New Results on Complex Golay Pairs
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Abstract. We verify that 23 is not a complex Golay number, or equivalently that complex Go-
lay sequences of order 23 do not exist. This confirms the conjecture of Craigen, Holzmann, and
Kharaghani [4] from 2002. Additionally, we present a new algorithm for exhaustively searching
for complex Golay sequences of a given order and provide for the first time an enumeration of all
complex Golay sequences of orders 20, 22, and 24.
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1. Introduction

Complex Golay sequences have been extensively studied in [6], [3], [4]. They were introduced in
order to expand the orders of Hadamard matrices attainable via (ordinary) Golay sequences, also
called Golay pairs. A notion of canonical form for Golay sequences has been introduced in [11]
and representatives of the equivalence classes of Golay sequences for all lengths < 40 have been
found. Golay and Turyn have shown how to multiply Golay sequences of length g; with Golay
sequences of length g, in order to construct Golay sequences of length g1g>. Golay sequences, have
been classified up to order 100 in [2] where the authors show that all such pairs can be derived using
certain equivalence and composition operations from five primitive Golay pairs.

A positive integer g is called a complex Golay number, if there exist complex Golay sequences
of order g. A multiplication for complex Golay sequences, similar to the one for Golay sequences
mentioned above, cannot exist, since 3,5 are complex Golay numbers, but 15 is not.

The fundamental paper [4] contains exhaustive searches for all lengths of complex Golay se-
quences up to 19, a partial search for orders 20 and 22 and states that the authors suspect they do not
exist for length 23. In addition, it is shown that g =7, 9, 14, 15, 17, 19, 21 are not complex Golay
numbers. Based on the numerical evidence they have gathered, the authors state four conjectures
pertaining to complex Golay sequences and complex Golay numbers, all of which are still open. The
fourth of their conjectures states that “every prime divisor of a complex Golay number is a complex
Golay number”. Given the aforementioned list of known complex Golay numbers, this means that
to disprove this conjecture, one would have to construct/find complex Golay sequences of any of the
orders 28, 34, 35, 38, 46, .... Another interesting phenomenon is that the only known odd complex
Golay numbers are all primes. Therefore it would be of interest to know whether 25, 27, 33, 35, 39
are complex Golay numbers or not. Finally, the authors provide theorems on the algebraic structure
of complex Golay sequences which connects their structure to polynomial factorization over finite
fields. In certain cases these theorems can be used to speed up computational algorithms to search
for these rather elusive combinatorial objects, although the present work does not require them.
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The following theorem [4, Cor. 13] shows the importance of complex Golay numbers to
Hadamard matrices, which are combinatorial objects constructed [1] for their use in error correcting
codes and studied [5] for their many elegant mathematical uses and properties.

Theorem 1.1. If g is a complex Golay number; then there exists a Hadamard matrix of order 4g.

In particular, this holds for g = 2974305¢11913¢ where the variables in the exponents are non-
negative integers which satisfy some linear inequalities. In view of Theorem 1.1 it becomes apparent
that extending the list of known prime complex Golay numbers would entail strengthening this theo-
rem by enlarging the set of attainable orders of Hadamard matrices constructible via complex Golay
sequences.

We present our new algorithm for exhaustively searching for complex Golay sequences of a
given order in Section 3, following the necessary background covered in Section 2. We show that
by solving certain Diophantine systems one can derive restrictions on the possible forms that all
complex Golay sequences of a given order must satisfy. These restrictions are then used along with
a procedure which can generate all permutations of a given form; this allows an exhaustive search to
be performed on a space smaller than would be necessary using a naive exhaustive search.

2. Background on Complex Golay Sequences

In this section we present the background necessary to describe our algorithm for enumerating com-
plex Golay sequences. First, we require some preliminary definitions to describe the kind of se-
quences we will be searching for.

Definition 2.1 (cf. [9]). The complex aperiodic (or complex nonperiodic) autocorrelation function
of a sequence A = [ay,...,a,] € C" of length n € N is defined as

n—s

Na(s) ::Zakakﬂ, s=0,...,n—1.
k=1

Definition 2.2 (cf. [9]). Two sequences A and B in C" are said to have constant aperiodic autocor-
relation if there is a constant ¢ € C such that

Na(s)+Np(s) =c, s=1,....,n—1.

Definition 2.3. A pair of sequences (A,B) with A and B in {£1,+i}" are called a complex Golay
sequence pair if they have zero constant aperiodic autocorrelation, i.e.,

Na(s)+Np(s) =0, s=1,...,n—1.
If such sequences exist for n € N we call n a complex Golay number.

Note that if A and B are in {+1,4i}" then N4 (0) + Np(0) = 2n by the definition of the complex
aperiodic autocorrelation function and the fact that xx = 1 if x is =1 or %i.

2.1. Equivalence Operations

There are certain invertible operations which preserve the property of being a complex Golay se-
quence pair when those operations are applied to sequence pairs (A, B). These are summarized in the
following proposition.

Proposition 2.4 (cf. [4], section 4). Let ([a1,...,a,), [b1,...,b,]) be a complex Golay sequence pair.
The following are then also complex Golay sequence pairs:

El. (Reversal) ([an,...,a1],[bn,...,b1]).

E2. (Conjugate Reverse A) ([ay,...,a1],[b1,-..,bn]).

E3. (Swap) ([b1,...,by),[a1,...,an)]).

E4. (Scale A) ([iay,...,ia),[b1,...,by]).
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ES. (Positional Scaling) ([p1ay,. .., pnan], [p1b1,. .., pubs)) where py == it.

Definition 2.5. We call two complex Golay sequence pairs (A, B) and (A’, B') equivalent if (A’,B")
can be obtained from (A, B) using the transformations described in Proposition 2.4.
2.2. Useful Properties and Lemmas

In this subsection we prove some useful properties that complex Golay sequences must satisfy and
which will be exploited by our algorithm for enumerating complex Golay sequences.

The first lemma provides a relationship that all complex Golay sequences must satisfy. To state
it, we require the following definition.

Definition 2.6 (cf. [4]). The Hall polynomial of the sequence A := [ay,...,ay] is defined to be

ha(z) = a1 +axz+---+a,z" ' € Clz].

Lemma 2.7. Let (A,B) be a complex Golay sequence pair. For every z € C with |z| = 1, we have
Iha(2)* + |hs (2)* = 2n.

Proof. Since |z| = 1 we can write z = ¢'® for some 0 < 0 < 27. Similar to the fact pointed out in [7],
using Euler’s identity one can derive the following expansion:

n—1

lha(z)* = Na(0) +2 Y (Re(Na(j))cos(8) +Im(Na(j))sin(6,1)).
j=1

Since A and B form a complex Golay pair, by definition one has that Re(N4(j) + Ng(j)) = 0 and
Im(N4(j) +Ng(j)) = 0 and then

ha(2)? + |hs(2)[> = Na(0) + Np(0) = 2n. 0

This lemma is highly useful as a condition for filtering sequences which could not possibly be
part of a complex Golay sequence pair, as explained in the following corollary.

Corollary 2.8. Let A € {+1,+i}", z € C with |z| = 1, and |ha(z)|* > 2n. Then A is not a member of
a complex Golay sequence pair.

Proof. Suppose the sequence A was a member of a complex Golay sequence pair whose other mem-
ber was the sequence B. Since |hg(z)|> > 0, we must have |4 (z)|* + |hs(z)|* > 2n, in contradiction
to Lemma 2.7. ]

The next lemma is useful to derive conditions on how often each type of entry (i.e., 1, —1,
i, —i) occurs in a complex Golay sequence pair. It is stated in [3] using a different notation; we use
the notation resum(A) and imsum(A) to represent the real and imaginary parts of the sum of the
entries of A. For example, if A := [1,7,—i,i] then resum(A) = imsum(A) = 1.

Lemma 2.9. Let (A, B) be a complex Golay sequence pair. Then
resum(A)? +imsum(A)? + resum(B)* + imsum(B)* = 2n.
Proof. Using Lemma 2.7 with z =1 we have
resum(A) + imsum(A)i|* 4 [resum(B) + imsum(B)i|* = 2n.
Since [resum(X ) + imsum (X )i|* = resum(X )2 + imsum(X ) the result follows. O

The next lemma provides some normalization conditions which can be used when searching for
complex Golay sequences up to equivalence; we say that a complex Golay sequence is normalized
if it meets these conditions.
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Lemma 2.10. Ler (A, B) be a complex Golay sequence pair. Then (A, B) is equivalent to a complex
Golay sequence pair (A’,B") which satisfies the conditions

0 < resum(A’) < imsum(A’),
0 < resum(B') < imsum(B’),

and resum(A’) < resum(B’).

Proof. We will transform a given complex Golay sequence pair (A, B) into an equivalent normalized
one using the equivalence operations of Proposition 2.4. To start with, let A’ := A and B’ := B.

First, we ensure that |[resum(A’)| < |imsum(A’)|. If this is not already the case then we apply
operation E4 (which has the effect of switching [resum(A’)| and |imsum(A’)|) and the updated A’
will satisfy this condition.

Next, we ensure that resum(A’) > 0. If this is not already the case then we apply operation
E4 twice (which has the effect of negating each element of A”) and the updated A’ will satisfy 0 <
resum(A’) < |imsum(A’)|. If imsum(A’) > 0 then the first condition is satisfied. If not, then it will be
satisfied after applying operation E2 (which negates imsum(A’)).

Next, we ensure that the second condition holds. If it not already the case, then we apply
operation E3 (switch A’ and B’); this will cause the second condition to be satisfied at the cost of
causing the first condition to no longer be satisfied. However, we may now repeat the above directions
to make the first condition satisfied again; note that these directions do not modify B’ so that once
we have completed them both the first two conditions will be satisfied.

Lastly, we ensure the final condition resum(A”) < resum(B’). If it is not already satisfied then
we apply E3 (switch A’ and B’) and the updated sequence pair will satisfy the condition as required.

O

2.3. Sum-of-square Decomposition Types

A consequence of Lemma 2.9 is that every complex Golay sequence yields a decomposition of 2n
into a sum of four squares. With the help of a computer algebra system (CAS) one can even enu-
merate all the ways that 2n may be written as a sum of four squares. Furthermore, since it suffices to
search for complex Golay sequence pairs up to equivalence, by Lemma 2.10 we can make assump-
tions about the form of the decomposition, for example, that the resum and imsum of A and B are
non-negative. Thus, it suffices to use a CAS to solve the quadratic Diophantine system

rﬁ+i§+r§+ii:2n7 0<r, <l 0<r,<ip, ra <rp 2.1)
for indeterminants r,, iy, rp, ip € Z.

Example 1. When n = 23 the Diophantine system (2.1) has exactly four solutions, as given in the
following table:

Ta g Ty Ip
0 1 3 6
1 2 4 5
0 3 1 6
1 4 2 5

Let (A,B) be a complex Golay sequence of order n. Furthermore, let u, v, x, and y represent
the number of 1s, —1s, is, and —is in A, and let r, and i, represent the resum and imsum of A,
respectively. We have that

u,v,x,y >0, U—V=ry,, xX—y=lg4, u+v+x+y=n. 2.2)

Given the values of n, r,, and i, this is a system of linear Diophantine equations which is to be solved
over the non-negative integers. From the last equality we know that u,v,x,y < n so such a system
necessarily has a finite number of solutions.
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Example 2. When n =23, r, =0, and i, = 1, the Diophantine system (2.2) has exactly 12 solutions,
as given in the following table:

u v ox y
0O 0 12 11
1 I 11 10
2 2 10 9
3 3 9 8
4 4 88 7
5 5 7 6
6 6 6 5
7 7 5 4
8§ &8 4 3
9 9 3 2
10 10 2 1
11 11 1 0

M7V7X7y) = #}'{,}, tells us how many possibilities there are for A €

{1, j:i}” with u entries which are 1s, v entries which are —1s, x entries which are is, and y entries
which are —is. For example, there are ]22!3]!” = 1,352,078 possibilities for A with 12 entries which
are is and 13 entries which are —is (i.e., those which correspond to the first row of the table in
Example 2). Algorithms for explicitly generating all such possibilities for A can be found in [8].

The multinomial coefficient (

3. Description of Our Algorithm

First, we fix an order n for which we are interested in generating a list of inequivalent complex Golay
sequence pairs (A, B). Our algorithm finds all solutions r, iy, rp, ip of (2.1) and for all pairs (r,, i)
then solves the system (2.2). For each solution quadruple (u,v,x,y) we use Algorithm 7.2.1.2L
from [8] to generate all possibilities for A with the appropriate number of 1s, —1s, is, and —is.
For each possibility for A we compute Hy = |/ (€2™%/59)| for k = 1,...,49. If any value of Hy is
strictly larger than 2n, we immediately discard the sequence A (see Corollary 2.8); if all values of H
are smaller than 2n then we record the sequence A as one which could appear in the first position of
a complex Golay sequence pair.

Next, we repeat the above steps except that we solve the system (2.2) for all pairs (rp,ip)
(replacing r, with r, and i, with i), and this time we generate a list of possibilities for B, sequences
which could appear in the second position of a complex Golay sequence pair.

Finally, we use the matching technique of [10] to compile a list of all complex Golay sequence
pairs of a given order. We form the strings

Re(Na(1)),Im(N4(1)),...,Re(Na(n— 1)), Im(Na(n — 1))

and
—Re(Np(1)),—Im(Np(1)),...,—Re(Ng(n—1)),—Im(Ng(n—1))

for all possibilities for A and B which were previously generated. We then create two files, those
containing the ‘A’ strings sorted in lexicographic order, and those containing the ‘B’ strings sorted in
lexicographic order. Finally, we perform a linear scan through the files to find all the strings which
are common to both files. All matches are guaranteed to produce complex Golay sequences since
if the strings derived from sequences A and B matched then Re(N4(s)) +Re(Ny (s)) = Im(Ny (s)) +
Im(Na(s)) =0 fors =1, ..., n— 1. Furthermore, all normalized complex Golay sequences will be
among the matches since by construction if (A,B) is a normalized complex Golay sequence then
A appears in the first list of possibilities generated and B appears in the second list of possibilities
which were generated.
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If one wants the complete list of complex Golay sequence pairs, one can now repeatedly apply
the equivalence operations E1-E5 to the list of normalized complex Golay sequence pairs until those
operations no longer produce new sequences. Note that normalized complex Golay sequences are not
necessarily inequivalent, as the normalization conditions of Lemma 2.10 do not capture all possible
equivalences. If there are two sequences which are equivalent to each other this can be checked
by applications of the equivalence operations E1-E5 and one of the equivalent sequences can be
removed if desired.

3.1. Optimizations

There are some further properties which while not essential to the algorithm can be exploited to
remove some extraneous computations.

Lemma 3.1. Ler Hy = VlA(ezmk/50)|2 be the quantity which we use in our algorithm’s filtering
criterion, and let H] be the same quantity but computed with respect to A’, the reverse of A. Then
Hy = Hg()fk'

Proof. Let 0 :=2mk/50. Then H., , = |hy(e™) |? and as in the decomposition in Lemma 2.7 one
has

n—1
lhar(e ™) =Ny (0)+2 Y. (Re(Ny () cos(—8,j) + Im(Ny(j)) sin(~6.1)).
j=1
From the definition of the aperiodic autocorrelation function one sees that Ny (0) = N (0) and

Ny (s) = Na(s) for s =1, ..., n— 1. Using this with the standard facts that cos(—x) = cos(x)
and sin(—x) = —sin(x) one derives that this expansion is exactly the same as the expansion for
|ha(e'®)|> = Hy, as required. O

In light of Lemma 3.1, we do not need to compute the values Hy for both A and its reverse,
since the H; values for the reverse of A will be the exact same as those for A (albeit in reverse order).
In other words, A will be discarded by our filtering condition if and only if its reverse is discarded
by our filtering condition, so once A has been checked we need not also check its reverse.

To avoid extraneous computations, we only perform the filtering check on one of A and the
reverse of A, whichever is lexicographically greater (if A is equal to its reverse it is also checked).
Once the filtering process has been completed we take the list of sequences which passed the filter
and add to the list the reverse of each sequence on the list (except for those which are their own
reverse).

Of course, we can perform the same optimization when performing the filtering check on
the B sequences as well. In this case one can completely discard sequences whose reverses are
lexicographically strictly smaller than themselves because of the following lemma.

Lemma 3.2. The following normalization condition may be added to Lemma 2.10:
B’ >1ex reverse(B'). 3.1

Proof. Continuing the proof of Lemma 2.10, if the complex Golay sequence pair (A’,B’) satis-
fies (3.1) then we are done. If not, we apply equivalence operation El (reversal) to (A’,B’) so
that (3.1) is satisfied. Furthermore, all the normalization conditions of Lemma 2.10 remain satis-
fied because the operation E1 does not change the resum or imsum of A’ or B'. O

Finally, we note that it is possible to optimize the evaluation of the Hall polynomial by reusing
previously computed values. If A := [a1,...,a,] is the sequence which we need to check the filtering
condition for, then we want to compute the Hall polynomial evaluation

n
ha(eX™R30) = Y a0 fork=1, ..., 49.
j=0
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Because of the periodicity e2%/k/30 = ¢2mi(jk mod 50)/50 an the fact —e2™ik/50 = (27i(jk+25)/50 there
are only 100 possible values for the summand in this sum, namely xe2™/50 for x = 1 or i and
y=0, ..., 49. These can be computed once at the start of the algorithm and reused as necessary.

Furthermore, in many cases it is possible to reuse some computations from the Hall polynomial
evaluation of the previously checked sequence. The algorithm we used to generate the sequences [8,
§7.2.1.2] generates them in lexicographically increasing order, meaning that consecutively generated
sequences often share a large common prefix. If the entries ay, ..., a; of a sequence are identical to
those in the previously generated sequence then the partial sum Zi‘;]o ajy 1€27ik/50 can be reused,
assuming it was computed and stored; as the Hall polynomial evaluations are being computed one
can remember their partial sums for varying / and k in a table.

4. Results

The algorithm described above was implemented in C and run for all orders n up to 24. Our main
new finding is that n = 23 is not a complex Golay number, i.e., that complex Golay sequences of
order 23 do not exist. This result confirms the conjecture of [4] and in addition it implies that the
next candidate prime complex Golay number is n = 29. Our results also include a complete search
for all orders up to 24; this search had already been completed in [4] for all orders up to 19 as well
as 21. Our results match the previously computed results in all cases, but we also provide complete
results for orders 20, 22, 23, and 24.! The computations were performed with an Intel Xeon CPU
running at 3.3GHz under Ubuntu 14.04. The algorithm’s run time in hours for orders 20, 21, 22, 23,
and 24 was 4, 13, 32, 179, and 361, respectively.

Figure 1 contains a table summarizing how many complex Golay pairs exist for each order up
to 24. The second column contains the total number of complex Golay pairs and the third column
contains the number of inequivalent complex Golay pairs. We have also performed some preliminary
searches for complex Golay sequences of orders 25 to 28. Except for a class of solutions equivalent
to a real Golay sequence of order 26 these searches did not yield any complex Golay sequences.

Order Total Pairs Inequiv. Pairs Order Total Pairs Inequiv. Pairs
1 16 1 13 512 1
2 64 1 14 0 0
3 128 1 15 0 0
4 512 2 16 106,496 204
5 512 1 17 0 0
6 2048 3 18 24,576 24
7 0 0 19 0 0
8 6656 17 20 215,040 340
9 0 0 21 0 0
10 12,288 20 22 8192 12
11 512 1 23 0 0
12 36,864 52 24 786,432 1056

FIGURE 1. A table summarizing the number of complex Golay pairs which exist
in all orders up to 24.

I'These results may be downloaded from the webpage https://cs.uwaterloo.ca/~cbright/golay/.
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