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Abstract

This article outlines techniques for computing the Galois group of a polynomial over the rationals,
an important operation in computational algebraic number theory. In particular, the linear resolvent
polynomial method of [6] will be described.

1 Introduction

An automorphism on a field K is a bijective homomorphism from K to itself. If L/K is a finite extension
then the set of automorphisms of L which fix K form a group under composition, and this group is denoted
by Gal(L/K).

Let f be a univariate polynomial with rational coefficients. Throughout this article we suppose that f
has degree n and roots α1, . . . , αn, which for concreteness we assume lie in the complex numbers, a field in
which f splits into linear factors.

The splitting field spl(f) of f is the smallest field in which f splits into linear factors, and it may be
denoted by Q(α1, . . . , αn), a finite extension of Q generated by the roots of f . Then the Galois group of f is
defined to be

Gal(f) := Gal(Q(α1, . . . , αn)/Q).

That is, the group of automorphisms of the splitting field of f over Q.

1.1 The structure of Gal(f)

The elements σ ∈ Gal(f) may then be thought of as automorphisms of the complex numbers (technically
only defined on the splitting field of f) which fix Q. In fact, the automorphism group of Q is trivial, so the
automorphisms of C fix Q in any case.

The automorphism group of C, however, is uncountable. From a completely näıve perspective this could
mean there is no finite way of expressing Gal(f), but a simple argument shows these fears are unfounded.

The first thing to note is that σ ∈ Gal(f) is completely determined by the values σ(α1), . . . , σ(αn), which
follows by the homomorphism properties of σ and the fact that the αi generate spl(f) over Q. Secondly, note
that σ(αi) is also a root of f :

f(σ(αi)) = σ(f(αi)) = σ(0) = 0

Similarly σ−1(αi) (which exists since σ is a bijection) is also a root of f . In short, roots of f come from and
go to other roots of f under σ.

It is often convenient to think of σ as a permutation of the αi, and by abuse of notation we say σ ∈ Sn,
the symmetric group of n elements.

1.2 Cubic examples

A visual way of expressing Gal(f) is to plot the roots of f on the complex plane and describe permutations of
the roots by using arrows to specify which roots are sent where. Figure 1 demonstrates what such diagrams
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look like. In the case of 1(a) and 1(b) the Galois group contains six permutations, which is the most possible
since |S3| = 3! = 6.

(a) x3 − 2

(b) x3 − 4x− 1

(c) x3 − 3x− 1

Figure 1: The Galois groups of three sample irreducible cubics.

Already, the subtlety of the problem is evident. Viewing figure 1(c) completely superficially, we find that
a slight perturbation of the roots from figure 1(b) causes the Galois group to lose the three transpositions of
the roots. Naturally, one would like an explanation for such interesting behaviour.

1.3 The lack of transpositions in Gal(x3 − 3x − 1)

In fact, the lack of transpositions in Gal(x3 − 3x− 1) has a simple explanation linked to the discriminant,
which may be defined to be the quantity

∆(f) := (−1)n(n−1)/2
∏
i6=j

(αi − αj) =
∏
i<j

(αi − αj)2.

For the polynomial in question, we find that ∆(x3 − 3x − 1) = 81 is a perfect square, so
√
∆ ∈ Z and in

particular σ ∈ Gal(f) fixes ±
√
∆.

Therefore taking the square root of ∆ and applying σ one finds that

±
√
∆ =

∏
i<j

(αi − αj) =
∏
i<j

(σ(αi)− σ(αj)).

However, if σ was a transposition note that every factor in the final product remains constant except one, in
which case a factor of −1 is introduced. For example, if σ transposes α1 and α2 then the factor (σ(α1)−σ(α2))
becomes (α2 − α1) = −(α1 − α2). Thus in this case we have ±

√
∆ = ∓

√
∆, a contradiction since ∆ 6= 0.

In other words, if σ ∈ S3 is a transposition of αi and αj then σ cannot be extended into a automorphism
of C, since that would require defining σ(9) = −9 in addition to σ(9) = 9. In Figure 2 this is shown visually;
in the second case the action isn’t actually well-defined because of the conflict as to where the point 9 ∈ C is
sent.
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Figure 2: Two elements of S3 ⊃ Gal(x3 − 3x− 1) acting on
√
∆.

1.4 Quartic examples

As a demonstration of some of the complexity that can occur in higher degree, in Figure 3 we give an example
of two Galois groups which arise from quartics. In each case the Galois group has four elements, but the
groups are non-isomorphic.

The roots in 4(a) are the primitive fifth roots of unity and the Galois group of their minimal polynomial
is isomorphic to C4, the cyclic group on four elements. The roots in 4(b) are the primitive eighth roots of
unity and the Galois group of their minimal polynomial is isomorphic to V4 ∼= C2 × C2, the Klein four-group.

(a) x4 + x3 + x2 + x+ 1

(b) x4 + 1

Figure 3: The Galois groups of two sample irreducible quartics.

1.5 Motivation

The following well-known theorem (e.g., [4, Theorem 14.39]) provides some motivation as to why the Galois
group of a polynomial is of interest.

Theorem. The roots of f are solvable in radicals if and only if Gal(f) is a solvable group, i.e., there exists
a chain of subgroups

{1} = G0 E G1 E · · · E Gk = Gal(f)
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where each Gi/Gi−1 is abelian.

Actually, one only needs to know Gal(f) up to conjugacy in Sn to apply this theorem, i.e., up to reordering
of permutation indices. Since one does not typically care about the ordering of α1, . . . , αn anyway, we
only concern ourselves with computing the Galois group up to conjugacy, i.e., the Galois group under some
ordering of the roots.

2 Problem simplifications

For simplicity, we will assume that f is irreducible over Q. From this we note two immediate consequences.
First, f is a separable polynomial, i.e., it has distinct roots. This follows from the fact that f ′ has smaller

degree than f and is nonzero (as char(Q) = 0) and f has no nontrivial divisors, so gcd(f, f ′) = 1. But if α
were a double root of f then it would also be a root of f ′, and therefore the minimal polynomial of α would
divide gcd(f, f ′) = 1, a contradiction.

Second, Gal(f) is a transitive group, i.e., for all αi and αj there is some σ ∈ Gal(f) which sends αi to αj .
To show this, one checks that there is an embedding of Q(αi) in C with αi 7→ αj (which one then extends
to spl(f) as necessary). Intuitively, this holds since Q(αi) ∼= Q(αj); since αi and αj are roots of the same
minimal polynomial they are “algebraically indistinguishable”—you can replace αi with αj without breaking
anything.

Note that while one can find automorphisms in which αi 7→ αj and αj 7→ αk separately, this does not
mean one can enforce both simultaneously—after the freedom of choosing where to send αi, one may not
have any more choice in the matter.

In general, one has that Gal(gh) ⊆ Gal(g) × Gal(h), but we do not consider the specific details of
computing Gal(gh).

Furthermore, we assume that f is monic and has integer coefficients. This is not unreasonable since the
general case reduces to this case by applying transformations of the form (for nonzero c ∈ Q)

f(x) 7→ cf(x)

f(x) 7→ f(cx)

which do not change the splitting field of f—the roots don’t change in the first case and in the second case
they are scaled by a nonzero rational.

If f(x) := 1
b

∑n
i=0 aix

i for ai, b ∈ Z then the reduction to the special case proceeds by applying

f(x) 7→ ban−1n f(x/an).

The coefficients are scaled by b to remove denominators, and the roots are scaled by an as a step toward
making the polynomial monic. The root scaling has the effect of removing a factor of akn from the xk

coefficient, so to finish making the polynomial monic (and remove denominators again) it is also necessary to
scale the coefficients by an−1n .

3 Symmetric polynomials

A multivariate polynomial p ∈ R[x1, . . . , xn] is symmetric if it is fixed under all permutations of the n
indeterminants, i.e.,

p(x1, . . . , xn) = p(xσ(1), . . . , xσ(n))

for all σ ∈ Sn.
One possible ambiguity is that the symmetricity of p is dependent on the polynomial ring in which p lives.

For example,
x21 + · · ·+ x2n
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is a symmetric polynomial when considered as a polynomial in n indeterminants, but not as a polynomial in
n+ 1 indeterminants. In the latter case transposing x1 and xn+1 gives a new polynomial distinct from p.

The elementary symmetric polynomials s1, . . . , sn ∈ R[x1, . . . , xn] are defined by:

s1 := x1 + x2 + · · ·+ xn

s2 := x1x2 + x1x3 + · · ·+ xn−1xn

...

sn := x1x2 · · ·xn

They are important since they appear (up to sign) as the coefficients of the general polynomial of degree n:

n∏
i=1

(x− xi) = xn − s1xn−1 + · · ·+ (−1)nsn

Applying the substitution xi 7→ αi to this gives
∏n
i=1(x− αi) = f(x), so if f ∈ Z[x] then we have that the

elementary polynomials evaluated at α1, . . . , αn are in fact integers.
It is clear that the elementary symmetric polynomials are symmetric, since any permutation simply

rearranges the terms of each si. What is more interesting is that all symmetric polynomials can be expressed
in terms of the elementary symmetric polynomials. The following is known as the fundamental theorem of
symmetric polynomials. [4, Corollary 14.31]

Theorem. Every symmetric polynomial in R[x1, . . . , xn] can be written as a polynomial in s1, . . . , sn with
coefficients in R.

In fact, the decomposition can be effectively computed using a generalization of the Euclidean algorithm.
The idea is to define an ordering on the monomials xa11 · · ·xann by, for example, lexicographic ordering on
the exponent vectors (a1, . . . , an). If the symmetric polynomial p has leading term cxa11 · · ·xann under this
ordering then one checks that

p− csa1−a21 sa2−a32 · · · sann (1)

is a symmetric polynomial with smaller leading term. Applying this recursively one eventually expresses p in
terms of the si (it eventually finishes since Nn does not contain an infinite strictly decreasing sequence under
lexicographic ordering). Also, so that (1) is actually a polynomial it is necessary to show that ai ≥ ai+1. This
holds since otherwise p, being symmetric, would contain the term cxa11 · · ·x

ai+1

i xaii+1 · · ·xann , a contradiction
to cxa11 · · ·xann being the leading term of p.

3.1 The orbit of a polynomial

The orbit of a polynomial p ∈ R[x1, . . . , xn] under Sn is the set of polynomials that p can be sent to by
permuting the xi, and this will be denoted by orb(p). This can be thought of as measuring “how close” a
polynomial is to being symmetric.

For example, if orb(p) is as small as possible, i.e., orb(p) = {p}, then p is fixed any permutation of the xi
so it is symmetric. The other extreme is when orb(p) is as large as possible, i.e., |orb(p)| = n!; in this case p
can be thought of as being “as far from symmetric as possible”. Of course, possibilities between these two
extremes are also possible, e.g., the orbit of x1 + x2 under S3 is {x1 + x2, x1 + x3, x2 + x3}.

4 The resolvent polynomial

The most important definition for what follows is that of a resolvent polynomial. Intuitively, the resolvent
polynomial is defined as a polynomial whose roots are “combinations” of the roots α1, . . . , αn of f ; the
manner in which the αi are combined is determined by a multivariate polynomial p. That is, the resolvent
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polynomial is defined in terms of two polynomials f ∈ Z[x] and p ∈ Z[x1, . . . , xn] to be the new univariate
polynomial

Rp,f (y) :=
∏

pi∈orb(p)

(
y − pi(α1, . . . , αn)

)
.

For example, if p := x1 + x2 then the roots of Rp,f are all sums of the roots of f ; since f has n roots the
resolvent polynomial will have

(
n
2

)
roots, as demonstrated by the following examples:

f(x) Rp,f (y)
x3 − 2 y3 + 2
x4 + 1 y6 − 4y2

x4 + x3 + x2 + x+ 1 y6 + 3y5 + 5y4 + 5y3 − 2y − 1

A useful example is to take p :=
∏
i<j(xi − xj). In this case p is nearly symmetric, but not quite, since as

previously noted if σ is a transposition then σ(p) = −p. Note that every permutation can be decomposed
into a product of transpositions (e.g., using bubblesort) and, furthermore, the parity of the number of
transpositions in the decomposition is invariant. The even permutations induce a even number of factors
of −1 and therefore leave p fixed, while the odd permutations induce an odd number of factors of −1 and
therefore negate p, so we have orb(p) = {p,−p}. Then

Rp,f (y) =
(
y −

∏
i<j

(αi − αj)
)(
y +

∏
i<j

(αi − αj)
)

= y2 − disc(f).

4.1 The coefficients of the resolvent

Note that since the resolvent is defined with respect to the orbit of p it is symmetric in the αi, i.e., permuting
the αi will permute the roots of Rp,f but does not in fact change Rp,f . In other words, the coefficients of
Rp,f are symmetric polynomials in α1, . . . , αn, and by the fundamental theorem of symmetric polynomials
can be written in terms of the elementary symmetric polynomials in α1, . . . , αn. However, as previously
noted the elementary symmetric polynomials in α1, . . . , αn are (up to sign) exactly the coefficients of f , and
therefore integers.

This shows that Rp,f ∈ Z[y] when p ∈ Z[x1, . . . , xn] and f ∈ Z[x], and furthermore gives an algorithm for
computing the coefficients of Rp,f . In practice, another way of computing Rp,f is to approximate the roots of
f via numerical root-finding methods, form all combinations of the roots as specified by p, and then expand
the product from the definition to find approximations of the coefficients of Rp,f . Since the coefficients are
known to be integers, if the approximations are known with sufficient accuracy (absolute error less than 0.5)
then the approximations may simply be rounded to the nearest integer. It is perhaps less elegant than the
symbolic method, but is simple to implement in practice.

4.2 Gal(f) acting on the roots of the resolvent

If σ ∈ Gal(f) then as previously noted σ fixes Rp,f but permutes its roots—we say that σ acts on the roots
of Rp,f . As before, this permutation may be expressed visually by plotting the roots of Rp,f in the complex
plane and using arrows between the roots to represent which root is sent where. Figure 4 demonstrates this
for three example polynomials f we’ve previously seen, using p := x1 + x2.
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(a) x3 − 2

(b) x4 + x3 + x2 + x+ 1

(c) x4 + 1

Figure 4: σ ∈ Gal(f) acts on the roots of Rp,f .

The key observation here is that the action by σ ∈ Gal(f) on the roots of Rp,f actually gives Gal(Rp,f ).
More precisely, let φ : Gal(f)→ Gal(Rp,f ) be defined so that φ(σ) is the action by σ on the roots of Rp,f .
Alternatively, if Rp,f has m roots one can think of φ as a partial function φ : Sn → Sm, although the roots
of Rp,f should be distinct for φ to be unambiguous. For example, if Rp,f has a double root β1 = β2 with
φ(σ)(β1) = β1 then when viewed as a permutation φ(σ) could either fix or transpose 1 and 2. Formally, we
have [2, Theorem 6.3.3] the following:

Theorem. If the roots of Rp,f (y) are distinct then Gal(Rp,f ) = φ(Gal(f)).

Intuitively this holds since by definition of φ we have that

φ(Gal(f)) ⊆ Gal(Rp,f ),

i.e., if σ is an automorphism then φ(σ) is also an automorphism. For the other direction, note that since Rp,f ’s
roots are built out of f ’s roots, we have spl(Rp,f ) ⊆ spl(f). If we think of the automorphisms of spl(Rp,f ) as
being automorphisms of spl(f) (after extending them as necessary) then we have Gal(Rp,f ) ⊆ Gal(f), or by
“projecting” down into spl(Rp,f ) we have

Gal(Rp,f ) ⊆ φ(Gal(f)).

4.3 Tschirnhausen transformation

As mentioned, to use the above theorem we require that Rp,f have distinct roots, however will not always
be the case; see for example Figure 4(c). However, by applying a simple transformation we can find a new
irreducible monic polynomial g ∈ Z[y] with the same splitting field as f and with Rp,g separable. Although
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the algorithm is nondeterministic and in theory might not terminate, in practice it usually finishes rather
quickly. It proceeds as follows:

1. Choose a “random” polynomial A ∈ Z[x] of degree less than that of f . For example, chose the coefficients
uniformly at random from some finite range.

2. Compute

g(y) := RA,f (y) =

n∏
i=1

(
y −A(αi)

)
.

This may be efficiently computed as the resultant of f(x) and y −A(x) with respect to x.

3. If g and T := Rp,g are squarefree (i.e., gcd(g, g′) = gcd(T, T ′) = 1) then output g; otherwise choose a
new A ∈ Z[x] and start over.

If the algorithm terminates then g is squarefree and all of its roots A(αi) are conjugate, so g is irreducible.
Also, T is squarefree over Z, and therefore over Q by Gauss’ Lemma. If α was a double root of T then
h := minpoly(α) divides T (say T = hk) as well as T ′ = h′k + k′h, so it must also divide h′k. However, h
is irreducible so as noted before gcd(h, h′) = 1, and it follows that h divides k, a contradiction to T being
squarefree. Thus T has distinct roots.

Furthermore, since the roots of g are built out of the roots of f we have that

spl(g) ⊆ spl(f). (2)

Now, if one considers the action φ of Gal(f) on the roots of g one sees that it is invertible: since the roots
of g are distinct and are constructed from f ’s roots via the univariate polynomial A one can compute
from which root of f each root of g was derived from and thereby find σ from φ(σ). Thus φ is injective
and |Gal(f)| ≤ |Gal(g)|. Since the splitting field of any polynomial over Q is a Galois extension of Q, one
concludes that

[spl(f) : Q] ≤ [spl(g) : Q].

Combining this with (2) we have spl(g) = spl(f) as required.

5 The orbit-length partition

The idea behind the method for determining the Galois group of f is to make use of the previous theorem
which says that Gal(Rp,f ) = φ(Gal(f)). Of course, although one can compute Rp,f one can’t necessarily
compute Gal(Rp,f ) since this is the problem we’re trying to solve; in fact it is likely even harder since typically
the degree of the resolvent will be larger than the degree of f . However, it is not necessary to know the
full Galois group of Rp,f to be able to make use of the theorem; in particular we will see how knowledge of
Gal(Rp,f ) can be used to limit the possibilities for Gal(f).

5.1 ‘Local’ transitivity

By way of motivation, consider the Galois group of Rp,f from Figure 4(b), where f := x4 + x3 + x2 + x+ 1
and p := x1 + x2:
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Note that the inner two roots and outer four roots are ‘locally’ transitive, i.e., there is an automorphism
which sends any inner root to any other inner root, as well as an automorphism which sends any outer root
to any other outer root.

Since automorphisms permute the roots of any minimal polynomial it follows that locally transitive roots
will share a minimal polynomial. Conversely, if roots of Rp,f share a minimal polynomial then there will be
an automorphism which sends any one to any other, so the roots will be locally transitive.

In other words, the local transitivity of the roots of Rp,f under the action by Gal(f) can be determined
by factoring Rp,f over Z to find the minimal polynomials of its roots. Since Rp,f is monic it is primitive and
therefore it is equivalent to factor it over Q, which can be done in polynomial time [5].

For the above example, we have

Rp,f = y6 + 3y5 + 5y4 + 5y3 − 2y − 1 = (y4 + 2y3 + 4y2 + 3y + 1)(y2 + y − 1)

so while this doesn’t give us the Galois group of Rp,f it does tell us its local transitivity, i.e., the orbits of the
action by Gal(f) on the roots of Rp,f . Note that the orbits of an action on a set S form a partition of S;
the sizes of the orbits are known as the orbit-length partition. In the above case the orbit-length partition is
(4, 2), corresponding to the degrees of the irreducible factors of Rp,f .

5.2 Limiting the possibilities for Gal(f)

Suppose that p := x1 + x2 and f is of degree 4. Then Rp,f has the following six roots:

α1 + α2 α1 + α3 α1 + α4 α2 + α3 α2 + α4 α3 + α4

Suppose that Gal(f) = V4, the Klein four-group. Up to relabeling, we can express V4 using cycle notation as

V4 := {1, (12)(34), (13)(24), (14)(23)}.

Now consider the action of each permutation of V4 on the roots of Rp,f :

α1 + α2 α3 + α4 α1 + α3 α2 + α4 α1 + α4 α2 + α3

(a) Action by 1

α1 + α2 α3 + α4 α1 + α3 α2 + α4 α1 + α4 α2 + α3

(b) Action by (12)(34)

α1 + α2 α3 + α4 α1 + α3 α2 + α4 α1 + α4 α2 + α3

(c) Action by (13)(24)

α1 + α2 α3 + α4 α1 + α3 α2 + α4 α1 + α4 α2 + α3

(d) Action by (14)(23)

Figure 5: The actions by permutations of V4 on the roots of Rp,f .

From this we see that the orbits of V4 acting on the roots of Rp,f are {α1 +α2, α3 +α4}, {α1 +α3, α2 +α4},
and {α1 + α4, α2 + α3}, i.e., V4 gives rise to the orbit-length partition (2, 2, 2). Continuing with the example
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from 5.1, this is a contradiction since Gal(f) actually gives rise to the orbit-length partition (4, 2). Thus
Gal(f) 6= V4.

One can similarly compute the orbit-length partitions for the other transitive subgroups of S4, which
results in the following table:

S4 A4 D4 V4 C4

(6) (6) (4, 2) (2, 2, 2) (4, 2)

From this we conclude that in our previous example Gal(f) must be either D4 or C4. To distinguish between
these cases, we try a new resolvent polynomial.

With the choice p := x1 − x2 one sees that there are 4 possibilities for where to send x1 and 3 remaining
possibilities where to send x2, and each choice gives rise to a new polynomial since the coefficients of x1 and
x2 are distinct. Thus Rp,f will have degree 12, and we can compute

Rp,f (y) = y12 + 5y10 + 15y8 + 25y6 − 50y4 + 125 = (y4 + 5y2 + 5)(y4 + 5y + 5)(y4 − 5y + 5),

so the orbit-length partition of the roots of Rp,f under Gal(f) is (4, 4, 4). As before, one can also compute
the orbit-length partition of the roots of Rp,f under each transitive subgroup of S4, resulting in the following
table:

S4 A4 D4 V4 C4

(12) (12) (8, 4) (4, 4, 4) (4, 4, 4)

Thus Gal(f) is either V4 or C4. By the process of elimination, we conclude that in this example Gal(f) = C4,
which is correct as seen in Figure 3(a).

5.3 The effectiveness of this method

In [6] this method is examined for polynomials up to degree 7. They show that Gal(f) can be uniquely
distinguished in all but four cases by taking p to be small linear polynomials, as well as p∆ :=

∏
i<j(xi − xj).

As previously noted, p∆ leads to the resolvent y2 − disc(f) which splits if and only if disc(f) is a perfect
square. The following table gives some possible choices for p which together will completely solve each case
n ≤ 7:

degree 3: p∆ or x1 − x2
degree 4: p∆, x1 + x2, x1 − x2
degree 5: p∆, x1 − x2, (x1 + x2 − x3 − x4)2

degree 6: p∆, x1 + x2, x1 + x2 + x3, x1 − x2, x1 + x2 + x3 + p∆
degree 7: p∆, x1 + x2 + x3

6 A general algorithm

Although this gives a complete algorithm for small degree, the choices for p are somewhat ad hoc and one
would like assurance the problem can always be solved, at least in principle. In fact, for any G ⊆ Sn one
can test if Gal(f) ⊆ G by selecting p so that p is fixed by exactly the permutations in G, i.e., G = stab(p).
Although it may not be the simplest choice, one explicit possibility for p which satisfies this condition is

p :=
∑
σ∈G

xσ(1)x
2
σ(2)x

3
σ(3) · · ·x

n
σ(n).

For each fixed τ ∈ G, we have τ(G) = G, so τ permutes the terms of p without changing p. On the other
hand, if τ /∈ G then the term xτ(1)x

2
τ(2) · · ·x

n
τ(n) does not appear in p, so τ doesn’t fix p.

Now, Rp,f has a simple integer root if and only if

Gal(f) ⊆ stab(p(x1, . . . , xn))

for some ordering of the xi. [3, Proposition 13.3.2]
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For suppose Rp,f had an integer root β; say β = p(α1, . . . , αn). If Gal(f) 6⊆ stab(p(x1, . . . , xn)) then there
is some σ ∈ Gal(f) with σ(p(x1, . . . , xn)) 6= p(x1, . . . , xn), so these both occur in the product expansion of
Rp,f as two distinct roots. However, p(α1, . . . , αn) = β and σ(p(α1, . . . , αn)) = σ(β) = β, a contradiction.

Conversely, say every σ ∈ Gal(f) fixes p(x1, . . . , xn). Then in particular it fixes the root p(α1, . . . , αn) of
Rp,f and it therefore has a linear minimal polynomial (which divides Rp,f ).

Therefore, after a separable Rp,f is constructed we can easily test if Gal(f) ⊆ stab(p) up to conjugacy.
Using the above construction for p we can set stab(p) to be any subgroup of our choosing, and in particular
run the test with all transitive subgroups of Sn. Enumerating these is a problem of interest in its own right,
and has already been solved for n ≤ 32 [1].

Once all transitive subgroups G ⊆ Sn are known, one can work their way through the subgroup lattice by
testing if Gal(f) ⊆ G as required. For example, the subgroup lattice of S4 is:

S4

D4 A4

C4 V4

In this case, one can determine Gal(f) by using at most 3 containment tests.
Although this may be theoretically fulfilling, this algorithm is not practical for large n, since as one moves

down the subgroup lattice the degree of the resultant becomes unwieldy. Using the p from above one has
|orb(p)| = n!/|G|, so to determine if Gal(f) ⊆ Cn would require Rp,f to have degree (n− 1)!—even writing
down this polynomial is takes longer than exponential time in the size of the input, which is linear in n.
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