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Abstract

In Quantum Computation and Lattice Problems [11] Oded Regev presented the first known connection
between lattices and quantum computation, in the form of a quantum reduction from the poly(n)-unique
shortest vector problem to the dihedral hidden subgroup problem by sampling cosets. This article contains
a summary of Regev’s result.

1 Introduction

Lattice problems are widely studied in mathematics and computer science and have applications to fields
such as number theory and cryptography. Their highly periodic nature suggests they might be amenable to
attack by quantum computers and their ability to work in quantum superposition. Despite this, relatively
few connections between lattice problems and quantum computation are known.

The first explicit connection discovered [11] was based on the dihedral hidden subgroup problem, which is
interesting since at first this seems like a problem completely unconnected to lattices. The result is also of
interest because it was the first known application of the dihedral hidden subgroup problem to a “useful”
problem.

2 Background

In this section we discuss the background material required for Regev’s result, which requires the concept of
reduction and knowledge of lattices and dihedral groups. We use the notation poly(n) for nO(1).

2.1 Reductions

The notion of reduction between problems is ubiquitous in computer science. Roughly, “problem A reduces
to problem B” means there is a way of solving A given some way of solving B, and as shorthand we write

A ≤ B.

The idea behind this notation is that intuitively we are saying problem B is at least as hard as problem A.
The reason is that if someone came up with a method of solving problem B, they could then use that method
to solve problem A: they simply translate a given instance of A to an instance of B using the reduction, and
then solve B to solve A. Of course, the method of translation from A to B should be efficiently computable,
or else this method of solving A would not be useful.

So A ≤ B is roughly saying that A and B have similar difficulty, except that A might be easier, since
there might be a better way of solving A than using the reduction. In general not every method of solving A
is applicable to solving B; in some sense instances of A can be considered as “special cases” of instances of B.

There are many different types of reduction. The standard Karp reduction requires that the translation
between A and B be computable by a Turing machine in polynomial time, and the “black box” or “oracle”
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for B can only be called once at the reduction’s conclusion. The more general Cook reduction is similar but
also allows the black box to be called multiple times.

Reductions can be even more general, for example in “white box” reductions we are also allowed to see
the “source code” of the solver for B. We can also expand the model of computation to allow randomness or
quantum circuits in the reduction.

2.2 Point lattices

A point lattice is a discrete additive subgroup of Rn. A set of linearly independent vectors b1, . . . , bn generate
a lattice L by taking their ‘integer span’, that is,

L =

{ n∑
i=1

xibi : xi ∈ Z
}
.

The bi form what is called a basis of L. Every lattice which contains at least two linearly independent vectors
has infinitely many bases, and a central lattice problem is how to compute short basis vectors of a given
lattice.

Figure 1: An example lattice in two dimensions, with one basis marked in red.

The shortest vector problem (SVP) is to find the shortest nonzero vector in a given lattice described by
some basis vectors. (The zero vector is always excluded from being the shortest or the problem would be
trivial.) In two dimensions the problem is known to be solvable in polynomial time by a generalization of
Euclid’s gcd algorithm [4]. Given two basis vectors, simply subtract off a multiple of the shorter one from
the longer one to decrease the length of the longer one. Continue doing this until it is no longer possible to
decrease the length and you will have found the shortest vector.

Figure 2: An example instance of the shortest vector problem. Given the red vectors, find the blue vector.
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However, in n dimensions the problem seems to be extremely difficult. Indeed, all known algorithms for
the SVP run in exponential time in n. When using the max-norm the problem is known to be NP-hard [13],
i.e.,

A ≤ max-norm SVP

for all A ∈ NP, where the reduction used is the standard Karp reduction. For the more standard Euclidean
norm the problem is suspected to be NP-hard and is known to be NP-hard using a RUR-reduction [2]. This
reduction makes use of randomization and is only required to be accurate with high probability. That is, if
you had an oracle which could solve SVP then you could solve all problems in NP provided you make use of
randomization and accept a small possibility of error.

Since the SVP is too hard in general to solve exactly, we will be content with solving it approximately,
i.e., finding some vector which is not too much larger than the shortest one. Approximating the shortest
vector to within a constant is also known to be NP-hard under a randomized reduction [10], so it is likely we
will have to accept approximation factors which grow as the dimension n increases.

Classically, the so-called LLL algorithm [8] approximates the shortest vector to within a factor of 2(n−1)/2.
This is not ideal, since the approximation factor is exponential in n, but at least the algorithm provably runs
in polynomial time and provably finds a vector with some approximation factor.

As a special case of approximation, we will consider solving the SVP in lattices which have an especially
short shortest vector. Say a vector is f(n)-unique if it is a factor of f(n) shorter than all other nonparallel
vectors. Then the SVP in lattices with a O(2n)-unique shortest vector is solvable in polynomial time, since
the approximation vector that LLL finds is in fact guaranteed to be the shortest vector in this case.

Since the O(1)-unique SVP is probably hard, and the O(2n)-unique SVP is in P, this raises the following
open question: can we solve the poly(n)-unique SVP in polynomial time? This is not expected to be NP-hard,
since the problem is known to be in NP and coNP [1, 9], and it being NP-hard would imply NP = coNP.

More precisely, the decision version of the poly(n)-unique SVP problem lies in NP and coNP. This means
that given a lattice and a target bound d there is a short certificate which proves that the shortest vector
is either shorter than d or longer than d. In the former case, the certificate is simply the shortest vector
itself. In the latter case, the certificate is a basis of the lattice in which every vector in the Gram–Schmidt
orthogonalization of the basis is longer than d.

2.3 Dihedral group

The dihedral group of order 2N , denoted D2N , is the set of “symmetries” of an N -sided regular polygon.
More concretely, it is the collection of all the ways an N -sided regular polygon can be rotated or reflected
keeping the the outline of the shape fixed.

Figure 3: A diagram of D10, the dihedral group of 10 elements.

There are 2N ways one can apply rotations or reflections in a distinct way. Every element of D2N can be
represented as a tuple (s, r) where s ∈ {0, 1} represents the number of reflections and 0 ≤ r < N represents
the number of rotations.

Any two elements of D2N can be composed by performing the actions of each element in sequence. For
example, the element representing a single rotation can be composed with the element representing 2 rotations
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to form the element representing 3 rotations. Composing a single rotation with itself N times yields a element
representing N rotations, which is identical to performing no rotations. This means the set of only rotations
can be thought of as equivalent to the integers mod N .

One complicating factor is that D2N is a non-commutative group. That is, the result of a computation
depends on the order the operations were done in. For example, performing a rotation followed by a reflection
gives a different result than performing a reflection followed by a rotation.

rotate−→ reflect−→

reflect−→ rotate−→

Figure 4: An example showing the non-commutativity of D10.

3 Hidden subgroup problem

We say a function f on a group G hides a subgroup H ⊆ G if it satisfies the following conditions:

• f is constant (for simplicity, say 0) on the subgroup H

• f is constant on the cosets of H and each coset has a distinct value

A coset can be thought of as a “translation” of a subgroup. For example, in the dihedral group when you
apply a reflection to all elements in a subgroup you get a coset. Technically, this is a left coset, and for
non-commutative groups we should specify either left or right cosets in the conditions on f .

An example of a subgroup-hiding function f on the dihedral group D10 is:

f( ) := 0 f( ) := 1 f( ) := 2 f( ) := 3 f( ) := 4

f( ) := 3 f( ) := 4 f( ) := 0 f( ) := 1 f( ) := 2

This function hides the subgroup { , } = {(0, 0), (1, 2)}.
The hidden subgroup problem (HSP) is to find H with as few queries to f as possible. We would also like

the process to be efficient, namely to run in polynomial time with respect to log|G|. Since |H| itself might be
exponential in log|G|, this might only be possible by specifying H in a compact representation (for example
by a set of elements which generate H).

The näıve way of solving the HSP is simply to query f on every element and output those which give
the value 0, but this is not efficient. However, in some cases this is essentially the best we can do, at least
classically. For example, in the worst case of the dihedral HSP, H is of size 2 and contains a flipped element
which has been rotated k times. Finding k classically essentially requires a brute-force search by querying f on
flipped elements with i rotations for 0 ≤ i < n. When the query value is nonzero you receive no information
about k other than removing one possibility for it, so in the worst case you must try all i and use Ω(|G|)
queries of f .

The HSP is important to quantum computation since most quantum algorithms which run super-
polynomially faster than all known classical algorithms do so by solving special cases of the HSP. For example,
Shor’s algorithm for factoring integers [12] solves the cyclic HSP. In fact, quantum computers can solve the
HSP in polynomial time for commutative groups [3] and can solve the general HSP with only a polynomial
number of queries to f , though the process itself is still exponential time [5].
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3.1 Solving HSP by sampling cosets

The so-called “standard method” of solving the HSP with a quantum computer involves a process known
as sampling cosets. A coset state is a state which is in a superposition over all elements in a coset. The
construction of a coset state proceeds in three steps:

1. Construct superposition of over all elements of G:

1

|G|
∑
g∈G
|g〉

2. Query f in an ancilla register:
1

|G|
∑
g∈G
|g〉|f(g)〉

3. Discard the second register:
1

|H|
∑
h∈H

|gh〉

for some random g ∈ G.

To see why this is the result, say the second register was measured with the result f(g). Then the state
collapses to a superposition of the states consistent with the second register being f(g). Since f is constant
on cosets, all elements of the form gh for h ∈ H are consistent with this information. Since f was distinct
on cosets, the only elements consistent with this information are of the form gh for h ∈ H. Thus the state
collapses to exactly a superposition of elements of the form gh for h ∈ H, i.e., some coset state of H (namely,
the coset which contains g).

Measuring the coset state gives a random element of a random coset, so is not helpful directly. For certain
groups such as the integers mod N it is possible to use a quantum Fourier transform to find H. Very roughly,
it removes the influence of the random factor g in the coset state. In the non-commutative case things don’t
work out so nicely, but there is still hope that after constructing multiple coset states one can use them
together to determine H somehow.

4 Dihedral coset problem

The dihedral coset problem (DCP) is to find the constant integer d given a collection of states of the form

1√
2
|0〉|x〉+ 1√

2
|1〉|x+ d〉 for random x,

where arithmetic is done mod N .
The dihedral name arises because states of this form can actually be thought of as coset states of the

dihedral group D2N (namely, coset states of an order 2 subgroup). The first qubit of the state encodes the
number of rotations of an element and the remaining register encodes the number of rotations of an element.
This is the reason why arithmetic is done mod N , to ensure that N rotations is the same as 0 rotations, as
they are in D2N .

The problem is closely related to the dihedral HSP. In fact, if we could solve the dihedral HSP by coset
sampling then we could solve the DCP. The reduction is of the “white box” form and works by modifying
the source code of a procedure which solves the dihedral HSP by coset sampling.

The modified procedure will no longer construct coset samples as described in the previous section.
Instead, the states which were to be constructed by coset sampling will be replaced by the states we were
given in the DCP. We then run the procedure as normal, pretending the DCP states were constructed by
coset sampling. This will work since as mentioned the DCP states can in fact be viewed as coset states. The
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output of the modified procedure will be a dihedral subgroup of the form {(0, 0), (1, d)}, from which it is easy
to read off the value of d and thus solve the DCP.

This shows that solving the dihedral coset problem reduces to solving the dihedral hidden subgroup
problem by coset sampling,

DCP ≤ dihedral HSP by coset sampling.

5 Two-point problem

As a generalization of the DCP, the two-point problem is to find the constant integer vector d given a collection
of states of the form

1√
2
|0〉|x〉+ 1√

2
|1〉|y〉

where x and y are random vectors which satisfy y − x = d, where arithmetic is done mod M .
Since the DCP is a special case of the two-point problem we immediately have that

DCP ≤ two-point problem.

Although the two-point problem seems harder than the DCP since d is now a vector rather than an integer,
in fact the problem is no harder since a solution to the DCP can be used to solve the two-point problem, as
we will now show. The key idea behind this reduction is to think of vectors as integers which are written in
some base.

Consider the function f which views x (mod M) as a “base 2M” integer,

f(x) :=

n∑
i=1

xi(2M)i−1

where xi is the ith entry of x (mod M) with 0 ≤ xi < M . Applying f to the second register of a state given
in the two-point problem gives

1√
2
|0〉|f(x)〉+ 1√

2
|1〉|f(y)〉,

which is a valid instance to the DCP with N = (2M)n since f(y)− f(x) is constant mod (2M)n.
Applying a black box which can solve the DCP to this instance gives the result

n∑
i=1

(yi − xi)(2M)i−1,

and we would like to be able to extract yi − xi = di from this integer. Since xi, yi ∈ [0,M) we have
0 < yi−xi +M < 2M . Thus adding

∑n
i=1M(2M)i−1 to the result gives a number whose base 2M expansion

contains as “digits” yi − xi +M , from which yi − xi = di can be read off.
Therefore if we could solve the DCP, or had a black box which could solve the DCP, we could find d in

the two-point problem by making the base 2M conversion as described, which shows

two-point problem ≤ DCP.

So the two problems are essentially the same difficulty, despite the two-point problem at first seeming more
difficult.

6 Application to lattices

In this section we will use a solution to the two-point problem to solve the poly(n)-unique shortest vector
problem. The method will exploit the ability of quantum computers to work in superposition by constructing
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a superposition over lattice points. The first step in this process to to create a superposition over points
in Zn,

|Z〉 :=
1√
Mn

∑
x∈Zn

0≤xi<M

|x〉.

Ideally, we would like to construct a superposition over all points in Zn but it will be sufficient to take M
large enough, say M = 2O(n).

Using the definition of a lattice generated by {b1, . . . , bn}, the lattice superposition is constructed by
applying the function

f(x) :=

n∑
i=1

xibi

to the state |Z〉 and storing the result in an ancillary register.

6.1 Space partitioning

The essential component of our solution will involve partitioning Rn into cubes. In the optimal partitioning
there will be exactly two points in each cell and the difference between the two points will be the shortest
vector.

Figure 5: Example of the optimal space partitioning in two dimensions.

To make use of the partitioning, we will construct a unique cube labelling function g and apply it to
the register which contains our lattice superposition. We then discard it, which collapses the state to a
superposition of two points whose difference encodes the shortest vector. For example, g could be the function

g(x) :=
(
bx1/r − s1c, bx2/r − s2c, . . . , bxn/r − snc

)
for the partitioning of cubes with length r offset by the vector s = (s1, . . . , sn).

However, Figure 5 is misleading in that one already needs to know the shortest vector to be able to
construct that partition. Instead, we must make do with approximate partitioning. For this we need an
assumption that the shortest vector is a factor of Ω(

√
n) shorter than all other nonparallel vectors. If the

cube length is approximately the length of shortest vector then every vector in each cube will be aligned
along the shortest vector, since all other vectors will be longer than the cube diagonal.
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Figure 6: All vectors in each cube are aligned along the shortest vector.

However, this partitioning is inappropriate since there may be multiple points aligned along the shortest
vector inside each cube. To remedy this, we scale up one of the basis vectors (say b1) by a factor p to
form a superposition over a subset of the points. This ensures that there is at most one point in each cube,
though we would like two points in each cube. To achieve this we shift the points over by mb1 (for some
appropriate factor m) based on a Boolean variable t. By placing t in a superposition of |0〉 and |1〉 we can
form a superposition of lattice points with and without the shift.

The effect of the scale and shift modifications is demonstrated in Figure 7. The parameter p controls the
red points; the larger p is the more spread out the “slices” of red points will be. The parameter m controls
the blue points and the amount they will be shifted; the important thing is to shift so that the red points
and blue points differ by the shortest vector.

(a) Example of replacing b1 by pb1. (b) Example of shifting by mb1.

Figure 7: Example of scaling with p = 4 and shifting with m = 1. The red points represent t = |0〉 (no shift)
and the blue points represent t = |1〉 (shift).

In summary, the process of constructing the lattice superposition starts from the state |+〉|Z〉 and applies
to it the lattice function modified with a scale and shift,

f(t,x) := x1(pb1) + t(mb1) +

n∑
i=2

xibi.

The result is stored in an ancillary register.
If the parameters have been chosen correctly then it will be highly likely that cubes are either empty or

contain exactly two points (one red and one blue) whose difference is the shortest vector. As Figure 7 shows,
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the partition may split a pair of red and blue points and thus there will be cubes which contain just one
point. However, a careful analysis shows that this will not occur too often.

Since with high probability after partitioning and collapsing the state will be in a superposition of two
vectors whose difference encodes the shortest vector, we can use a solution to the two-point problem to find
this difference, and thus the shortest vector itself, so that

poly(n)-unique SVP ≤ two-point problem.

6.2 Choosing parameters

To complete the description of the reduction, we must also describe how to determine proper values for
parameters such the cube length and shift amount. In fact, they can mostly be determined by brute force.

The cube length needs to be at least the length of the shortest vector and at most twice the length of the
shortest vector. This requires O(n) cases to check, since LLL finds an O(2n) approximation to the shortest
vector. We first run the above procedure with the approximation length LLL finds as the cube length, and
note the result. Then we divide the length by 2 and try it again, and repeat this O(n) times. There will be
one iteration which has cube length within a factor of 2 of the shortest vector, as required. We merely need
to compare the results of each iteration and choose the shortest vector found, and possibly discard nonlattice
vectors, depending on what our two-point problem solution outputs on illegal input.

Determining the proper shift amount m requires checking the cases m ∈ [1, p). Shifting only matters
mod p, since shifting by pb1 is equivalent to no shift. We can take p ≈ n2 so this still only requires poly(n)
cases to check, and it is very likely that there will be one shift which reveals the shortest vector. The one
case where it will not work is when the shortest vector’s b1-coefficient (in the basis b1, . . . , bn) is divisible by
p. Geometrically, this means that the shortest vector itself lies in the slices of the lattice formed by scaling
up b1, so there is no way to shift the slice to reveal the shortest vector.

To guard against this, p should be chosen to be prime and we should apply the same scale-and-shift
procedure on each bi for 1 ≤ i ≤ n; this adds an extra factor of n to the running time. At least one case
must work, since if p divides a vector’s bi-coefficient for each i then that vector divided by p is still in the
lattice, but the shortest vector divided by p is not in the lattice.

Finally, there are other details which we have not dealt with here. For example, we should make sure
that the shortest vector’s bi-coefficients are small enough to appear in the |Z〉 state (the coefficients will be
absolutely bounded by 4n assuming LLL has been run to reduce the basis). Also, the inputs to the DCP and
two-point problem should be flexible enough to allow a possibility of some states not conforming to the input
specifications, since even when all parameters have been chosen correctly we can only guarantee states are
correct to high probability. This will have an effect on the poly(n) approximation factor achievable; the lower
the approximation factor the more flexible the DCP and two-point problems need to be.

7 Conclusion

In summary, we have outlined the following reductions in a quantum context:

poly(n)-unique SVP ≤ two-point problem

≤ dihedral coset problem

≤ dihedral HSP by coset sampling

That is, if we had a quantum computer and a way of efficiently solving the dihedral HSP by coset sampling
then we could solve the poly(n)-unique SVP in poly(n) time with a high probability of success.

Although this result is of theoretical interest, it is currently unclear if it will ever be useful in practice.
Even if quantum computers become available, the best known algorithm for solving the dihedral HSP [7] runs

in time 2O(
√

log N). Using the reduction as we have described would require N = 2O(n2), and so this yields a
2O(n) time algorithm for solving the poly(n)-unique SVP, like the best known classical algorithm [6]. However,
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there is still hope that a better algorithm for the dihedral HSP will be found and make this reduction more
applicable.
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