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ABSTRACT
Over the last few decades, many distinct lines of research aimed at

automating mathematics have been developed, including computer

algebra systems (CASs) for mathematical modelling, automated

theorem provers for first-order logic, SAT/SMT solvers aimed at

program verification, and higher-order proof assistants for checking

mathematical proofs. More recently, some of these lines of research

have started to converge in complementary ways. One success story

is the combination of SAT solvers and CASs (SAT+CAS) aimed at

resolving mathematical conjectures.

Many conjectures in pure and applied mathematics are not

amenable to traditional proof methods. Instead, they are best ad-

dressed via computational methods that involve very large combi-

natorial search spaces. SAT solvers are powerful methods to search

through such large combinatorial spaces—consequently, many prob-

lems from a variety of mathematical domains have been reduced

to SAT in an attempt to resolve them. However, solvers tradition-

ally lack deep repositories of mathematical domain knowledge that

can be crucial to pruning such large search spaces. By contrast,

CASs are deep repositories of mathematical knowledge but lack

efficient general search capabilities. By combining the search power

of SAT with the deep mathematical knowledge in CASs we can

solve many problems in mathematics that no other known methods

seem capable of solving.

We demonstrate the success of the SAT+CAS paradigm by high-

lighting many conjectures that have been disproven, verified, or

partially verified using our tool MathCheck. These successes indi-

cate that the paradigm is positioned to become a standard method

for solving problems requiring both a significant amount of search

and deep mathematical reasoning. For example, the SAT+CAS par-

adigm has recently been used by Heule, Kauers, and Seidl to find

many new algorithms for 3 × 3 matrix multiplication.
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1 INTRODUCTION
The development of computer science has transformed the practice

of mathematics. The practical algorithms designed by computer

scientists have profoundly changed how many mathematical con-

jectures are proposed, studied, and resolved. For example, the fields

of satisfiability checking and symbolic computation have each been

paradigm-shifting in this way. They have allowed mathematicians

the ability to solve problems much larger than ever dreamt of in

the past, the ability to pose and solve entirely new kinds of math-

ematical conjectures, and the ability to verify their solutions to

unprecedented levels.

Despite a common background and over a hundred years of com-

bined successful progress, these two fields have developed mostly

independently of each other and have little common overlap [1].

It is in the interest of the working mathematician or computer

scientist to have familiarity with the techniques of these fields, as

they have broad (and often surprising) applicability. This article

provides an overview of these fields with an emphasis on how the

techniques of each field have been applied to resolve mathematical

conjectures—and how combining the techniques of each field has

resolved conjectures and solved problems that were out of reach of

both fields.

Satisfiability checking. The Boolean satisfiability (SAT) prob-

lem asks if it is possible assign the variables in a Boolean logic

expression in such a way that the expression becomes true. In the

1970s, the Cook–Levin theorem demonstrated that the SAT prob-

lem is NP-complete resulting in a pessimism that SAT problems

are infeasible to solve in practice. Despite this, research in the en-

gineering of SAT solvers has discovered algorithms and heuristics

capable of solving enormous SAT instances that cannot currently

be solved by any other method. This “SAT revolution” has had

dramatic consequences for hardware and software designers who

now use SAT solvers on a daily basis [40].

In fact, SAT solvers have become so successful that Heule, Kull-

mann, andMarek [28] call them the “best solution in most cases” for

performing large combinatorial searches. Recently SAT solvers have

been spectacularly applied to a number of long-standing mathemat-

ical problems including the Erdős discrepancy conjecture (open for

80 years) [29], the Boolean Pythagorean triples conjecture (open

for 30 years) [28], and the determination of the fifth Schur number

(open for 100 years) [26]. We briefly outline how SAT solvers were

successful on these problems in Section 2.1.

Despite these successes, SAT solvers are known to not perform

well for all kinds of combinatorial searches such as those that

require advanced mathematics. For example, Arunachalam and

Kotsireas [2] have shown that searching for mathematical objects

defined by autocorrelation relationships are hard for current SAT
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solvers. Similarly, Van Gelder and Spence [39] have shown that

proving the nonexistence of certain combinatorial designs (even

some that have intuitively very easy nonexistence proofs) produce

small but very difficult instances for SAT solvers.

Symbolic computation. Symbolic computation or computer

algebra is the branch of computer science concerned with manip-

ulating algebraic expressions and other mathematical objects. It

has been studied for over sixty years and its successes has lead to

the development of computer algebra systems (CASs) that can now

automatically solve many theoretical and practical mathematical

problems of interest. For example, a modern computer algebra sys-

tem has functionality for things such as Gröbner bases, cylindrical

algebraic decomposition, lattice basis reduction, linear system solv-

ing, arbitrary and high precision arithmetic, interval arithmetic,

linear and nonlinear optimization, Fourier transforms, Diophantine

solving, computing automorphism groups, graph algorithms like

determining if a graph has a Hamiltonian cycle, and many other

basic operations like computing the derivative of a function.

Computer algebra is widely used in engineering and science.

For example, the 1999 Nobel prize in physics was awarded to Ger-

ardus ’t Hooft and Martinus J. G. Veltman for using computer al-

gebra to place particle physics on “a firmer mathematical founda-

tion”. Computer algebra has also been used to resolve a number of

long-standing mathematical conjectures. Three well-known exam-

ples of this are the alternating sign matrix conjecture (open for 15

years) [43], the Mertens conjecture (open for 100 years) [34], and

the Kepler conjecture (open for nearly 400 years) [25]. We briefly

discuss how computer algebra was used to solve them in Section 2.2.

Despite these successes, computer algebra systems are not op-

timized for all types of problems. In particular, they are typically

not optimized to perform the kind of general-purpose search with

learning that SAT solvers excel at. In other words, problems that

require searching through a large combinatorial space will probably

not be solved most effectively by a computer algebra system.

The best of both worlds. In this paper we overview the new

“SAT+CAS” paradigm that harnesses the search power of SAT solvers

and the mathematical abilities of CASs. This approach provides the

best aspects of both the SAT and CAS approaches while minimizing

the weaknesses of each respective tool. For example, one of the

primary drawbacks of SAT solvers is that they lack mathematical

expressiveness—many mathematical concepts are difficult or even

impossible to efficiently encode in Boolean logic. On the other hand,

a huge variety of mathematical concepts can easily be expressed in

a CAS. Thus, the SAT+CAS paradigm combines the search power

of a SAT solver with the expressive power of a CAS.

Recently the SAT+CAS paradigm has been used to make progress

on a number of conjectures from combinatorics, graph theory, and

number theory. In particular, it has verified a conjecture of Craigen,

Holzmann, and Kharaghani, found three new counterexamples to

the good matrix conjecture, verified the smallest counterexample of

the Williamson conjecture, and is responsible for the current best

known results in the evenWilliamson, Ruskey–Savage, Norine, and

best matrix conjectures. We give an overview of these conjectures

and how our SAT+CAS system MathCheck (available at uwaterloo.

ca/mathcheck) was used to produce these results in Section 3. A

high-level diagram of how MathCheck combines SAT solvers with

SAT encoding that Williamson

matrices of order n exist

Split into

subproblems
CAS

SAT solver CAS

Williamson matrices

or counterexample

SAT instances

inequivalent instances

partial satisfying

assignment

conflict clause

Figure 1: A diagram outlining how the SAT+CAS paradigm
is applied to the Williamson conjecture.

CASs is shown in Figure 1. We also briefly discuss how Heule,

Kauers, and Seidl have recently used the SAT+CAS paradigm to

find numerous new ways of multiplying 3× 3 matrices [27]. Finally,

we summarize the kinds of problems for which individually the SAT

and CAS paradigms are insufficient but for which the SAT+CAS

paradigm has been successful in Section 4.

2 PRIORWORK
In this section we overview the fields of satisfiability checking, sym-

bolic computation, and the kinds of conjectures resolved using the

tools of these fields. As we will see, these fields have been applied to

resolve an impressive variety of conjectures. Satisfiability checking

is particularly good at solving conjectures that can be expressed

only using simple constraints but require an enormous search, while

symbolic computation is particularly good at solving conjectures

that require a lot of complicated mathematical calculations but not

a lot of search.

2.1 SAT solving
The techniques developed by the field of satisfiability checking has

recently allowed SAT solvers to resolve mathematical conjectures

requiring enormous searches. In this section we discuss three of

these conjectures.

Erdős discrepancy conjecture. In the 1930s, the prolific math-

ematician Paul Erdős conjectured that for any infinite {±1}-sequence

X = (x1,x2, . . . ) the quantity DX (n,k) B
��∑n

i=1 xki
��
can be made

arbitrarily large by choosing appropriate n and k . In 2010, the

Polymath project studied the conjecture and discovered many se-

quences X of length 1124 with DX (n,k) at most 2 for all choices

of n and k for which this quantity is defined. The sequences were

found using a custom computer program and despite expending

a lot of computing effort no longer sequences with this property

were found. Fields medalist Timothy Gowers would later say “That

was enough to convince me that 1124 was the correct bound [for

the length of sequences X with DX (n,k) at most 2].”

https://uwaterloo.ca/mathcheck
https://uwaterloo.ca/mathcheck
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In 2014, Konev and Lisitsa [29] showed that 1124 was not the

correct bound by using a SAT solver to find a sequence of length

1160 with DX (n,k) at most 2 for all n and k . Furthermore, they

showed that such a sequence of length 1161 could not exist, thereby

resolving the smallest open case of the Erdős discrepancy conjecture.

The full conjecture was resolved the next year by Terence Tao [38],

building on results of the Polymath project.

Boolean Pythagorean triples conjecture. In the 1980s, math-

ematician Ronald Graham offered a $100 prize for an answer to

the Boolean Pythagorean triples problem: Is it possible to split the

natural numbers {1, 2, . . . } into two parts so that all triples (a,b, c)
with a2 + b2 = c2 are separated? In 2008, Cooper and Poirel [10]

found a partition of the natural numbers up to 1344 into two parts

with no Pythagorean triple in the same part—this required a custom

computer program and hundreds of hours of computing time.

In 2016, Heule, Kullmann, and Marek [28] used a SAT solver to

find a partition of the natural numbers up to 7824 into two parts that

separated all Pythagorean triples. Furthermore, they showed that

it was not possible to improve this bound—there is no 2-partition

of the natural numbers up to 7825 that separates all Pythagorean

triples. The proof found by the SAT solver was over 200 terabytes

and was verified in about 4 CPU years. Ronald Graham accepted

this as a resolution of the Boolean Pythagorean triples conjecture

and awarded his $100 prize.

Schur number five. In the 1910s, Issai Schur [36] proved that

for any k ≥ 1 there exists a largest set {1, . . . ,m} that can be

partitioned into k parts such that all triples (a,b, c) with a + b = c
are separated. The value ofm in the above is known as the Schur
number S(k). It is possible to check that S(1) = 1, S(2) = 4, S(3) = 13

by hand, and Baumert and Golomb [23] showed that S(4) = 44 by

a computer search in 1965. Furthermore, Exoo [16] showed that

S(5) ≥ 160 in 1994 using a combinatorial optimization algorithm.

In 2017, Heule [26] used a SAT solver to show that any partition

of {1, . . . , 161} into 5 parts will not separate all triples (a,b, c) with
a+b = c and therefore showed that S(5) = 160. The proof produced

by the SAT solver was two petabytes in size and was verified by a

formally-verified proof checker using about 36 CPU years.

2.2 Computer algebra
The techniques developed in the field of computer algebra have

been applied to a huge number of engineering, scientific, andmathe-

matical problems. In this section we discuss three conjectures where

techniques from computer algebra were essential in the resolution

of the conjecture.

Mertens conjecture. In 1885, Thomas Stieltjes conjectured (and

later independently by F. Mertens) what is now known as the

Mertens conjecture. The Mertens function is defined by M(x) B∑
n≤x µ(n) where µ(n) B (−1)k if the prime factorization of n

consists of k distinct prime factors and µ(n) B 0 if a prime fac-

tor appears more than once in the prime factorization of n. The
Mertens conjecture is that |M(x)| <

√
x for all x > 1. In the 1970s,

the Mertens conjecture was shown to hold for all x ≤ 7.8 · 109.

In 1985, Odlyzko and te Riele [34] showed that the Mertens

conjecture was false. Their method used lattice basis reduction and

arbitrary-precision arithmetic from the Brent MP package. The

smallest counterexample is still unknown but it is known to be

larger than 10
14

and smaller than exp(1.59 · 1040).

Alternating sign matrix conjecture. In the 1980s, Mills, Rob-

bins, and Rumsey [33] studied alternating sign matrices—square

{0,±1}-matrices whose rows and columns sum to 1 and whose

nonzero entries alternate sign in each row and column. They no-

ticed that the number of alternating sign matrices of order n ≤ 10

was

∏n
k=0(3k + 1)!/(n + k)! and conjectured that this relationship

held for all n.
The conjecture was proven by Doron Zeilberger [43] in the 1990s,

crucially relying on the combinatorial functions of the computer

algebra systemMaple. In fact, a Maple package was distributed with

the paper that empirically (and in some cases rigorously) verified

every nontrivial fact in the paper.

Kepler conjecture. In 1661, the astronomer andmathematician

Johannes Kepler conjectured that the most efficient way of packing

spheres in three dimensions is to stack them in a pyramid shape.

It was still unsolved in 1900 and David Hilbert included it in his

famous list of unsolved problems.

In 1998, themathematician ThomasHales and his student Samuel

Ferguson [25] proved the Kepler conjecture using a variety of tools

such as global optimization, linear programming, and interval arith-

metic. Many of the computations in the proof were performed using

Mathematica’s arbitrary-precision arithmetic and double-checked

using Maple. Because of the complexity of the calculations a team of

at least thirteen referees could not be certain of the proof’s correct-

ness after four years. This lead Hales to start a project to complete a

formal verification of the proof; it completed in 2014 after a decade

of work [24].

3 SAT+CAS PARADIGM
As we saw in Section 2, the satisfiability checking and symbolic

computation approaches have been applied to resolve a variety of

mathematical conjectures—but each approach has its own advan-

tages and disadvantages. On the one hand, satisfiability checking is

good at solving problems with enormous search spaces and simple

constraints. On the other hand, symbolic computation is good at

solving problems with sophisticated mathematical calculations.

When a search space becomes too large the overhead associated

with a computer algebra system becomes more pronounced, neces-

sitating the usage of a more efficient solver. Currently, SAT solvers

are probably the best tools currently available for general purpose

search; they are very difficult to beat because of the decades of

engineering effort that has been aimed at making them efficient.

Given this, Zulkoski, Ganesh, and Czarnecki in 2015 proposed [45]

(and independently by Ábrahám [1]) the SAT+CAS paradigm of

combining SAT solvers and CASs to solve conjectures that require

both efficient search and advanced mathematics. In this section

we overview and explain the major successes of the SAT+CAS

paradigm over the last four years.

3.1 Williamson conjecture
In 1944, the mathematician J. Williamson studied the Hadamard

conjecture from combinatorial design theory. This conjecture says

that square {±1}-matrices with with pairwise orthogonal rows exist
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in all orders 4n. He defined a new class of matrices now known as

Williamson matrices that he used to construct Hadamard matrices

of order 4n for certain small values of n. Symmetric {±1}-matrices

A, B,C , D form a set of Williamson matrices (each individual matrix

itself beingWilliamson) if they are circulant (each row is a cyclic

shift of the previous row) and if A2 + B2 + C2 + D2
is the scalar

matrix 4nI . It was once considered likely that Williamson matrices

exist for all n and therefore Williamson matrices could provide a

route to proving the Hadamard conjecture [22]. The conjecture that

Williamson matrices exist in all orders n has since become known

as the Williamson conjecture.

The hopes that Williamson matrices exist in all orders were

dashed in 1993, when D. Ž. Ðoković [14] showed that Williamson

matrices of order 35 do not exist by an exhaustive computer search.

Ðoković noted that this was the smallest odd counterexample of

the Williamson conjecture but did not specify if it was truly the

smallest counterexample. In 2006, Kotsireas and Koukouvinos [30]

found no counterexamples in the even orders n ≤ 22 using the

CodeGeneration package of the computer algebra system Maple.

In 2016, using an off-the-shelf SAT solver, Bright et al. [5] found no

counterexamples in the even orders n ≤ 30. Despite these successes,

both the SAT-only and CAS-only approaches failed to find the

smallest counterexample of the Williamson conjecture.

Not only did the SAT+CAS approach successfully find the small-

est counterexample, it blew the other approaches out of the water

by exhaustively solving all even orders up to seventy [6, 7]. The

search space up to order 70 is an astronomical twenty-five orders
of magnitude larger than the search space up to order 30 because

the search space for Williamson matrices grows exponentially in n.
Williamson matrices were found to exist in all even orders n ≤ 70,

leading to the even Williamson conjecture that Williamson matrices

exist in all even orders.

The SAT+CAS approach is able to search such large spaces by

exploiting mathematical properties of Williamson matrices that

dramatically shrink the search space. In particular, the most impor-

tant known filtering property is the power spectral density (PSD)
criterion that says that if A is a Williamson matrix of order n with

first row [a0, . . . ,an−1] then

PSDA(k) B
���n−1∑
j=0

aje
2πi jk/n

���2 ≤ 4n

for all integers k . This is an extremely strong filtering condition;

a random circulant and symmetric {±1}-matrix A will almost cer-

tainty fail it. Thus, a solver that is able to effectively exploit the

PSD criterion will easily outperform a solver that does not know

about this property. However, to effectively use it we need

(1) an efficient method of computing the PSD values; and

(2) an efficient method of searching while avoiding matrices

that fail the filtering criteria.

The fundamental reason for the success of the SAT+CAS paradigm

in regard to the Williamson and even Williamson conjectures is

that CASs excel at (1) and SAT solvers excel at (2).

The manner in which the SAT and CAS are combined is demon-

strated in Figure 1. As the SAT solver completes its search it sends

to a CAS the matrices A, B, C , D from partial solutions of the SAT

instance. The CAS then ensures that the matrices pass the PSD

criterion. If a matrix fails the PSD criterion then a conflict clause
is generated encoding that fact. The SAT solver adds the conflict

clause into its learned clause database, thereby blocking the matrix

from being considered in the future.

The search was also parallelized by splitting the search space

into many independent subspaces. Each subspace had a separate

SAT instance generated for it and the SAT instances were solved in

parallel. The CAS was also useful in the splitting phase by removing

instances that were found to be equivalent to other instances under

the known equivalence operations of Williamson matrices.

In the end, our SAT+CAS system MathCheck found over 100,000

new sets of Williamson matrices among all even orders n ≤ 70, a

new set ofWilliamsonmatrices in the odd order 63, and verified that

n = 35 is the smallest counterexample of the Williamson conjecture.

3.2 Good and best matrix conjectures
Many variants ofWilliamsonmatrices exist; two variants are known

as good matrices (introduced by J. Seberry Wallis [41]) and best
matrices (introduced by Georgiou, Koukouvinos, and Seberry [20]).

There are several slightly different definitions for such matrices, but

for our purposes we define them to be circulant matrices A, B, C ,
D ∈ {±1}n×n that satisfyAAT +BBT +CCT +DDT = 4nI whereA
is skew (A+AT = 2I ) and D is symmetric (D = DT

). Additionally, B
andC are skew (for best matrices) or symmetric (for good matrices).

It is known that if good matrices exist of order n exist then n
must be of the form 2r + 1 (i.e., odd) and if best matrices of order n
exist then n must be of the form r2+r +1. The good and best matrix

conjectures state that good and best matrices exist in all orders of
these forms. In 2002, the good matrix conjecture was shown to hold

for alln ≤ 39 [21] and in 2001 the best matrix conjecture was shown

to hold for all n ≤ 31 [20]. In 2018, the best matrix conjecture was

shown to hold for all n ≤ 43 and the counterexamples n = 41, 47,

and 49 were found to the good matrix conjecture [15].

MathCheck has also been applied to the good and best matrix

conjectures [3, 4] using a similar method as described in Section 3.1

with some encoding adjustments that are specific to good or best

matrices. For example, if [d0, . . . ,dn−1] is the first row of a sym-

metric best matrix then it is known that dn/3 = d0 when n is a

multiple of 3. MathCheck found two new sets of good matrices (for

n = 27 and 57) and three new counterexamples of the good matrix

conjecture (n = 51, 63, and 69). MathCheck also found three new

sets of best matrices in order 57 and showed that the best matrix

conjecture holds for all n ≤ 57 (the best currently known result).

3.3 Craigen–Holzmann–Kharaghani
conjecture

In 2002, Craigen, Holzmann, and Kharaghani [11] studied complex
Golay pairs which are polynomials f , д with {±1,±i} coefficients

such that | f (z)|2+ |д(z)|2 is constant on the unit circle. This implies

that f and д have the same number of terms and this quantity is

known as the length of the polynomial. Craigen, Holzmann, and

Kharaghani performed an exhaustive search for all complex Golay

pairs up to length 19 and a partial search up to length 23. They

found no complex Golay pairs of length 23 and conjectured that

they did not exist. An exhaustive search was performed by F. Fiedler

in 2013 [18] that did not find any complex Golay pairs of length 23,
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though no implementation was providedmaking it difficult to verify

his search.

MathCheck can be used to independently verify the results of

Fiedler’s searches [8, 9]. The first step is to find all single polyno-

mials f that could appear as a member of a complex Golay pair.

A number of known properties of complex Golay pairs are used

to cut down the search space, the most important one being that

| f (z)|2 ≤ 2n where n is the length of f and z is on the unit circle.

Given a potential f we solve the nonlinear optimization problem

of maximizing | f (z)|2 subject to |z | = 1 (see Maple’s command

NLPSolve) and discard the f whose maximum is greater than 2n.
Secondly, we use the known fact that if (f ,д) is a complex Golay

pair then Nд(s) = −Nf (s) for s = 1, . . . , n − 1 where Nд is the

nonperiodic autocorrelation function of д.
Once f is known and enough of д is known so that Nд(s) ,

−Nf (s) can be determined then a conflict clause is learned block-

ing the partial solution from ever being tried again. This filtering

theorem is very powerful because it often works when only a few

coefficients of д are known. For example, the SAT solver is able to

learn to never assign both the first and last entries of д to be 1 at

the same time.

3.4 Ruskey–Savage conjecture
In 1993, Ruskey and Savage [35] asked if every matching (a set of

edges without common vertices) of the hypercube graph with 2
n

vertices can be extended into a Hamiltonian cycle of the graph. In

2007, Fink [19] noted that this property holds in the hypercube

graphs for n = 2, 3, and 4 and he proved a weaker form of the

conjecture that he attributes to Kreweras [31].

In 2015, MathCheck was used to show for the first time that

the Ruskey–Savage conjecture held for the hypercube graph with

2
5 = 32 vertices [45]. This was accomplished by using a SAT solver

to exhaustively enumerate the matchings of the hypercube graph

and then verifying with a CAS that each matching extends to a

Hamiltonian cycle. Certain kinds of matchings could be ignored; for

example, the SAT solver only enumerates maximal matchings (those

which cannot be increased in size while remaining matchings)

because if a maximal matching extends to a Hamiltonian cycle then

so do all subsets of the matching.

Once the CAS verifies that a given matching extends to a Hamil-

tonian cycle, a conflict clause is learned that blocks that Hamil-

tonian cycle (and all subsets of it) from being considered in the

search again. Furthermore, it is also effective to have the CAS apply

automorphisms of the hypercube graph to the Hamiltonian cycle it

finds to generate additional Hamiltonian cycles to be blocked [44].

3.5 Norine conjecture
Consider a 2-colouring of the edges of a hypercube graph such that

edges directly opposite each other have opposite colours. Serguei

Norine conjectured that in such a colouring it is always possible

to find two directly opposite vertices that are joined by a path of

edges of a single colour [13]. In 2013, Feder and Subi reported that

the conjecture had been verified for hypercube graphs with n = 2,

3, 4, and 5, and proved the conjecture for a special class of edge

colourings [17].

In 2015, MathCheck was used to show for the first time that

the Norine conjecture held for the hypercube graph with 2
6 = 64

vertices [45]. This was accomplished by using a SAT solver to ex-

haustively enumerate the edge colourings for which the conjecture

was not already known to hold.

Once an edge colouring was found by the SAT solver it was

passed to a CAS to verify that the colouring contains at least two

directly opposite vertices that are connected by a path of a single

colour. If such vertices do not exist then this colouring forms a

counterexample to the conjecture; otherwise, a conflict clause is

generated that blocks this colouring from appearing in the search

again. In fact, any colouring that includes the monochromatic path

that was found by the CAS can be blocked, since all such colourings

cannot be counterexamples to the Norine conjecture. Similar to

in our work on the Ruskey–Savage conjecture, it is also effective

to have the CAS apply automorphisms of the hypercube graph

to the path that it finds to generate additional colourings to be

blocked [44].

3.6 3 by 3 matrix multiplication
The classical way of multiplying two 2×2 matrices uses eight scalar

multiplications; in 1969, Strassen discovered a way to do it using

just seven scalar multiplications [37]. Two years later, Winograd

showed that it is not possible to do it with six multiplications [42]

and de Groot [12] showed there is essentially one optimal algorithm.

The optimal algorithm for multiplying 3 × 3 matrices is still un-

known and the best known algorithm uses 23 multiplications [32].

Previously, four inequivalent algorithms were knownwith this com-

plexity. Recently, Heule, Kauers, and Seidl [27] found over 13,000

additional inequivalent algorithms that use 23 multiplications. This

was achieved using the SAT+CAS paradigm in a multistage process.

In the first stage, they reduce the problem of finding a matrix

multiplication algorithm using 23 scalar multiplications to solving

3
6 = 729 cubic equations in 23 · 33 = 621 variables. A SAT instance

is generated from these equations by reducing them modulo 2. A

solution of the SAT instance then provides a way to multiply 3 × 3

matrices over the finite field F2 = {0, 1}.

By using various simplifications they found over 270,000 solu-

tions of the SAT instance. They then used the computer algebra

system Mathematica to determine that over 13,000 of those solu-

tions are inequivalent. Finally, they use a Gröbner basis calculation

in the computer algebra system Singular to lift the solutions found

for the field F2 to an arbitrary ring. They report that a small number

of solutions over F2 cannot be lifted in such a way but in most cases

each solution provides a new 3 × 3 matrix multiplication algorithm

that works in any ring. None of the algorithms they found could

be simplified to use only 22 multiplications making it tempting to

conjecture that such an algorithm does not exist.

4 CONCLUSION
In this article we have surveyed the SAT+CAS paradigm of combin-

ing SAT solvers and computer algebra systems aimed at resolving

mathematical conjectures. It is illuminating to contrast the kind of

problems that have been solved by the SAT and CAS paradigms

individually, with those that have been solved by the combined

SAT+CAS paradigm.
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We discussed three long-standing mathematical problems in

Section 2.1 for which SAT solvers have been used. For each prob-

lem, attempts to use custom-purpose search code or optimization

methods ultimately proved to not be as successful as using a SAT

solver. This is due to the many efficient search heuristics that have

been incorporated in modern solvers, as well as the years of re-

finements that have gone into these solvers. These heuristics have

broad applicability for problems from diverse domains.

Additionally, we saw three long-standing conjectures in Sec-

tion 2.2 that CAS methods were used to resolve. In each case, very

efficient mathematical calculations were necessary but efficient

search routines were not the bottleneck in the solutions. These

conjectures would not be a good fit for SAT solvers because these

problems do not admit natural encodings into Boolean logic.

Note that the eight conjectures from Section 3 would be difficult

to resolve using either SAT solvers or CASs alone. In each case,

the problems have both a significant search component (an expo-

nentially growing search space) and a significant mathematical

component (e.g., requiring knowledge of the power spectral den-

sity of a circulant matrix or the automorphism group of a graph).

As we’ve seen, the SAT+CAS paradigm is effective at pushing the

state-of-the-art in such conjectures. Simply put, the SAT+CAS para-

digm allows the mathematician to solve problems that have search

spaces too large for CASs and require mathematical calculations

too sophisticated for SAT solvers.
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