/d.

Also like in the Hermite case, it is unknown if optimal-LLL basis reduction
can be computed in polynomial time in d or not.

8 LLL Reduction

Finally we are ready to introduce the LLL basis reduction, as a slight re-
laxation of the optimal-LLL reduction just discussed. Now we allow a little
slack room for b2 to be smaller than b1; the exact amount of slack can be
controlled with a quality parameter c ∈ (1, 4). The closer c is to 1, the bet-
ter the reduction will be (and the longer it will take). A choice of c = 1
corresponds to the optimal-LLL reduction. The original paper by Lenstra,
Lenstra and Lovász [2] effectively uses c = 4

3
.

11

Definition. A basis b1, b2, . . . , bd of L is LLL reduced with quality param-
eter c ∈ (1, 4) if

• ‖b1‖ ≤
√
c ‖b2‖

• b′2, . . . , b
′
d is an LLL reduced basis (with quality parameter c) of L′

• b2, . . . , bd are lifted from L′ minimally: |µi,1| ≤ 1
2

for 2 ≤ i ≤ d

To find a bound on the orthogonality defect we proceed much like before,
except that in this case the results aren’t quite as nice. Define C = 4c

4−c and

note that C > 4
3

for c > 1. Roughly speaking, 4
3

in our previous results will
be replaced by C in the LLL-specific results.

Lemma. If b1, b2, . . . , bd is an LLL reduced basis then

‖b∗i ‖
2 ≤ C ‖b∗i+1‖

2 .

Proof. Using condition 1 recursively, we get

‖b∗i ‖ ≤
√
c ‖b(i−1)i+1 ‖

=
√
c ‖b∗i+1 + µi+1,ib

∗
i ‖

‖b∗i ‖
2 ≤ c ‖b∗i+1‖

2 + cµ2
i+1,i ‖b∗i ‖

2

‖b∗i ‖
2 ≤ c ‖b∗i+1‖

2 + c1
4
‖b∗i ‖

2

4−c
4
‖b∗i ‖

2 ≤ c ‖b∗i+1‖
2

‖b∗i ‖
2 ≤ 4c

4−c ‖b
∗
i+1‖

2

12

From bi = b∗i +
∑i−1

j=1 µi,jb
∗
j and the orthogonality of the b∗j we have:

‖bi‖2 = ‖b∗i ‖
2 +

i−1∑
j=1

µ2
i,j ‖b∗j‖

2

≤ ‖b∗i ‖
2 +

i−1∑
j=1

1
4
Ci−j ‖b∗i ‖

2

= ‖b∗i ‖
2 + ‖b∗i ‖

2
i−1∑
j=1

1
4
Cj

= ‖b∗i ‖
2 (c

5c−4

(
Ci−1 − 1

)
+ 1
)

≤ Ci−1 ‖b∗i ‖
2

since c
5c−4 < 1. It follows

d∏
i=1

‖bi‖2 ≤
d∏

i=1

Ci−1 ‖b∗i ‖
2 = Cd(d−1)/2 vol(L)2

d∏
i=1

‖bi‖ ≤ Cd(d−1)/4 vol(L)

Similarly, repeatedly using the lemma yields

‖b1‖2 ≤ Ci−1 ‖b∗i ‖
2 (4)

d∏
i=1

‖b1‖2 ≤
d∏

i=1

Ci−1 ‖b∗i ‖
2 = Cd(d−1)/2 vol(L)2

‖b1‖ ≤ C(d−1)/4 vol(L)1/d

Also, if x =
∑k

i=1 ribi is the shortest nonzero vector in L, with ri ∈ Z

13

and rk 6= 0, we use the Gram-Schmidt change-of-basis to write, for some si,

x = rkb
∗
k +

k−1∑
i=1

sib
∗
i

‖x‖2 = r2k ‖b∗k‖
2 +

k−1∑
i=1

s2i ‖b∗i ‖
2

≥ ‖b∗k‖
2 since r2k ≥ 1

Ck−1 ‖x‖2 ≥ Ck−1 ‖b∗k‖
2

≥ ‖b1‖2 by (4)

So the first vector in an LLL-reduced basis contains an approximation to the
shortest nonzero vector, off by a factor of at most Cd−1.

Now perhaps the most important fact in this report is this: The ‘obvious’
algorithm for computing an LLL reduced basis runs in polynomial time in
the lattice dimension d. We note the algorithm suggested by the definition:

Algorithm 2 LLLReduce, the recursive version

Input: A basis b1, b2, . . . , bd of a lattice L
Output: An LLL reduced basis (with quality parameter c) of L
1: if d = 1 then return (b1)
2: repeat
3: if ‖b1‖ >

√
c ‖b2‖ then swap b1 and b2

4: (b2, . . . , bd) := liftb1(LLLReduce(b′2, . . . , b
′
d))

5: until ‖b1‖ ≤
√
c ‖b2‖

6: return (b1, b2, . . . , bd)

Where the lift function returns bi which satisfy the third condition |µi,1| ≤
1
2

for 2 ≤ i ≤ d. In practice to avoid recursion overhead LLL should be
implemented iteratively, as usually presented.

Finally, we show that the total number of swaps (including those in re-
cursive calls) needed until an LLL reduced basis is found is polynomial in
d.

As noted before,
∏d

i=1 ‖b∗i ‖ = vol(L) and therefore is constant throughout
the algorithm. Also the volume of the lattice projected orthogonally to b1
and b2 does not change when b1 and b2 are swapped. But the volume of the

14

lattice projected orthogonally to b1 may change when b1 and b2 are swapped.
So if we define

dk =
k∏

i=1

‖b∗i ‖
2 =

vol(L)2

vol(L(k))2

then the only time dk may change is when we perform a swap at a recursive
depth of k. In fact, if we do perform a swap it is because

‖b∗k‖
2 > c ‖b(k−1)k+1 ‖

2 ,

so by replacing b
(k−1)
k with b

(k−1)
k+1 we have dk > cdnewk , i.e., we decrease dk by

a factor of c.
Now define D =

∏d
i=1 di. Any swap we perform at a recursion depth of k

decreases dk by a factor of c and does not change the other di, so every time
a swap is performed D decreases by a factor of c. Further, D ∈ Z+ because
di ∈ Z as vol(L) ∈ Z+ and vol(L(i))2 | vol(L)2. Therefore the total number of
swaps the algorithm can perform is at most logc(D) = O(d2 log(max ‖bi‖)),
since

D =
d∏

i=1

‖b∗i ‖
2(d−i+1) ≤

d∏
i=1

‖bi‖2(d−i+1) ≤ max ‖bi‖d(d+1) .

However, to prove a polynomial bit complexity it is still necessary to
bound the size of the rational numbers used during the algorithm as done in
[2].

15

References

[1] Miklós Ajtai. SVP in L2 is NP-hard. STOC ’98, 1998.

[2] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261:513–534, 1982.

[3] P. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity.
To appear in SIAM Journal on Computing, 2009.

[4] P. Nguyen, D. Stehlé. Low-Dimensional Lattice Basis Reduction Revis-
ited. To appear in ACM Transactions on Algorithms, 2009.

[5] H. Yao, G. W. Womell. Lattice-Reduction-Aided Detectors for MIMO
Communication Systems. Proceedings of IEEE Globecom 2002, Taipei,
Taiwan, November 2002.

[6] P. Van Em de Boas. Another NP-complete partition problem and the
complexity of computing short vectors in lattice. Tech. Report 81-04,
Department of Mathematics, University of Amsterdam, 1980.

16

