# STAT 444/CM 464 Final Project 

Curtis Bright

Insurance fraud detection is a problem of obvious importance, and may potentially be aided through database analysis by an automated computer program. In this project, data from 6142 automobile owners in 1994 was used to identify the fradulent "risk" of 9278 automobile owners in 1995 and 1996.

The given data consisted of 33 variables, which included Policy number and Year (not used for prediction purposes) as well as Fraud found, a variable which indicated known fradulent activity (the response variable). The remaining 30 variables could be used to determine "high-risk" from "low-risk" individuals for 1995 and 1996, i.e., they could provide an estimatation of Fraud found based on the known 1994 values.

The key assumption used in calculation of this estimate is that past tendencies are likely to be correlated with future tendencies. Thus, a simple method to estimate Fraud found in January 1995 would be to look at the tendency of fraudulent activity to occur in January 1994: the hope is that those causes which influence Fraud found in January are likely to repeat in January of the following years.

Examining the 1994 data shows that the month of the year indeed has some correlation with fradulent activity: out of 470 accidents in August, 56 of them were fraudulent (11.9\%). However, out of 447 accidents in October, only 1 was fradulent (0.2\%).

It seems reasonable to use this statistic to help predict future fradulent claims. In fact, each of the 30 predictor variables can be examined in this way; the complete statistics are given at the end of this report, generated by the SQL queries like the following:

```
SELECT A.Month, A.Total, A.Total-B.NoFraud AS Frauds
FROM
    (SELECT Month, Count(*) AS Total
    FROM Learning
    GROUP BY Month) AS A
JOIN
    (SELECT Month, Count(*) AS NoFraud
    FROM Learning
    WHERE FraudFound=0
    GROUP BY Month, FraudFound) AS B
ON A.Month=B.Month;
```

These statistics can then be used to assess an individual's fradulent "risk": someone who has many attributes which historically have a high proportion of fraudulent activity can be reasoned to have a high fraud risk. Since the evaluation Gain function avgp is invariant to monotonic transformations of the probability estimate, we do not have to scale the the risk predictions to be between 0 and 1. Instead, we may simply take the sum of the historic porportions for each group the individual belongs to.

This method has the advantage that it is simple to understand, that the every predictor variable contributes to the risk assesment, and that a "high-level" understanding of the variables is not required. However, the method works best with ordinal variables, not continuous ones-it might not be expected to work well with a variable like Age. For example, $11.1 \%$ of claims from 74 years olds were fraudulent, but $0 \%$ of those from 75 year olds. Should there really be that much of a difference between the two?

Therefore, it is possible the fradulent proportion of some predictor variables is more "random" than useful. To test this, the 1994 data was split into two random subsets and the the fraud proportions from one set was used to predict the fraud risk of the individuals of the other set. The accuracy was evaluated using the Gain function and then compared to the accuracy when one of the 30 variables was removed from data. In fact, with the Age variable removed performance improved from 0.205 to 0.230 in one case and from 0.161 to 0.175 in the other.

Finally, using the variables determined to be "useful", it was possible to estimate a fraud risk for the 1995 and 1996 data using the known fraudulent proportions from 1994.

| Month | Total | Frauds | MonthClaimed | Total | Frauds |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Apr | 533 | 47 (8.8\%) | 0 | 1 | 0 (0.0\%) |
| Aug | 470 | 56 (11.9\%) | Apr | 528 | 52 (9.8\%) |
| Dec | 471 | 17 (3.6\%) | Aug | 467 | 57 (12.2\%) |
| Feb | 528 | 36 (6.8\%) | Dec | 395 | 5 (1.3\%) |
| Jan | 608 | 48 (7.9\%) | Feb | 534 | 38 (7.1\%) |
| Jul | 495 | 32 (6.5\%) | Jan | 607 | 46 (7.6\%) |
| Jun | 543 | 47 (8.7\%) | Jul | 488 | 25 (5.1\%) |
| Mar | 584 | 56 (9.6\%) | Jun | 529 | 51 (9.6\%) |
| May | 569 | 52 (9.1\%) | Mar | 596 | 45 (7.6\%) |
| Nov | 453 | 8 (1.8\%) | May | 596 | 58 (9.7\%) |
| Oct | 447 | 1 (0.2\%) | Nov | 482 | 6 (1.2\%) |
| Sep | 441 | 9 (2.0\%) | Oct | 475 | 8 (1.7\%) |
|  |  |  | Sep | 444 | 18 (4.1\%) |
| WeekOfMonth | Total | Frauds |  |  |  |
| 1.0 | 1281 | 100 (7.8\%) | WeekOfMonthClaimed | Total | Frauds |
| 2.0 | 1387 | 82 (5.9\%) | 1.0 | 1390 | 107 (7.7\%) |
| 3.0 | 1448 | 90 (6.2\%) | 2.0 | 1491 | 99 (6.6\%) |
| 4.0 | 1369 | 94 (6.9\%) | 3.0 | 1439 | 96 (6.7\%) |
| 5.0 | 657 | 43 (6.5\%) | 4.0 | 1345 | 79 (5.9\%) |
| DayOfWeek | Total | Frauds | 5.0 | 477 | 28 (5.9\%) |
| Friday | 999 | 69 (6.9\%) |  |  |  |
| Monday | 1053 | 69 (6.6\%) | Sex | Total | Frauds |
| Saturday | 761 | 54 (7.1\%) | Female | 954 | 40 (4.2\%) |
| Sunday | 688 | 59 (8.6\%) | Male | 5188 | 369 (7.1\%) |
| Thursday | 865 | 49 (5.7\%) |  |  |  |
| Tuesday | 933 | 57 (6.1\%) | MaritalStatus | Total | Frauds |
| Wednesday | 843 | 52 (6.2\%) | Divorced | 30 | 2 (6.7\%) |
| Make | Total | Frauds | Married | 4189 | 279 (6.7\%) |
| Accura | 202 | Frauds | Single | 1911 | 128 (6.7\%) |
| Accura BMW | 4 | 0 (0.0\%) | Widow | 12 | 0 (0.0\%) |
| Chevrolet | 679 | 45 (6.6\%) |  |  |  |
| Dodge | 41 | 1 (2.4\%) | Fault | Total | Frauds |
| Ford | 182 | 17 (9.3\%) | Policy Holder | 4508 | 392 (8.7\%) |
| Honda | 1147 | 79 (6.9\%) | Third Party | 1634 | 17 (1.0\%) |
| Jaguar | 4 | 0 (0.0\%) |  |  |  |
| Mazda | 935 | 50 (5.3\%) | PolicyType | Total | Frauds |
| Mecedes | 2 | 0 (0.0\%) | Sedan - All Perils | 1664 | 216 (13.0\%) |
| Mercury | 36 | 3 (8.3\%) | Sedan - Collision | 2209 | 143 (6.5\%) |
| Nisson | 12 | 1 (8.3\%) | Sedan - Liability | 1922 | 15 (0.8\%) |
| Pontiac | 1489 | 90 (6.0\%) | Sport - All Perils | 9 | 0 (0.0\%) |
| Porche | 2 | 0 (0.0\%) | Sport - Collision | 174 | 19 (10.9\%) |
| Saab | 48 | 4 (8.3\%) | Sport - Liability | 1 | 0 (0.0\%) |
| Saturn | 22 | 3 (13.6\%) | Utility - All Perils | 142 | 15 (10.6\%) |
| Toyota | 1232 | 84 (6.8\%) | Utility - Collision | 10 | 1 (10.0\%) |
| VW | 105 | 3 (2.9\%) | Utility - Liability | 11 | 0 (0.0\%) |
| AccidentArea | Total | Frauds | VehicleCategory | Total | Frauds |
| Rural | 642 | 73 (11.4\%) | Sedan | 3873 | 359 (9.3\%) |
| Urban | 5500 | 336 (6.1\%) | Sport | $\begin{aligned} & 3873 \\ & 2106 \end{aligned}$ | $\begin{aligned} & 359 \text { (9.3\%) } \\ & 34 \text { (1.6\%) } \end{aligned}$ |
| DayOfWeekClaimed | Total | Frauds | Utility | 163 | 16 (9.8\%) |
| 0 | 1 | 0 (0.0\%) |  |  |  |
| Friday | 1019 | 81 (7.9\%) | VehiclePrice | Total | Frauds |
| Monday | 1496 | 97 (6.5\%) | 20000 to 29000 | 3192 | 169 (5.3\%) |
| Saturday | 53 | 0 (0.0\%) | 30000 to 39000 | 1387 | 86 (6.2\%) |
| Sunday | 21 | 0 (0.0\%) | 40000 to 59000 | 165 | 14 (8.5\%) |
| Thursday | 1035 | 57 (5.5\%) | 60000 to 69000 | 31 | 1 (3.2\%) |
| Tuesday | 1366 | 95 (7.0\%) | less than 20000 | 400 | 44 (11.0\%) |
| Wednesday | 1151 | 79 (6.9\%) | more than 69000 | 967 | 95 (9.8\%) |


| RepNumber | Total | Frauds | AgeOfPolicyHolder | Total | Frauds |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.0 | 383 | 29 (7.6\%) | 16 to 17 | 155 | 29 (18.7\%) |
| 2.0 | 401 | 25 (6.2\%) | 18 to 20 | 11 | 0 (0.0\%) |
| 3.0 | 397 | 21 (5.3\%) | 21 to 25 | 50 | 8 (16.0\%) |
| 4.0 | 370 | 31 (8.4\%) | 26 to 30 | 256 | 13 (5.1\%) |
| 5.0 | 415 | 22 (5.3\%) | 31 to 35 | 2210 | 153 (6.9\%) |
| 6.0 | 368 | 32 (8.7\%) | 36 to 40 | 1650 | 108 (6.5\%) |
| 7.0 | 406 | 32 (7.9\%) | 41 to 50 | 1090 | 59 (5.4\%) |
| 8.0 | 399 | 24 (6.0\%) | 51 to 65 | 537 | 25 (4.7\%) |
| 9.0 | 372 | 28 (7.5\%) | over 65 | 183 | 14 (7.7\%) |
| 10.0 | 388 | 32 (8.2\%) |  |  |  |
| 11.0 | 379 | 17 (4.5\%) |  |  |  |
| 12.0 | 372 | 22 (5.9\%) |  |  |  |
| 13.0 | 331 | 25 (7.6\%) | PoliceReportFiled | Total | Frauds |
| 14.0 | 392 | 23 (5.9\%) | No | 6000 | 405 (6.8\%) |
| 15.0 | 381 | 18 (4.7\%) | Yes | 142 | 4 (2.8\%) |
| 16.0 | 388 | 28 (7.2\%) |  |  |  |
| Deductible | Total | Frauds |  |  |  |
| 300.0 | 3 | 0 (0.0\%) | WitnessPresent | Total | Frauds |
| 400.0 | 5911 | 379 (6.4\%) | No | 6103 | 406 (6.7\%) |
| 500.0 | 105 | 21 (20.0\%) | Yes | 39 | 3 (7.7\%) |
| 700.0 | 123 | 9 (7.3\%) |  |  |  |
| DriverRating | Total | Frauds | AgentType | Total | Frauds |
| 1.0 | 1531 | 109 (7.1\%) | External | 6059 | 409 (6.8\%) |
| 2.0 | 1530 | 97 (6.3\%) | Internal | 83 | 0 (0.0\%) |
| 3.0 | 1558 | 97 (6.2\%) |  |  |  |
| 4.0 | 1523 | 106 (7.0\%) |  |  |  |
| Days:Policy-Accident | Total | Frauds | NumberOfSuppliments | Total | Frauds |
| 1 to 7 | 8 | 1 (12.5\%) | 1 to 2 | 967 | 57 (5.9\%) |
| 15 to 30 | 23 | 2 (8.7\%) | 3 to 5 more than 5 none | $\begin{aligned} & 825 \\ & 1481 \\ & 2869 \end{aligned}$ | $\begin{aligned} & 39(4.7 \%) \\ & 80(5.4 \%) \\ & 233(8.1 \%) \end{aligned}$ |
| 8 to 15 | 14 | 1 (7.1\%) |  |  | $233 \text { (8.1\%) }$ |
| more than 30 | 6077 | 402 (6.6\%) | none |  |  |
| none | 20 | 3 (15.0\%) |  |  |  |
| Days:Policy-Claim | Total | Frauds | AddressChange-Claim | Total | Frauds |
| 15 to 30 | 23 | 2 (8.7\%) | 1 year | 68 | 7 (10.3\%) |
| 8 to 15 | 8 | 2 (25.0\%) | 2 to 3 years | 116 | 24 (20.7\%) |
| more than 30 | 6110 | 405 (6.6\%) | 4 to 8 years | 251 | 17 (6.8\%) |
| none | 1 | 0 (0.0\%) | no change <br> under 6 months | $\begin{aligned} & 5703 \\ & 4 \end{aligned}$ | $\begin{aligned} & 358 \text { (6.3\%) } \\ & 3 \text { (75.0\%) } \end{aligned}$ |
| PastNumberOfClaims | Total | Frauds |  |  |  |
| 1 | 1464 | 109 (7.4\%) |  |  |  |
| 2 to 4 | 2170 | 132 (6.1\%) | NumberOfCars | Total | Frauds |
| more than 4 | 765 | 18 (2.4\%) | 1 vehicle | 5698 | 372 (6.5\%) |
| none | 1743 | 150 (8.6\%) | 2 vehicles | 283 | 23 (8.1\%) |
|  |  |  | 3 to 4 | 149 | 14 (9.4\%) |
| AgeOfVehicle | Total | Frauds | 5 to 8 | 10 | 0 (0.0\%) |
| 2 years | 25 | 1 (4.0\%) | more than 8 | 2 | 0 (0.0\%) |
| 3 years | 65 | 6 (9.2\%) |  |  |  |
| 4 years | 100 | 7 (7.0\%) |  |  |  |
| 5 years | 558 | 44 (7.9\%) |  |  |  |
| 6 years | 1356 | 85 (6.3\%) | BasePolicy | Total | Frauds |
| 7 years | 2312 | 152 (6.6\%) | All Perils | 1815 | 231 (12.7\%) |
| more than 7 | 1550 | 84 (5.4\%) | Collision | 2393 | 163 (6.8\%) |
| new | 176 | 30 (17.0\%) | Liability | 1934 | 15 (0.8\%) |


| Age | Total | Frauds |
| :---: | :---: | :---: |
| 0.0 | 155 | 29 (18.7\%) |
| 16.0 | 7 | 0 (0.0\%) |
| 17.0 | 4 | 0 (0.0\%) |
| 18.0 | 22 | 2 (9.1\%) |
| 19.0 | 13 | 3 (23.1\%) |
| 20.0 | 15 | 3 (20.0\%) |
| 21.0 | 66 | 2 (3.0\%) |
| 22.0 | 47 | 6 (12.8\%) |
| 23.0 | 51 | 0 (0.0\%) |
| 24.0 | 48 | 2 (4.2\%) |
| 25.0 | 44 | 3 (6.8\%) |
| 26.0 | 198 | 14 (7.1\%) |
| 27.0 | 211 | 11 (5.2\%) |
| 28.0 | 231 | 12 (5.2\%) |
| 29.0 | 209 | 11 (5.3\%) |
| 30.0 | 241 | 15 (6.2\%) |
| 31.0 | 232 | 15 (6.5\%) |
| 32.0 | 210 | 24 (11.4\%) |
| 33.0 | 208 | 17 (8.2\%) |
| 34.0 | 232 | 14 (6.0\%) |
| 35.0 | 238 | 20 (8.4\%) |
| 36.0 | 158 | 10 (6.3\%) |
| 37.0 | 166 | 12 (7.2\%) |
| 38.0 | 161 | 9 (5.6\%) |
| 39.0 | 173 | 12 (6.9\%) |
| 40.0 | 152 | 18 (11.8\%) |
| 41.0 | 174 | 11 (6.3\%) |
| 42.0 | 168 | 7 (4.2\%) |
| 43.0 | 163 | 13 (8.0\%) |
| 44.0 | 170 | 8 (4.7\%) |
| 45.0 | 165 | 8 (4.8\%) |
| 46.0 | 98 | 7 (7.1\%) |
| 47.0 | 132 | 3 (2.3\%) |
| 48.0 | 119 | 6 (5.0\%) |
| 49.0 | 108 | 2 (1.9\%) |
| 50.0 | 125 | 9 (7.2\%) |
| 51.0 | 124 | 9 (7.3\%) |
| 52.0 | 95 | 6 (6.3\%) |
| 53.0 | 87 | 3 (3.4\%) |
| 54.0 | 91 | 5 (5.5\%) |
| 55.0 | 111 | 9 (8.1\%) |
| 56.0 | 52 | 1 (1.9\%) |
| 57.0 | 55 | 4 (7.3\%) |
| 58.0 | 48 | 3 (6.3\%) |
| 59.0 | 50 | 0 (0.0\%) |
| 60.0 | 70 | 2 (2.9\%) |
| 61.0 | 61 | 5 (8.2\%) |
| 62.0 | 41 | 2 (4.9\%) |
| 63.0 | 51 | 2 (3.9\%) |
| 64.0 | 56 | 2 (3.6\%) |
| 65.0 | 53 | 4 (7.5\%) |
| 66.0 | 18 | 3 (16.7\%) |
| 67.0 | 15 | 2 (13.3\%) |
| 68.0 | 10 | 1 (10.0\%) |
| 69.0 | 12 | 0 (0.0\%) |
| 70.0 | 8 | 0 (0.0\%) |
| 71.0 | 17 | 0 (0.0\%) |
| 72.0 | 16 | 2 (12.5\%) |
| 73.0 | 12 | 1 (8.3\%) |
| 74.0 | 9 | 1 (11.1\%) |
| 75.0 | 7 | 0 (0.0\%) |
| 76.0 | 18 | 1 (5.6\%) |
| 77.0 | 10 | 0 (0.0\%) |
| 78.0 | 10 | 1 (10.0\%) |
| 79.0 | 6 | 1 (16.7\%) |
| 80.0 | 15 | 1 (6.7\%) |

