CS 686 Programming Project:
Ataxx with Al

Curtis Bright
December 13, 2010

Abstract

Ataxx is a little-known board game with extremely simple but elegant rules. The
goal of this project is to complete an implementation of Ataxx with an Al likely capable
of beating even the strongest human players and perform favorably against other Al
implementations.

1 Introduction

Ataxx was invented in 1988 as a board game which would specifically work better when played
on a computer [1]. It is an interesting game in that its rules are extremely simple, but still
admit very complicated behaviour. In its simplest form, Ataxx is a two-player game played
on a 7 x 7 board. The squares on the board may either be empty or controlled by one of the
players. Players alternate making moves, which are of two forms:

e Clone move: Players may ‘clone’ one of their pieces onto an directly adjacent (in the
Chebyshev distance, i.e., co-norm) empty square. The original piece is left on the board.

e Jump move: Players may move one of their pieces onto an empty square 2 squares away
(in the Chebyshev distance). The original piece is removed from the board.

In either case, the opponent’s squares directly adjacent (in the Chebyshev distance) to the
square moved to are ‘captured’ by the player. A move must always be made, except if no legal
moves are possible, in which case the turn is forfeited.

The game starts with each player having control of a corner square, as well as the corner
square on the opposite side of the board, but otherwise the board begins empty. The game
ends if a player loses all of their pieces, or once every square has been claimed, and the player
who controls the most squares is the winner. (A tie is not possible, though the game may
continue indefinitely if players collude.)

It is the capturing rule which gives Ataxx it’s flavor; the control of squares can shift back
and forth rapidly between players. This aspect seems difficult for human players to keep track
of, and suggests that a computerized artificial intelligence which looks several moves ahead
will trump human intuition.

Ataxx was popularized in the 1993 PC puzzle game The 7th Guest, whose ‘microscope
puzzle’ required competing against a strong Ataxx Al [2]; this was usually considered the

1

most challenging puzzle in the game by a wide margin. Thus, a goal of this project was to
construct an Al which could beat this puzzle.

2 The program

The program was written in the C programming language and uses extensive bit manipula-
tions to implement the game rules. The gameboard is stored as two 64-bit integers, one to
represent which squares are occupied and the other to distinguish between the players. Each
bit corresponds to one square, so only the low 49 bits of each integer are needed to represent
the whole board.

The program’s input/output interface is text-based. The gameboard squares occupied by
the players are represented by Xs and Os, and empty squares are represented by periods. Each
square on the board is given a two-character key; the first character is a letter a-g representing
the column and the second character is a number 1-7 representing the row.

abcdefg
1 X..... 01
2 ... 2
3 ... 3
4 ... 4
5 ... 5
6 6
70..... X7

abcdefg

The initial gameboard.

Moves are specified by a four-character string, the first two characters denoting the piece
to move and the last two denoting the square to move to. Optionally, clone moves may be
specified by only the two-character key of the destination square; assuming the move is legal,
which specific piece was cloned is irrelevant.

A feature which makes Ataxx especially attractive to Al is that every possible game position
has a straightforward way of estimating which player is in the lead. Namely, the difference
between the number of Xs and 0s; this is known as the X Score and is displayed along with
the gameboard.

Finally, if compiled with the PRINT macro definition, after the AI has made its move
selection the program will save the game search tree used to a Graphviz DOT file. (This can
be a very large file, especially when DEPTH is large.)

3 Negamax algorithm

The optimal algorithm would be to consider the entire game search tree, i.e., every possible
move you can make and every possible move your opponent can make until the end of the
game. Of course, this would be prohibitively expensive. However, if we set a limit on the depth
of the search tree, i.e., only look 5 or 6 moves ahead, then it becomes feasible to examine every

possible sequence of moves. The expectation is that looking ahead a few moves will give a
much better indicator of the worth of a board position than can be determined by examining
the board directly, and will give a reasonable approximation of looking ahead to the end of
the game.

However, we do not just want to find the position with the maximum possible score after n
moves, because such a position would most likely only come about as a result of a blunder from
our opponent. We need to take into account that our opponent is also trying to maximize
their score, and we might as well just assume they will always play their best move, i.e.,
try to maximize things from their perspective. However, since Ataxx is a zero-sum game,
our opponent maximizing their score is equivalent to minimizing our score. This is where
the minimaz algorithm [5, 6] gets its name. Additionally, minimizing our score can also be
expressed as maximizing the negative of our score, hence the name negamaz.

In summary, the algorithm we use will construct a search tree of some set depth containing
the move sequences which follow from the current position. The utility of the leaves of the
search tree will be estimated using the evaluation function previously mentioned, X Score.
Then, working our way up the tree, the utility of nodes will be found by taking the maximum
score of the negative of the children’s utility. (See Figure 1 for an example.)

4 Alpha-beta pruning

A problem with the naive negamax algorithm is that it can waste a lot of time searching
through nodes which are necessarily suboptimal and will not affect the utility calculation.
Alpha-beta pruning [3] is a method of cutting down the search space while provably not
changing the final utility calculated.

For example, if the utility of one child of the root is known to be —1, and during searching
the utility of another child of the root is shown to be —1 or less then this second node and any
unexamined nodes beneath it may simply be ignored, since there is no point in considering the
second move over the first; it is already known the opponent can force a score —1, so that’s
what they will do (unless there is an even worse score they can force in the examined part).

This is demonstrated in Figure 2, which is a depth 2 search tree with alpha-beta pruning,
where the first child node had utility —1 and all the remaining child nodes were immediately
seen to have utility at most —1 or —2, so definitely no better than the first child node. The
highlighted nodes show the optimal sequence of moves found for both players (in fact, many
of the nodes are in a tie for the optimal move in this case).

5 Results

Using a search depth of 5 was found to select a move almost instantaneously, while using a
search depth of 6 could take around 30 seconds during the middle of the game, when the
branching factor is largest.

Using a search depth of 6, the program was pitted against the Al from The 7th Guest,
and was found to play significantly better, winning the game 35-14. A record of the complete
game is available in appendix A.

Score:
Depth:

Score:
Depth:

Figure 1: An example minimax search tree (with many nodes missing). Depth indicates how
many more levels to search for. In this case, for both nodes of depth 1 the maximum of the
negative children’s utility of is 1, so for the root node the maximum of the negative children’s
utility is —1.

8] >W©@&)ﬁ mm

Figure 2: Depth 2 search tree with alpha-beta pruning, for a response move to X playing the
opening move bl. Each of child nodes of the root (besides the first) only needed one node to
be searched beneath them, opposed to the ~ 25 nodes each had without pruning.

The program was also tested against SlimeWar [4], an open-source Ataxx clone which
claims to have beaten all Ataxx Al implementations available online. It has user-customizable
options; they were set to use a maximum search depth of 6 and maximum time of 30 seconds.
My program also used a search depth of 6 and ultimately won 27-22. A record of the complete
game is available in appendix B.

Final position against The 7th Guest Final position against SlimeWar

References

[1] Alain Beyrand, Ataxx - Origins. http://www.pressibus.org/ataxx/gen/gborigines.
html

[2] Alain Beyrand, Ataxx - The 7th guest - Microscope. http://pressibus.org/ataxx/dos/
gb7thguest.html

[3] Timothy Hart, Daniel Edwards, The Tree Prune (TP) Algorithm. Artificial Intelligence
Project Memo 30, MIT, 1961.

[4] Michael Levin, SlimeWar: An Ataxx Clone, http://sourceforge.net/projects/
slimewar/

[5] Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach, Section 5.2.
Prentice Hall, 1995.

[6] Claude Shannon, Programming a Computer for Playing Chess. Philisophical Magazine,
1950.

A Versus The 7th Guest

The following is the game between my program (as X) set to a search depth of 6 and The 7th
Guest (as 0). The final score was 35-14 for my program.

). 0 XX....0 XX...00 XXX..00 XXX.000 XXXXX00 XX000.0 XXXX0.0 XXX00.0
.. ..0000 XKLL L X0O0. .
0..... X0..... X0..... X0..... X0..... X0..... X0..... X0..... X0..... X

XXX00.0 XXX0000 XXX0000 XXX0000 XXX0000 XXX0000 XXX0000 XXX(0000 XXX0000
.XX00.. .XX00.. XXX00.. XXX000. XXX000. XXX0000 XXX0000 XXX00.0 XXXXX.0

.. D G
... 0... ...X..
.. X.. ..0.. 0
.................................). G G ST S ¢
0..... X0..... X0..... X0..... X0..... X0..... X0..... X0..... X0..... X

XXX0.00 XXX0.00 XXX0000 XXX0000 XXX0000 XXX0000 XXX0.00 XXX0.XX XXX000x
X000X.0 XXX0X.0 XXX00.0 XXX00.0 XXX00.0 XXX00.0 XXX00.0 XXXO0XXX XXX000x
..00... .XX0... .XX0... .XXX... .XX00.. .XXXX.. .XXX00. .XXXXX. .XXXXX.

..0... ...0... ...0... XKLL X0 XXX LXXO0.. L .X.0.. L X.0..

XXX000X XXX000X XXX000X XXX000X XXX00XX XXX00XX XXX00XX XXX00XX XXX00xXX
XXX000X XXX0000 XXX0000 XXX000. XXX00XX XXX00XX XXX00XX 00X00XX 00X00xX
CXXXXX. JXXXX00 (XXXXXX (XXXX00 .XXXXXX (XXXXXX L XXXXXX OO0XXXXX OXXXXXX
SXXXL . U XXXL . U XXXX. L JXXX00 . .XXX00 ..000.0 . .00XXX .. .0XXX .. XXXXX

XXX00XX XXX00XX XXX00XX XXX00XX XXX00XX XXX00XX XXX00XX XXX00XX XXXO00XX
00X00XX 00X00XX 00X00XX 00X00XX OO0OX00XX 0OOX00XX 00XO00XX 00XO00XX 00X00XX
000XXXX O0O0XXXX 0O0O0XXXX OO0O0XXXX O00XXXX 000XXXX O00XXXX OXXXXXX OXXXXXX
.00XXXX .XXXXXX .00XXXX .00XXXX 000XXXX XXOXXXX XX.000X XXXX00X XXXX0.X

Xees XX, 00X, .. JXXXL .. JOXX. .. XXXX. .. XXX00.. XXXX0.. XXX00..

XXX00XX XXX00XX XXX00XX XXX00XX XXX00XX XXX00XX XXX00XX XXX00XX XXX00xXX
00X00XX 0O0X00XX 00X00XX 00X00XX 0OO0X00XX DOOX00XX 00X00XX 00X00XX O0X00XX
OXXXXXX OXXXXXX OXXXXXX OXXXXXX OXXXXXX OXXXXXX OXXXXXX OXXXXXX OXXXXXX
XXXXXXX XXXX000 XXXX0XX XXXXO0XX XXXX0XX XXXX0XX XXXX0XX XXXXO0XX XXXX0XX
XXX0X.. XXX000. XXX00XX XXX0000 XXXXX00 XXXXX00 XXXXX00 XXXXX00 .XXXX00
....0..0..0..00. ...XX0. ...000. ..XX00. ..0000. ..XX00.
...... G A 0 O 0 I [0 P . (0

XXX00XX XXX00XX XXX00XX XXX00XX XXX00XX XXX00XX XXX00XX XXX00XX XXXO00XX
00X00XX 00X00XX 00X00XX 00X00XX OO0OX00XX 0OOX00XX 00X00XX 00XO00XX O0O0X00XX
CXXXXXX CXXXXXX CXXXXXX CXXXXXX 00XXXXX 00XXXXX 00XXXXX 00XXXXX 00XXXXX
00XX0XX 00XX0XX .0XX0XX XXXX0XX 00XX0XX 00XX0XX 00XX0XX 00XX0XX 00XX0xX
00XXX00 XXXXX00 00XXX00 XXXXX00 XXXXX00 XXXXX00 XXXXX00 XXXXX00 XXXXX.0
..XX00. .XXX00. OO0OXX00. 00XX00. 0O0XX00. XXXX00. XXXX000 XXXXXXX XX000XX
..XX0.. ..XX0.. ..XX0.. ..XX0.. ..XX0.. .XXX0.. .XXX0.. .XX.XX. .X000X.

XXX00XX XXX00XX XXX00XX XXX00XX XXX00XX
00X00XX 0O0X00XX 00X00XX 00X00XX 00X00XX
00XXXXX OOXXXXX OOXXXXX OOXXXXX O0O0XXXXX
O00XXXXX OO0XXXXX OO0XXXXX OO0XXXXX O0O0XXXXX
XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX
XX00XXX XX00X00 XX0XXX0 00.XXX0 0XXXXX0
.X000X. .X00.00 .XOXXX0 OOO0XXX0 OXXXXXO0

B Versus SlimeWar

The following is the game between my program (as 0) and SlimeWar (as X), both set to search
to a depth of 6. The final score was 27-22 for my program.

Xoo.o.. 0 XX....0XX....0XX....0XX....0XX....0 XX...00 XX...00 XX...00
.. X. 0....X.
............................ g...... 0...X.. 0...X.. 0...X.. 0...X..
.............. 0...... 0 X. 0....X.0 X. 0 X. 0....X. 0....X.
0..... X0..... X0..... X0..... X0..... X0..... X0..... X0..... X0..... X

. g....0. X....0. X....0. X....0. X...00. X...X0. X...X0. X....XX
0..XX.. 0..XX.. XX..X.. XX..00. XX..XX. XX..00. XX.XX0. 00.XX0. 00.XXX.
0....X. X....X. X....0. X...XX. X...XX. X...XX. 00..XX. 00..XX.

XX....0
...... X
X....XX
0..00X.
00.00X
0......
X....0
XX.....
XX. .XX0
00. .XX0
0XX..0.
0X.....
X....0
XX.....
XX..00.
0X..000
0XX. .X0
000. .XX
X....0
.00....
X00. ...
XX...XX
XXX . XXX
XX..000
00..00X
00X...0
00X. ...
00X....
X0X..0X
XX..00X
X00.00.
000.XXX

00a0. .

.00....
X00....

X00.
X00.
.000
.00X

XX.
00.

00X. ..

XX
XXX

00X....
00X....

X0X.
.0XX
X00.
000.

XX.

.0X

0XX
XXX

XX....0
...... X
X....00
XX.0000
XX.0.0.
O......
X....0
XX.....
XX...X0
00..0XX
0XX.0XX
0X.....
X....0
XX.....
XX..00.
0X. .XX0
0X..000
00..00X
X....0
.00. ..

X00. ...
X00. .XX
XXX . XXX
XXX.000
0X..00X
000...0
0oao. ..
000. ...
X0X...X
XX..0XX
X00.0XX
000.XXX

XX....0
X...XX0
XX . XXX0
XX.0.0.
0......
X....0
XX.....
XX...X0
00...XX
000.0XX
000. ...
X....0
XX.....
XX..0XX
0X. .XXX
0X..000
00..00X
.0 .0....0
. 000....
000. ...
X00. .XX
XXX . XXX
XXX.000
0X..00X
000...0
00XX. ..
00XX. ..
X0X...X
XX..0XX
X00.0XX
000.XXX

00. .XX0

O0XX..XX
0XX.0XX
000....

00XX. ..
X0X. . XX
XXX. . XX
XXX.000
0X..00X

000...0
00XX. ..
00XX. ..
X0X. .00
XX..000
X00.0xX
000.XXX

XXX. . XX
0XX. XXX
0X..000
00..00X

.0....0

. 00X....

00XX. ..
X0X. . XX
XXX. . XX
X00. .00
000.00X

000...0
00XX. ..
00XX. ..
X0...00
XX..X00
XOXXXXX
00X . XXX

0XX.XXX
0X..000
00..00X

XX...0
OXX....
00X....
X0X. . XX
XXX. .XX
X00. .00
000.00X

0000. .0
0000. ..
00XX. ..
X0...00
XX..X00
XOXXXXX
00X . XXX

0XX.XXX
0X..000
00..00X

00X...0
00X....
00X....
X0X. . XX
XXX. .XX
X00. .00
000.00X

000XX.0
000X. ..
00.X...
X0...00
XX..X00
XOXXXXX
00X . XXX

0XX..
000. .

Xooo.

.00....

0X.
00.

00X. ..

X00....
X0..
.XX.
.000
.00X

XX
XXX

00X....
00X. ...

X0X.
XX..
X00.
000.

XX
XX
XX0
XXX

000XX.0
000X. ..
00.X...

X0..
X00.

.00
X00

X000XXX

00X.

XXX

000XX.0
OXXX. ..
OXXX. ..
XX...00
X00.X00
X000XXX
00X . XXX

00000.0
O0XXX. ..
OXXX. ..
XXXX000
XX0X000
XX000XX
00000XX

000XX.0
OXXX. ..
OXXX. ..
XX...00
X.0.X00
X0000xX
00000XX

00000.0
OXXX. ..
OXXXX. .
XXXXXX0
XX0.000
XX000xX
00000XX

0000XXX
0X00.X.
0XXX0X.
XX000xX
XX000xX
XX000xX
00000XX

000XX.0
OXXX. ..
OXX....
XX...00
XXX .X00
XXX00XX
00000XX

00000.0
OXXX. ..
OXXXX. .
XX000X0
XX00000
XX000XX
00000XX

00.000X
0X0000.
0XX000.
XX000xX
XX000xX
XX000XX
00000XX

000XX.0
OXXX. ..
OXX....
XX...00
XX00000
XX000XX
00000XX

000XX.0
OXXXX. .
OXXXX. .
XX000.0
XX00000
XX000XX
00000XX

0XXX00X
0XXX00.
0XX000.
XX000XX
XX000XX
XX000XX
00000XX

000XX.0
OXXX. ..
OXX....
XXX..00
XXXX000
XX000XX
00000XX

000X0.0
0XXX00.
0XXXO0. .
XX000. .
XX00000
XX000XX
00000XX

0XXX0.X
0XXX00.
0XX0000
XX00000
XX000XX
XX000XX
00000XX

000XX.0
OXXX. ..
0x0....
XX00.00
XX00000
XX000XX
00000XX

000.0.0
OXXXXX.
OXXXXX.
XX00X. .
XX00000
XX000XX
00000XX

0XX. XXX
OXXXXX.
0XX0000
XX00000
XX000XX
XX000XX
00000XX

000XX.0
0XX....
0x0....
XX0XXX0
XX0XXX0
XX000XX
00000XX

00000.0
0X000X.
OXXXXX.
XX00X. .
XX00000
XX000XX
00000XX

0XX.X00
0XXXX00
0XX0000
XX00000
XX000XX
XX000XX
00000XX

00000.0
0X00. ..
0x0....
XX0XXX0
XX0XXX0
XX000XX
00000XX

0000XXX
0X00XX.
OXXXXX.
XX00X. .
XX00000
XX000XX
00000XX

0XXXX00
0XXXX00
0XX0000
XX00000
XX000XX
XX000XX
00000XX

00000.0
OXXX...
OXXX. ..
XXXXX.0
XX0XXX0
XX000XX
00000XX

0000XXX
0X00XX.
0XXX00.
XX0000.
XX00000
XX000XX
00000XX

