Reduction of Lattice Bases

Curtis Bright
April 29, 2009

Abstract

A study of multiple lattice basis reductions and their properties,
culminating in LLL introduced via recursive projection.

1 Introduction

A point lattice (or simply lattice) is a discrete additive subgroup of R™. A
basis for a lattice L C R" is a set of d linearly independent vectors by, ..., by €
R"™ whose ‘integer span’ generates £. When B € R%*" is a full-rank matrix
with row vectors by, ..., by we write

L(B) = {Zd:x,-b,- cx; € Z}

and say the lattice is generated by the basis B. In particular this report
considers the case when B € Z¥*".

A lattice £(B) where d = 1 has only the single basis B (up to sign),
but otherwise a lattice admits an infinite number of distinct bases. Most are
cumbersome to work with, for example consider the two bases

=32 27 99 92
B=|-71 8 29 =31
—4 69 44 67

—4339936 —682927 —2330272 —6748685
B’ = [268783718 42311760 144378994 418036006
47833660 7038229 23910075 72218282

where we actually have £(B) = L(B’). This can be seen by the existence of
the change-of-basis matrix

—46154 78658 —957
U= 2859121 —4871793 59273
488235 —858094 10444

which satisfies B’ = UB as well as B = U~' B’ where U~ has integer entries.

In fact, in general if £(B) = £L(B’) then any row of B’ can be written as
a Z-linear combination of the rows of B and vice-versa, so a matrix U always
exists such that U, U~! € Z%9 Such matrices are called unimodular and
since det(U) and det(U~!') = 1/det(U) are both integers, det(U) = +1.

It follows that the volume of the d-dimensional parallelotope formed by
the [0, 1)-span of the basis vectors depends only on the lattice, not on the
choice of basis:

vol(L(B')) = \/det(B'B'T)
= \/det(UBBTUT)
(

= +/det(BBT)

vol(£(B))

Though mathematically B and B’ describe the same lattice, computation-
ally B is generally much nicer to work with. This suggests that we develop
the following;:

1. A method of ranking the bases of a lattice in some desirable order.

2. A way to find desirable bases of a lattice when given one of its other
bases, i.e., an algorithm for basis reduction.

2 Minkowski Reduction

The best possible basis by, ...,b; of £ would have b; the shortest possible
nonzero vector in £ and in general b; the shortest possible nonzero vector
such that by, ..., b; are linearly independent (the lengths of such vectors are
called the successive minima of L£). Although such vectors by, ..., by € L of
course always exist, it is perhaps surprising that if d > 4 such vectors do not
necessarily form a basis of L.

For example, consider the lattice £ generated by the following basis:

c ann

Note for n > 5 the shortest nonzero vector in £ has a norm of 2 and since
2b,, — Z?:_ll b, = [0 0O --- 0 2] , there are exactly n vectors (disregarding
sign) which reach that minimum. These vectors are linearly independent but
generate (2Z)" rather than L.

Since we can’t use the shortest possible linearly independent vectors in
L as our criterion for a desirable basis, we insert a clause which ensures the
previous case cannot occur.

Definition. A basis by, bsy,...,b; of L is Minkowski reduced if b; is the
shortest possible vector such that by, ... ,b; may be extended into a basis for
each 1 <1 <d.

Unfortunately, the computation of a Minkowski reduced basis leads to
a combinatorial problem with an exponential search space in d. Even the
computation of b; in a Minkowski reduced basis (known as the Shortest
Vector Problem or SVP) seems infeasible: it is NP-hard with respect to the
maximum norm [6]. With respect to the Euclidean norm, SVP is NP-hard
under a randomized (opposed to deterministic) reduction [1].

3 Lagrange Reduction

Before moving to the general case it will be useful to consider a simple re-
duction in two dimensions. Historically this was the first lattice reduction
considered (by Lagrange in 1773), and it gives rise to a simple algorithm,
rather similar in style to Euclid’s famous ged algorithm: the norms of the
input vectors are continually decreased by subtracting appropriate multiples
of one vector from the other.

If ||b1]| < ||bz|| then the “appropriate multiplier” here is the v € Z which
minimizes ||by — vb;||. Optimally, this minimum would have value

b proj, (b2)] = 102 — 2201

3

and so v = <H ;’ H2>’ except that this may well not be an integer, and in which

case by —vby ¢ L. Instead, taking the closest integer to <|l|’;’ﬁ'|2> will ensure we
remain in £ while also minimizing ||by — vb;||. In the case l\);,tl)lz | <1 there

is no multiplier we can use to strictly decrease the norm.

Deﬁmtlon A basis by, by of L is Lagrange reduced if ||by|| < ||ba]| and
bl,bQ
l[ba]® ‘ - 2

Based on this definition, an obvious iterative algorithm presents itself:

Algorithm 1 LAGRANGEREDUCE
Input: A basis by, by of a lattice £
Output: A Lagrange reduced basis of £
repeat
if ||b1|| > ||b2|| then swap by and b,
by = b, — round({b1,b2))b1
until [[by[| < b
return (b, by)

In fact, a Lagrange reduced basis is also a Minkowski reduced basis. For
arbitrary b = ab; 4+ 8b, in L it may be shown using simple algebra (see [5])
that a Lagrange reduced basis satisfies

(o — B+ £2) [|ba]|* < [|b]” (1)
(82 =1) (I162]1” = [1B4]|*) + [[2]1* < [|B]|* (2)

If b is nonzero then a8 # 0, so 1 < a? —afB+ % and (1) implies || b;]| < ||b]|,
i.e., by is the shortest possible nonzero vector in L. If b is linearly independent
with by then 8 # 0, s0o 1 < 32 — 1 and (2) implies ||bs|| < |[b]], i.e., by is the
shortest possible vector linearly independent with b;.

3.1 Cost of LAGRANGEREDUCE

<b17b2
l[b1]”
some iteration which is not the first or the last. Clearly we have v # 0 and

|b1]| > [|ba — vby||, otherwise the until statement will evaluate to true and
this would be the last iteration.

To estimate the complexity, let © = and v = round(u) after line 2 of

Now, if v = 1 then we have ||b;|| > ||by — b1||, which means after line 3
of the previous iteration we would have had ||bs|| > ||by — ba|| = ||ba — by||.
This is impossible since it means we could’ve decreased b, even more by
subtracting off another copy of by, but line 3 always chooses v such that the
decrease in b, is maximized.

Similarly for v = —1, so we know that |v| > 2, [u| > 2 and of course
| —v| < 3. Let b, denote the component of by orthogonal to by. Then from
by = ub; + bl we have:

by — vby = (u—v)by + b
B2 — vbi |* = (1 = v)* (b1]|* + |15
< Ll + 42 3

4
Again from by = pub; + b, we have:

B2 = g2 [1* + [[B5]1*
> Sl ” + (|6
> 2[ba|* + [|b2 — vbi[|* from (3)
> 3 ||by — vby||?

using that ||by]| > ||by — vb;|| since this isn’t the last iteration. Therefore,
we have that when b, is reassigned in step 3 its norm decreases by a factor of
at least v/3 (except possibly on the first and last iterations, where it at least
doesn’t increase). Since ||be|| > 1 we have that the number of loop iterations
is O(log s ||b2]|), where by is the second vector before its first decrease.

As a crude upper bound, we know that the arithmetic operations in each
loop take O(log” ||by||) bit operations, so overall the algorithm runs with
O(log® ||by]|) bit operations.

Actually, each loop costs only O(log ||ba| (1 + log||b2|| — log ||b1]])) and
summing over all iterations (while updating the values taken by b; and bs)
leads to a cascade resulting in a O(log® ||by||) cost, as described in [4].

4 Recursive Projections

The reductions we will see in arbitrary dimension will generally have similar
conditions for d basis vectors as Lagrange reduction did for 2 basis vectors,
but there will be an extra recursive component: the conditions will also apply

5

to the basis vectors of the lattice of degree d — 1 formed by projecting all
lattice points orthogonally to the first basis vector. As previously mentioned,
the basis of a lattice with d = 1 is always reduced and will serve as our base
case for the recursion.

To this end, it will be helpful to make the following definition which
applies to the vectors of a basis by, ..., b,.

Definition. Define the “kth recursive projection” of b; as

R P I L

We will also use the following shorthand:

Although this will be a convenient definition for our formulations of re-
cursive reductions, the following lemma shows we also have a nice iterative
form for bgk) which is easier to actually work with.

Lemma.
k .
bg) = pYOJspan(b’;,b;,...7b,§)l(bz')

Proof. By induction on k. If k = 0 then we are projecting onto) = R™ and
hence b§0 = b, as required.

Assume the lemma holds for some k£ > 0. Then by definition, hypothesis,
and a property of projection,

bgkﬂ) = projspan(b;H)i (bgk))
= PTOJspan(b;H)L (ijspan(b;,b;,...,b;;)L (bz))
= PI“OJspan(b;,b;,...,b;;,b;;H)L (b:)
and the lemma holds for k£ + 1 as well. [

It follows that the vectors b} are in fact the standard Gram-Schmidt
orthogonalization defined by

1—1
b = Dr0jupan;, .yt (0) = b = D pub; with gy = ||b*||]2 ’
j=1 J

And bgk) for 1 <k <i—2isthe ‘truncated’ Gram-Schmidt orthogonalization
k k X
b = b — 27 i b5

5 Korkin-Zolotarev Reduction

If by,...,b; are a basis for £ then we previously defined b, ..., b/, to be
the components of bs, ..., by orthogonal to by, i.e., their projections over the
orthogonal component of span(b;). As a natural extension of this notation,
define £’ to be the lattice generated by b, ..., b/.

Definition. A basis by, by, ..., by of L is Korkin-Zolotarev reduced if

e b, is the shortest possible nonzero vector of L
o b, ..., b, is a Korkin-Zolotarev reduced basis of L'

o by, ..., by are as short as possible without changing b),.... b, ie.,
lpia| < % for2<i¢<d

Again we have a reduction which requires solving SVP and so shouldn’t
be expected to be practical for large d. However, Korkin-Zolotarev reduced
do have some nice properties, for example:

d
[TIe:l < (3)* " vol(c)
=1

Later we will show that Hermite reduced bases satisfy this bound and simul-
taneously get it for Korkin-Zolotarev bases (since they are Hermite reduced
bases as well). Note the similarity with Hadamard’s bound (which follows
from Gram-Schmidt):

d
vol(£) <] ol
i=1

with equality if and only if the b; are orthogonal. So intuitively

[T/ vol(e)

measures the amount of “nonorthogonality” in a basis and is sometimes called
the orthogonality defect. We would like to show that the basis reductions we
consider have a bounded orthogonality defect which only depends on some
function of the lattice dimension d.

5.1 Size Reduction

Notice that while the second KZ condition ensures that b}, ..., b/, are short
vectors, this does not ensure that b,, ..., by are short vectors since there are
an infinite number of possible ways to ‘lift’ the b; € £ into b; € L (most of
them yielding huge b;). We of course want the shortest possible ‘lifts’ from
L' to L, so this is what the third condition ensures.

The condition that |, ;] < % for all 1 < j < ¢ is sometimes called size
reduction. This property is not explicitly stated in recursive formulations but
may be inferred from the third condition: for every 1 < 7 < i we consider
the jth recursive lattice and see that the definition requires

1>‘<b5“%b;> _’<b@-—2§;;11m,kb27) _’<b@-,b>§> s
- * - * - * - LI
271 e o o

using that (by, b;) = 0 for k # j.

It is simple to transform any basis into a size reduced one by using the
same technique that was used in Lagrange’s algorithm, i.e., adding a suitable
multiple of one vector to another. For example, if |, ;| > %, then we replace
b; with b; — |, ;] b;; the new value of y; ; will then be p; ; — [p; ;] € [—1,1].
Since this is such a straightforward method of reduction it will continue to
be used in the following reductions we will see.

6 Hermite Reduction

Hermite was apparently the first person to consider reduction in arbitrary
dimension when in 1845 he described a general reduction in a letter to Jacobi

(as noted in [3]). The first basis vector satisfies ||b;|| < (%)(d*l)/4 vol(L£)1/4
but otherwise the reduction lacks desirable properties like a bound on the
orthogonality defect. However, in a second letter Hermite proposed a differ-

ent reduction which bounds the orthogonality defect by (%)d(d_l)/ * We give

his second reduction here.

Definition. A basis by, bs, ..., by of L is Hermite reduced if
o ||bi|| < ||bi|| for all i
o b, ..., b, is a Hermite reduced basis of L'

o by, ..., b, are lifted from L minimally: |p; 1| < % for2 <i<d

8

Before showing the orthogonality defect is bounded we show the following
helpful lemma.

Lemma. If by, by,..., by is a Hermite reduced basis then
2 2
164117 < 3 16}]]-
Proof. In the following we use the inequalities p, < T and [|by]| < [|bs]], as
well as the fact that b; and b] are orthogonal.

b; = b} + pi1by
184> = 18511 + 423 1181
151> < 167" + 1114
ol < 651"
1B < 4 118}

[
Applying this lemma recursively yields
2 3 =1) g
1817 < 51807 < (3)7 16717 < (3)° 1687 1P < - < (3)" 1t
and it follows
- - 4 * N\Ti i 2 4\d(d-1)/2 2
[T 1o:0r" H DB = (3) 0 vol(£)? = () vol(£)7,
i=1 i=1
where [], ||b%]| = vol(£) because the Gram-Schmidt change-of-basis matrix

has determinant 1 and the b} are orthogonal. Taking the square root yields
the promised orthogonality defect bound

H||b]| < ()M ol L).

Also, from ||by|| < ||b;]| we have ||by]|* < TT%, |bil, so taking the dth root
yields
ol < (5) vol(£) 7,
which is actually the same bound satisfied by the reduction in Hermite’s first
letter.
It is unknown if Hermite’s basis reduction can be computed in polynomial
time in d or not.

7 Optimal-LLL Reduction

The lack of a provable polynomial time algorithm for Hermite basis reduction
suggests we should weaken the reduction conditions even farther, and indeed
the optimal-LLL reduction is a natural weakening of Hermite’s reduction.

Definition. A basis by, by, ..., by of L is optimal-LLL reduced if
o [[bi]| < |ba]
o b, ..., b, is a optimal-LLL reduced basis of L'
e by, ..., b, are lifted from L minimally: |p;]| < % for2<i<d

As usual, we would like to be able to find a bound for the orthogonality
defect for optimal-LLL reduced bases. The lemma ||b;]|* < : ||b%]|> which was
used in the Hermite case no longer holds, but as it turns out we can still show
exactly the same orthogonality defect bound! To start off we use a different
lemma.

Lemma. If by, by, ..., b, is an optimal-LLL reduced basis then

2 2
167117 < 5 116554117

Proof. Using condition 1 recursively, we get

167 < (16857
= [|6} 1 + fig1,:bf]|
||b;,k||2 < Hb;’ﬁ—&-IHQ + Nz2+1,z' ||b:||2
16717 < 116711 + L (17
8 1B:)1* < [1br,)1
1B71° < 4 1[b,,

10

From b; = b + Z =1 Hi,;b7 and the orthogonality of the b} we have:
i—1
2 ®112 *12
11" = [|b7] +Zuf,j\|bj|!
< |67 11" +Z (3" lv;11°

= (17" + |16 Z (4

= b (1+ (%) ")
= ()" 1B

And [IZ, ||bs]] < (%)d(dfl)/4 vol(L) follows, as in the Hermite case. Also,
repeatedly using the lemma yields

2 2 2 2 2 d—1 2
oal” < 16717 < 5110317 < (5)7 0317 < - < (5)" 113l

so [T, Ibu]” < TIL L (3) bz|? = (3) A=/ vol(£)? and like in the Her-

mite case we still have the bound ||b:[| < (3)(d b/ vol(L£)V/4.
Also like in the Hermite case, it is unknown if optlmal—LLL basis reduction
can be computed in polynomial time in d or not.

8 LLL Reduction

Finally we are ready to introduce the LLL basis reduction, as a slight re-
laxation of the optimal-LLL reduction just discussed. Now we allow a little
slack room for b, to be smaller than b;; the exact amount of slack can be
controlled with a quality parameter ¢ € (1,4). The closer ¢ is to 1, the bet-
ter the reduction will be (and the longer it will take). A choice of ¢ = 1
corresponds to the optimal-LLL reduction. The original paper by Lenstra,
Lenstra and Lovész [2] effectively uses ¢ = 3.

11

Definition. A basis by, b,, ..., b, of L is LLL reduced with quality param-
eter c € (1,4) if

o [|b1]] < Vclbyl
e bl ... b, is an LLL reduced basis (with quality parameter c¢) of L’
o by, ..., b, are lifted from L minimally: |p; 1] < % for2 <i¢<d

To find a bound on the orthogonality defect we proceed much like before,
except that in this case the results aren’t quite as nice. Define C' = 44ch and
note that C' > % for ¢ > 1. Roughly speaking, % in our previous results will
be replaced by C' in the LLL-specific results.

Lemma. If by, by, ..., b, is an LLL reduced basis then
12 « 2
167117 < Cllb7ya " -
Proof. Using condition 1 recursively, we get
y i1
16711 < Ve bl
Vellb7y + pig,ib7 |
« 2 |2
c|lbi " + C/%ZH;L' 167 ||
« 2]2
c[[b7 1 [I” + ez |17
« 2
c|[bi |

2
= 167l

A

2

167

2

167
el A

2
167

IN AN A

12

From b; = b + Z =1 Hi,;b7 and the orthogonality of the b} we have:

i1

* * (|2

”biHQ = ||b; ”2 + ZM?,]' 167l
=1

1—1
%112 i—7 * |12
<|B; 1+ D 1 bl

j=1
i—1

(2 *)2 1vj

= [[B7]I + |67] ZZCJ

= 61" (555 4(01 =1 +1)
< oHb”?

sinc

d d
[T16:0% < TL € 115117 = ¢4/ vol ()2
=1 =1

d
[T 1B:l < ¢V vol(z)
=1

Similarly, repeatedly using the lemma yields

Ioa]|* < " [|7 (4)

HHblH < HCZ Hpi | = oM vol(£)?

|by]| < CD/Ayol(L)M4

Also, if x = Ele r;b; is the shortest nonzero vector in £, with r; € Z

13

and 7, # 0, we use the Gram-Schmidt change-of-basis to write, for some s;,
k—1
x = rpb; + Z s;b;
i=1

k—1
2 2 2
l2|* = ri 0517 + > 57 167
i=1

> ||bg|? since 17 > 1
O lel|* > O [l
> [|oa* by (4)

So the first vector in an LLL-reduced basis contains an approximation to the
shortest nonzero vector, off by a factor of at most C%~1.

Now perhaps the most important fact in this report is this: The ‘obvious’
algorithm for computing an LLL reduced basis runs in polynomial time in
the lattice dimension d. We note the algorithm suggested by the definition:

Algorithm 2 LLLREDUCE, the recursive version
Input: A basis by, bs, ..., b, of a lattice £
Output: An LLL reduced basis (with quality parameter ¢) of £
if d =1 then return (b;)
repeat
if ||b1]| > v/c||bs|| then swap b; and b,
(ba, ..., by) = lifty, (LLLREDUCE(bS, . .., b))
until [|b, || < v/c|[ba||
return (by, by, ..., by)

Where the lift function returns b; which satisfy the third condition |, ;| <
% for 2 < i < d. In practice to avoid recursion overhead LLL should be
implemented iteratively, as usually presented.

Finally, we show that the total number of swaps (including those in re-
cursive calls) needed until an LLL reduced basis is found is polynomial in
d.

As noted before, [T, ||bX|| = vol(L£) and therefore is constant throughout
the algorithm. Also the volume of the lattice projected orthogonally to by
and by does not change when b; and by are swapped. But the volume of the

14

lattice projected orthogonally to by may change when b; and by are swapped.

So if we define
* vol("

then the only time dj may change is when we perform a swap at a recursive
depth of k. In fact, if we do perform a swap it is because

(Lo e vl

so by replacing bl(f:_ with ka we have dj, > cd}®v, i.e., we decrease dj, by
a factor of c.

Now define D = Hle d;. Any swap we perform at a recursion depth of k
decreases d;, by a factor of ¢ and does not change the other d;, so every time
a swap is performed D decreases by a factor of ¢. Further, D € Z* because
d; € Z as vol(£) € Z* and vol(£®)? | vol(£)?. Therefore the total number of
swaps the algorithm can perform is at most log,(D) = O(d? log(max ||b;]|)),
since

d d
w1 2(d—i+1 2(d—i+1 d(d+1
D = [T Ie; = < T o7 < max [y V.
i=1 i=1
However, to prove a polynomial bit complexity it is still necessary to
bound the size of the rational numbers used during the algorithm as done in

2].

15

References

[1] Miklés Ajtai. SVP in Lg is NP-hard. STOC "98, 1998.

2] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261:513-534, 1982.

[3] P. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity.
To appear in SIAM Journal on Computing, 2009.

[4] P. Nguyen, D. Stehlé. Low-Dimensional Lattice Basis Reduction Revis-
ited. To appear in ACM Transactions on Algorithms, 2009.

[5] H. Yao, G. W. Womell. Lattice-Reduction-Aided Detectors for MIMO
Communication Systems. Proceedings of IEEE Globecom 2002, Taipei,
Taiwan, November 2002.

6] P. Van Em de Boas. Another NP-complete partition problem and the
complexity of computing short vectors in lattice. Tech. Report 81-04,
Department of Mathematics, University of Amsterdam, 1980.

16

