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Abstract. In this paper we present MathCheck2, a tool which combines
sophisticated search procedures of current SAT solvers with domain specific
knowledge provided by algorithms implemented in computer algebra systems
(CAS). MathCheck2 is aimed at finitely verifying or finding counterexamples
to mathematical conjectures, building on our previous work on the MathCheck
system. Using MathCheck2 we validated the Hadamard conjecture from de-
sign theory for matrices up to rank 136 and a few additional ranks up to 156.
Also, we provide an independent verification of the claim that Williamson ma-
trices of order 35 do not exist, and demonstrate for the first time that 35 is the
smallest number with this property. Finally, we provided more than 160 matri-
ces to the Magma Hadamard database that are not equivalent to any matrices
previously included in that database.

1 Introduction

“Brute-brute force has no hope. But clever, inspired brute force is the future.”
– Doron Zeilberger3

A recent important movement is the incorporation of modern solvers for satisfia-
bility problems into suitable computations coming from the field of computer algebra.
Projects like SC2 [34] demonstrate that the interest is coming from both academia, as
well as from industry.

The great strength of SAT solvers are their sophisticated search procedures. In re-
cent years, conflict-driven clause-learning (CDCL) Boolean SAT solvers [3, 20, 21] have
become very efficient general-purpose search procedures for a large variety of applica-
tions. Despite this remarkable progress these algorithms have worst-case exponential
time complexity, and may not perform well by themselves for many search applications.
However, as we will show in this paper, the run-time can be significantly reduced when
adding domain knowledge to the search procedure. This is where modern computer
algebra systems (CAS) come into play: Maple [6], Mathematica [38], Sage [35]
and Magma [4] are often rich storehouses of algorithms to compute domain-specific

3 From Doron Zeilberger’s talk at the Fields institute in Toronto, December 2015 (http://
www.fields.utoronto.ca/video-archive/static/2015/12/379-5401/mergedvideo.ogv,
minute 44)

http://www.fields.utoronto.ca/video-archive/static/2015/12/379-5401/mergedvideo.ogv
http://www.fields.utoronto.ca/video-archive/static/2015/12/379-5401/mergedvideo.ogv
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knowledge. Hence, the complementary strengths of modern SAT solvers and CAS have
a great potential when utilized in synergy. The domain-specific knowledge of a CAS
can be crucially important in cutting down a search space, while at the same time the
clever heuristics of SAT solvers, in conjunction with CAS, can efficiently search a wide
variety of spaces.

The success of the SAT and CAS combination has been demonstrated in a previous
paper on MathCheck [39]. There, Ganesh et al. explored one way of combining these
two classes of systems wherein the CAS was used as a theory solver, à la DPLL(T), to
add theory lemmas to the SAT solvers that was the primary driver of the search. They
primarily used MathCheck to finitely verify (i.e., verify up to some finite bound)
conjectures from graph theory.

Our main focus in this paper are conjectures in combinatorial mathematics, which
are often simple to state but very hard to verify. For example, a conjecture like the
Hadamard [7] might assert the existence of certain combinatorial objects in an infinite
number of cases, which makes exhaustive search impossible. In such cases, mathemati-
cians often resort to finite verification in the hopes of learning some meta property of
the class of combinatorial structures they are investigating, or discover a counterex-
ample to such conjectures. But even finite verification of combinatorial conjectures up
to some finite bound is very difficult, because the search space for such conjectures is
often exponential in the size of the structures they refer to. This makes straightfor-
ward brute-force search impractical, and also ansatz-driven methods (e.g., calculating
Gröbner bases [8]) do not scale well enough in general.

We present a different way of combining SAT and CAS and use it to finitely ver-
ify the Hadamard conjecture. MathCheck2 can be viewed as a parallel systematic
generator of combinatorial structures referred to by the conjecture-under-verification
C. It uses the domain knowledge of a CAS to aid the parallelization and prune away
structures that do not satisfy C, while the SAT solver is used to verify whether any of
the remaining structures satisfy C. In addition, we use UNSAT cores [3] from the SAT
solver to further prune the search in a CDCL-style learning feedback loop.
Hadamard Conjecture: We apply our system to the Hadamard conjecture which
states that for any natural number n, there exists a 4n× 4n matrix H with ±1 entries
for which HHT is a diagonal matrix with each diagonal entry equal to 4n. In particular,
we specialize in Hadamard matrices generated by the so-called Williamson method.
We verify that such Hadamard matrices do not exist in order 4 · 35, a result which
was previously computed using a different methodology by D. Ðoković [25]. However,
due to the nature of the problem and the techniques used, no short certificate of the
computations could be produced, making it difficult to check the work short of re-
implementing the approach from scratch. In fact, the author specifically states that

In the case n = 35 our computer search did not produce any solutions [. . . ]
Although we are confident about the correctness of this claim, an independent
verification of it is highly desirable since this is the first odd integer, found so
far, with this property.

Because our system was written completely independently, uses different techniques
internally, and makes use of well-tested SAT solvers and CAS functions, the results of
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our paper provide an independent verification solicited by Ðoković. (The above notes
equally apply to the verification in [14].)

Previously used techniques could search effectively for Williamson matrices for odd
choices of n, leveraging additional symmetry in these cases. With the help of SAT
solvers, we are additionally able to show n = 35 is the smallest natural number for
which no Williamson matrices of order n exist, not merely the smallest odd number.

2 Architecture of MathCheck2

Problem Generator SAT

CAS

SAT UNSAT

SAT instance

SAT solver result
(Solution / UNSAT core)

Fig. 1. Outline of the architecture of MathCheck2.

The architecture of our proposed MathCheck2 system is outlined in Figure 1. At
its heart is a generator of combinatorial structures, which uses data provided to it by
CAS functions to prune the search space and interfaces with SAT solvers to verify the
conjecture-in-question. The generator contains functions useful for translating combi-
natorial conditions into clauses which can be read by a SAT solver. It is possible to
substitute the SAT solver with an SMT solver to simplify the encoding process, but
this resulted in a too large overhead in our computations. The generator is currently
optimized to deal with conjectures which concern Hadamard matrices from coding and
combinatorial design theory.

Once the class of combinatorial objects has been determined, the script accepts
a parameter n which determines the size of the object to search for. For example,
when searching for Hadamard matrices, the parameter n denotes the order (i.e., the
number of rows) of the matrix. The generator then queries the CAS (we chose Maple
in our calculations) it is interfaced with for properties that any order n instance of the
combinatorial object in question must satisfy. However, since our generator is written
in Python, many CAS functionality is provided by certain modules such as numpy; in
order to avoid overhead in calling a CAS specifically, we tried to use these module
functions whenever possible. The result returned by the CAS is read by the generator
and then used to prune the space which will be searched by the SAT solver.
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Once the generator determines the space to be searched it splits the space into
distinct subspaces in a divide-and-conquer fashion. Once the partitioning of the search
space has been completed, the script generates two types of files:

1. A single “master” file in DIMACS4 format which contains the conditions specifying
the combinatorial object being searched for. These are encoded as propositional
formulae in conjunctive normal form. An assignment to the variables which makes
all of them true would give a valid instance of the object being searched for (and
a proof that no such assignment exists proves that no instance of the object in
question exists).

2. A set of files which contain partial assignments of the variables in the master file.
Each file corresponds to exactly one subspace of the search space produced by the
generator.

The main advantage of splitting up the problem in such a way is that it easily
facilitates parallelization. Using domain specific knowledge, we partition the search
space into different classes of the same mathematical structure, and since these classes
are independent of each other, a cluster of SAT solvers can search the space for each
partition in parallel.

Furthermore, in cases that an instance is found to be unsatisfiable, some SAT solvers
such as MapleSAT [18, 19], that support the generation of a so-called UNSAT core,
can be used to further prune away other similar structures that do not satisfy the
conjecture-under-verification. Given an unsatisfiable instance φ, its UNSAT core is a
set of clauses that pithily characterizes the reason why φ is unsatisfiable and thus
encodes an unsatisfying subspace of the search space.

3 Background on Hadamard matrices and Combinatorial
Mathematics

In this section we discuss the mathematical preliminaries necessary to understand our
work on MathCheck2 and its application to Hadamard matrices.

3.1 Hadamard matrices

First, we define the combinatorial objects known as Hadamard matrices and present
some of their properties.

Definition 1. A matrix H ∈ {±1}n×n, n ∈ N, is called a Hadamard matrix, if for
all i 6= j ∈ {1, . . . , n}, the dot product between row i and row j in H is equal to zero.
We call n the order of the Hadamard matrix.

First studied by Hadamard [10], he showed that if n is the order of a Hadamard
matrix, then either n = 1, n = 2 or n is a multiple of 4. In other words, he gave
a necessary condition on n for there to exist a Hadamard matrix of order n. The
4 For more information on this format, please refer to http://www.satcompetition.org/
2009/format-benchmarks2009.html

http://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.satcompetition.org/2009/format-benchmarks2009.html
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Hadamard conjecture is that this condition is also sufficient, so that there exists a
Hadamard matrix of order n for all n ∈ N where n is a multiple of 4.

Hadamard matrices play an important role in many widespread branches of mathe-
matics, for example in coding theory [23, 29, 36] and statistics [12]. Because of this, there
is a high interest in the discovery of different Hadamard matrices up to equivalence.
Two Hadamard matrices H1 and H2 are said to be equivalent if H2 can be generated
from H1 by applying a sequence of negations/permutations to the rows/columns of H1,
i.e., if there exist signed permutation matrices U and V such that U ·H1 · V = H2.

There are several known ways to construct sequences of Hadamard matrices. One of
the simplest such constructions is by Sylvester [33]: given a known Hadamard matrix
H of order n,

[
H H
H −H

]
is a Hadamard matrix of order 2n. This process can of course

be iterated, and hence one can construct Hadamard matrices of order 2kn for all k ∈ N
from H.

There are other methods which produce infinite classes of Hadamard matrices such
as those by Paley [27]. However, no general method is known which can construct a
Hadamard matrix of order n for arbitrary multiples of 4. The smallest unknown order is
currently n = 4·167 = 668 [7]. A database with many known matrices is included in the
computer algebra system Magma [4]. Further collections are available online [31, 32].

Because there are 2(n
2) matrices of order n with ±1 entries, the search space of pos-

sible Hadamard matrices grows extremely quickly as n increases, and brute-force search
is not feasible. Because of this, researchers have defined special types of Hadamard ma-
trices which can be searched for more efficiently because they lie in a small subset of
the entire space of Hadamard matrices.

3.2 Williamson matrices

One prominent class of special Hadamard matrices are those generated by so-called
Williamson matrices. These are described in this section.

Theorem 1 (cf. [37]). Let n ∈ N and let A, B, C, D ∈ {±1}n×n. Further, suppose
that

1. A, B, C, and D are symmetric;
2. A, B, C, and D commute pairwise (i.e., AB = BA, AC = CA, etc.);
3. A2 +B2 + C2 +D2 = 4nIn, where In is the identity matrix of order n.

Then 
A B C D
−B A −D C
−C D A −B
−D −C B A


is a Hadamard matrix of order 4n.

For practical purposes, one considers A, B, C, andD in the Williamson construction
to be circulant matrices, i.e., those matrices in which every row is the previous row
shifted by one entry to the right (with wrap-around, so that the first entry of each row
is the last entry of the previous row). Such matrices are completely defined by their
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first row [x0, . . . , xn−1] and always satisfy the commutativity property. If the matrix
is also symmetric then we must further have x1 = xn−1, x2 = xn−2, and in general
xi = xn−i for i = 1, . . . , n− 1. Therefore, if a matrix is both symmetric and circulant
its first row must be of the form

[x0, x1, x2, . . . , x(n−1)/2, x(n−1)/2, . . . , x2, x1] if n is odd
[x0, x1, x2, . . . , xn/2−1, xn/2, xn/2−1, . . . , x2, x1] if n is even. (1)

Definition 2. A symmetric sequence of length n is one of the form (1), i.e., one
which satisfies xi = xn−i for i = 1, . . . , n− 1.

Williamson matrices are circulant matrices A, B, C, and D which satisfy the condi-
tions of Theorem 1. Since they must be circulant, they are completely defined by their
first row. (In light of this, we may simply refer to them as if they were sequences.) Fur-
thermore, since they are symmetric the Hadamard matrix generated by these matrices
is completely specified by the 4

⌈
n+1
2

⌉
variables

a0, a1, . . . , ad(n−1)/2e, b0, . . . , bd(n−1)/2e, c0, . . . , cd(n−1)/2e, d0, . . . , dd(n−1)/2e.

Given an assignment of these variables, the rest of the entries of the matrices A, B, C,
and D may be chosen in such a way that conditions 1 and 2 of Theorem 1 always hold.
There is no trivial way of enforcing condition 3, but we will later derive consequences
of this condition which will simplify the search for matrices which satisfy it.

There are three types of operations which, when applied to the Williamson matrices,
produce different but essentially equivalent matrices. For our purposes, generating just
one of the equivalent matrices will be sufficient, so we impose additional constraints on
the search space to cut down on extraneous solutions and hence speed up the search.
1. Ordering: Note that the conditions on the Williamson matrices are symmetric
with respect to A, B, C, and D. In other words, those four matrices can be permuted
amongst themselves and they will still generate a valid Hadamard matrix. Given this,
we enforce the constraint that

|rowsum(A)| ≤ |rowsum(B)| ≤ |rowsum(C)| ≤ |rowsum(D)|,

where rowsum(X) denotes the sum of the entries of the first (or any) row of X. Any
A, B, C, and D can be permuted so that this condition holds.
2. Negation: The entries in the sequences defining any of A, B, C, or D can be
negated and the sequences will still generate a Hadamard matrix. Given this, we do
not need to try both possibilities for the sign of the rowsum of A, B, C, and D. For
example, we can choose to enforce that the rowsum of each of the generating matrices
is nonnegative. Alternatively, when n is odd we can choose the signs so they satisfy
rowsum(X) ≡ n (mod 4) for X ∈ {A,B,C,D}. In this case, a result of Williamson [37]
says that aibicidi = −1 for all 1 ≤ i ≤ (n− 1)/2.
3. Permuting entries: We can reorder the entries of the generating sequences with
the rule ai 7→ aki mod n where k is any number coprime with n, and similarly for bi,
ci, di (the same reordering must be applied to each sequence for the result to still be
equivalent). Such a rule effectively applies an automorphism of Zn to the generating
sequences.
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3.3 Power spectral density

Because the search space for Hadamard matrices is so large, it is advantageous to
focus on a specific construction method and describe properties which any Hadamard
matrix generated by this specific method must satisfy; such properties can speed up
a search by significantly reducing the size of the necessary space. One such set of
properties for Williamson matrices is derived using the discrete Fourier transform from
Fourier analysis, i.e., the periodic function DFTA(s) :=

∑n−1
k=0 akω

ks for a sequence
A = [a0, a1, . . . , an−1], where s ∈ Z and ω := e2πi/n is a primitive nth root of unity.
Because ωks = ωks mod n one has that DFTA(s) = DFTA(s mod n), so that only n
values of DFTA need to be computed and the remaining values are determined through
periodicity. In fact, when A consists of real entries, it is well-known that DFTA(s) is
equal to the complex conjugate of DFTA(n − s). Hence only

⌊
n+1
2

⌋
values of DFTA

need to be computed.
The power spectral density of the sequence A is given by

PSDA(s) := |DFTA(s)|2 for s ∈ Z.

3.4 Periodic autocorrelation

As we will see, the defining properties of Williamson matrices (in particular, condition 3
of Theorem 1) can be re-cast using a function known as the periodic autocorrelation
function (PAF). Re-casting the equations in this way is advantageous because many
other combinatorial conjectures can also be stated in terms of the PAF. Hence, code
which is used to counter-example or finitely verify one such conjecture can be re-applied
to many other conjectures.

Definition 3. The periodic autocorrelation function of the sequence A is the pe-
riodic function given by

PAFA(s) :=

n−1∑
k=0

aka(k+s) mod n for s ∈ Z.

Similar to the discrete Fourier transform, one has PAFA(s) = PAFA(s mod n) and
PAFA(s) = PAFA(n − s) (see [17]), so that the PAFA only needs to be computed for
s = 0, . . . ,

⌊
n−1
2

⌋
; the other values can be computed through symmetry and periodicity.

Now we will see how to rewrite condition 3 of Theorem 1 using PAF values. Note
that the sth entry in the first row of A2 +B2 + C2 +D2 is

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s).

Condition 3 requires that this entry should be 4n when s = 0 and it should be 0 when
s = 1, . . . , n − 1. The condition when s is 0 does not need to be explicitly checked
because in that case the sum will always be 4n, as PAFA(0) =

∑n−1
k=0(±1)2 = n and

similarly for B, C, and D.
Additionally, the first row of A2 +B2 +C2 +D2 will be symmetric as each matrix

in the sum has a symmetric first row. Thus ensuring that

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s) = 0 for s = 1, . . . ,
⌈
n−1
2

⌉
(2)
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guarantees that every entry in the first row of A2+B2+C2+D2 is 0 besides the first.
Since A2 + B2 + C2 + D2 will also be circulant, ensuring that (2) holds will ensure
condition 3 of Theorem 1.

3.5 Compression

Because the size of the space in which a combinatorial object lies is generally exponen-
tial in the size of the object, it is advantageous to instead search for smaller objects
when possible. Recent theorems on so-called “compressed” sequences allow us to do
that when searching for Williamson matrices.

Definition 4 (cf. [26]). Let A = [a0, a1, . . . , an−1] be a sequence of length n = dm
and set

a
(d)
j = aj + aj+d + · · ·+ aj+(m−1)d, j = 0, . . . , d− 1.

Then we say that the sequence A(d) = [a
(d)
0 , a

(d)
1 , . . . , a

(d)
d−1] is the m-compression of

A.

Example 1. Consider the sequenceA = [1, 1,−1,−1,−1, 1,−1, 1, 1,−1, 1,−1,−1,−1, 1]
of length 15. Since 15 factors uniquely as 15 = 3 · 5, there are two non-trivial choices
for the tuple (d,m), namely (d,m) = (3, 5) and (d,m) = (5, 3). The sequence A then
has the two compressions

A(3) = [−3, 1, 1] and A(5) = [3,−1,−1,−1,−1].

As we will see, the space of the compressed sequences that we are interested in
will be much smaller than the space of the uncompressed sequences. What makes com-
pressed sequences especially useful is that we can derive conditions that the compressed
sequences must satisfy using our known conditions on the uncompressed sequences. To
do this, we utilize the following theorem which is a special case of a result from [26].

Theorem 2. Let A, B, C, and D be sequences of length n = dm which satisfy

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s) =

{
4n, s = 0

0, 1 ≤ s < len(A).
(3)

Then for all s ∈ Z we have

PSDA(s) + PSDB(s) + PSDC(s) + PSDD(s) = 4n. (4)

Furthermore, both (3) and (4) hold if the sequences A, B, C, D are replaced with their
compressions A(d), B(d), C(d), D(d).

Since PSDX(s) is always nonnegative, equation (4) implies that PSDA(d)(s) ≤ 4n (and
similarly for B, C, D). Therefore if a candidate compressed sequence A(d) satisfies
PSDA(d)(s) > 4n for some s ∈ Z then we know that the uncompressed sequence A can
never be one of the sequences which satisfies the preconditions of Theorem 2.
Useful properties: Lastly, we derive some properties that the compressed sequences
which arise in our context must satisfy. For a concrete example, note that the com-
pressed sequences of Example 1 fulfill these properties.
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Lemma 1. If A is a sequence of length n = dm with ±1 entries, then the entries
a
(d)
i , i ∈ {0, . . . , d− 1}, have absolute value at most m and a

(d)
i ≡ m (mod 2).

Proof. For all 0 ≤ j < d we have, using the triangle inequality, that

∣∣a(d)j ∣∣ = ∣∣∣∣m−1∑
k=0

aj+kd

∣∣∣∣ ≤ m−1∑
k=0

|aj+kd| = m.

Additionally, a(d)j ≡
∑m−1
k=0 1 ≡ m (mod 2) since aj+kd ≡ 1 (mod 2).

In the course of our research we discovered the following useful property of com-
pressed sequences which significantly reduces the number of SAT instances we need to
generate.

Lemma 2. The compression of a symmetric sequence is also symmetric.

Proof. Suppose that A is a symmetric sequence of length n = dm. We want to show
that a(d)j = a

(d)
d−j for j = 1, . . . , d − 1. By reversing the sum defining a(d)j and then

using the fact that n = md, we have

m−1∑
k=0

aj+kd =

m−1∑
k=0

aj+(m−1−k)d =

m−1∑
k=0

an+j−d(k+1).

By the symmetry of A, an+j−d(k+1) = ad(k+1)−j , which equals ad−j+dk. The sum in
question is therefore equal to

∑m−1
k=0 ad−j+dk = a

(d)
d−j , as required.

4 Encoding and Search Space Pruning Techniques

An attractive property of Hadamard matrices when encoding them in a SAT context
is that each of their entries is one of two possible values, namely ±1. We choose the
encoding that 1 is represented by true and −1 is represented by false. We call this
the Boolean value or BV encoding. Under this encoding, the multiplication function
of two x, y ∈ {±1} becomes the XNOR function in the SAT setting, i.e., BV(x · y) =
XNOR(BV(x),BV(y)).

4.1 Encoding the problem of finding Hadamard matrices as SAT
instances

For each multiplication of two entries in a given matrix, one can store one additional
variable representing the result of the multiplication. The sum of variables (when
thought of as ±1 values) can be encoded using a network of binary adders. Both of
these encodings add polynomially many extra variables to a given SAT instance.

In this way, it is easy to realize the naive encoding of the problem of finding a
Hadamard matrix for a fixed order n ∈ N, i.e., the problem of finding hij ∈ {±1} for
0 ≤ i, j < n which satisfy

∑n−1
k=0 hik ·hjk = 0 for all i 6= j. However, the naive encoding
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does not scale well, since the number of variables and conditions quickly becomes too
large as n increases.

The encoding of a quadruple of circulant Williamson matrices relies on far less
variables, which makes finding Hadamard matrices using the Williamson method scale
better. In particular, if each Williamson matrix has order n ∈ N, the entries of all four
matrices are determined by the knowledge of 4

⌈
n+1
2

⌉
entries, namely

a0, a1, . . . , ad(n−1)/2e, b0, . . . , bd(n−1)/2e, c0, . . . , cd(n−1)/2e, d0, . . . , dd(n−1)/2e.

The conditions can again be checked by introducing new variables for pairwise products
and realizing binary adders.

In the subsequent subsections, we present techniques using the results from the
previous section and allowing us to reach even higher orders for which we can find
Hadamard matrices.

4.2 Technique 1: Sum-of-squares decomposition

As a special case of compression, consider what happens when d = 1 andm = n. In this
case, the compression of A is a sequence with a single entry whose value is

∑n−1
k=0 ak =

rowsum(A). If A, B, C, and D are {±1}-sequences which satisfy the conditions of
Theorem 2, then the theorem applied to this m-compression says that

PAFA(1)(0) + PAFB(1)(0) + PAFC(1)(0) + PAFD(1)(0) = 4n

which simplifies to

rowsum(A)2 + rowsum(B)2 + rowsum(C)2 + rowsum(D)2 = 4n,

and by Lemma 1 each rowsum must have the same parity as n.
In other words, the rowsums of the sequences A, B, C, and D decompose 4n into

the sum of four perfect squares whose parity matches the parity of n. Since there are
usually only a few ways of writing 4n as a sum of four perfect squares this severely
limits the number of sequences which could satisfy the hypotheses of Theorem 2. Fur-
thermore, some computer algebra systems contain functions for explicitly computing
what the possible decompositions are (e.g., PowersRepresentations in Mathemat-
ica and nsoks by Joe Riel of Maplesoft [30]). We can query such CAS functions to
determine all possible values that the rowsums of A, B, C, and D could possibly take.
For example, when n = 35 we find that there are exactly three ways to write 4n as a
sum of four positive odd squares in ascending order, namely,

12 + 32 + 32 + 112 = 12 + 32 + 72 + 92 = 32 + 52 + 52 + 92 = 4 · 35.

As described in Section 3.2, any Williamson quadruple is equivalent to another quadru-
ple whose rowsum sum-of-squares decomposition is of one of the above three types.
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4.3 Technique 2: Divide-and-Conquer via compression

Because each instance can take a significant amount of time to solve, it is beneficial
to divide instances into multiple partitions, each instance encoding a subset of the
search space. In our case, we found that an effective splitting method was to split by
compressions, i.e., to have each instance contain one possibility of the compressions of
A, B, C, and D. To do this, we first need to know all possible compressions of A, B,
C, and D. These can be generated by applying Lemmas 1 and 2. For example, when
n = 35 and d = 5 there are 28 possible compressions of A with rowsum(A) = 1. Of
those, only 12 satisfy PSDA(s) ≤ 4n for all s ∈ Z. The calculation of PSDA(s) was
possible to be performed within Python using numpy instead of directly querying a CAS.
There are also 12 possible compressions for each of B, C, and D with rowsum(B) =
rowsum(C) = 3 and rowsum(D) = 11. Thus there are 124 total instances which would
need to be generated for this selection of rowsums, however, only 41 of them satisfy
the conditions given by Theorem 2.

Furthermore, if n has two nontrivial divisors m and d then we can find all possible
m-compressions and d-compressions of A, B, C, and D. In this case, each instance can
set both the m-compression and the d-compression of each of A, B, C, and D. Since
there are more combinations to check when dealing with two types of compression this
causes an increase in the number of instances generated, but each instance has more
constraints and a smaller subspace to search through.

4.4 Technique 3: UNSAT core

After using the divide-and-conquer technique one obtains a collection of instances which
are almost identical. For example, the instances will contain variables which encode the
rowsums of A, B, C, and D. Since there are multiple possibilities of the rowsums (as
discussed in Section 4.2), not all instances will set those variables to the same values.
However, since the instances are the same except for those variables, it is sometimes
possible to use an UNSAT core result from one instance to learn that other instances
are unsatisfiable.

MapleSAT is one SAT solver which supports UNSAT core generation. Provided a
master instance and a set of assumptions (variables which are set either true or false),
the UNSAT core contains a subset of the assumptions which make the master instance
unsatisfiable. Thus, any other instance which sets the variables in the UNSAT core in
the same way must also be unsatisfiable.

For example, our instances for n = 35 contained 15,663 clauses which were identical
among all instances. The instances contained 3376 variables of which only 168 were
given as assumptions and assigned differently in each instance.

5 Verification of the Nonexistence of Williamson Matrices of
Order 35

We searched for Williamson matrices of order 35 using the techniques described in
Section 4 with both 5 and 7-compression. Despite the exponential growth of possible
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first rows of the matrices A, B, C, and D, the described pruning results in 21,674
SAT instances of three possible forms, as described in Figure 2. Each instance has
subsequently been checked with several SAT solvers, and each one has been discovered
to be unsatisfiable. Using MapleSAT with UNSAT core generation, 19,356 SAT solver
calls were necessary to determine that all instances were unsatisfiable.

rowsum(A) rowsum(B) rowsum(C) rowsum(D) Number of Instances
1 3 3 11 6960
1 3 7 9 8424
3 5 5 9 6290

Fig. 2. The number of instances of each type generated in the process of searching for
Williamson matrices of order 35.

Our practice was to have people that were not involved in writing the respective code
verify its correctness, and to have domain experts verify the application of the theorems
used. Furthermore, our confidence of the correctness of our code was strengthened by
the successful discovery of Williamson-generated Hadamard matrices for all the orders
4n with n < 35. These have been determined to be valid Hadamard matrices by the
computer algebra system Magma.

6 Experimental Results on Hadamard Matrices

We checked all of the Hadamard matrices we computed for equivalence against those
in Magma’s Hadamard matrix database. In total, our methods generated 160 pair-
wise inequivalent Hadamard matrices which were also not equivalent to any matri-
ces in this database. We submitted these to the Magma team and one can down-
load these on our project website (https://sites.google.com/site/uwmathcheck/
hadamard-conjecture).
Experimental Setup and Methodology: The timings were run on the high-
performance computing cluster SHARCNET. Specifically, the cluster we used ran
CentOS 5.4 and used 64-bit AMD Opteron processors running at 2.2 GHz. Each SAT
instance was generated using MathCheck2 with the appropriate parameters and the
instance was submitted to SHARCNET to solve by running MapleSAT on a single
core (with a timeout of 24 hours).

Figure 3 contains a summary of the performance of our encoding and pruning
techniques. The timings are for searching for Williamson matrices of order n with
25 ≤ n ≤ 35 and for each of the techniques discussed in Section 4. We did not use
Techniques 2 and 3 for orders 29 and 31 as they have no nontrivial divisors to perform
compression with, but they were otherwise very effective at partitioning the search
space in an efficient way. Technique 3 was effective at cutting down the number of
instances generated in certain orders. Although the instances pruned tended to be those
which would have been quickly solved, this technique would be especially valuable in

https://sites.google.com/site/uwmathcheck/hadamard-conjecture
https://sites.google.com/site/uwmathcheck/hadamard-conjecture
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a situation where few cores are available, as it would allow the overhead of many SAT
solver calls to be avoided.

The timings given in Figure 3 refer to the total amount of time used by MapleSAT
across all the jobs run on SHARCNET for each order and technique. The numbers in
parentheses in Figure 3 denote how many MapleSAT calls returned a result and did
not time out. The jobs using the base encoding and Technique 1 which did not time out
all returned SAT. All of the jobs using Technique 2 completed without timing out and
most the instances were found to be UNSAT. The Technique 3 results were the same
as the Technique 2 results except with fewer calls to MapleSAT as some instances
could immediately be determined to be UNSAT.

Order
Base Encoding

(Sec. 4.1)
Technique 1
(Sec. 4.2)

Technique 2
(Sec. 4.3)

Technique 3
(Sec. 4.4)

25 317s (1) 1702s (4) 408s (179) 408s (179)
26 865s (1) 3818s (3) 61s (3136) 34s (1592)
27 5340s (1) 8593s (3) 1518s (14994) 1439s (689)
28 7674s (1) 2104s (2) 234s (13360) 158s (439)
29 - 21304s (1) N/A N/A
30 1684s (1) 36804s (1) 139s (370) 139s (370)
31 - 83010s (1) N/A N/A
32 - - 96011s (13824) 95891s (348)
33 - - 693s (8724) 683s (7603)
34 - - 854s (732) 854s (732)
35 - - 31816s (21674) 31792s (19356)

Fig. 3. The numbers in parentheses denote how many MapleSAT calls successfully returned
a result for the given Williamson order. The timings refer to the total amount of time used
during those calls. A hyphen denotes a timeout after 24 hours.

7 Related Work

The idea of combining the capabilities of SAT/SMT solvers and computer algebra
systems or domain-specific knowledge has been examined by various research groups.
Junges et al. [15] studied an integration of Gröbner basis theory in the context of SMT
solvers. Although they implemented their own version of Buchberger’s algorithm, they
describe that it is possible to “plug in an off-the-shelf GB procedure implementation
such as the one in Singular” as the core procedure. Singular [9] is a computer
algebra system with specialized algorithms for polynomial systems. Ábrahám later
highlights the potentials of combining symbolic computation and SMT solving in [1].
The veriT SMT solver [5] uses the computer algebra system Reduce [11] to support
non-linear arithmetic. The Lean theorem prover [22] combines domain-specific knowl-
edge with SMT solvers. Combining SAT and SMT with theorem proving has been
done in the automated theorem prover Coq as well [2]. The idea of using equivalences
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in satisfiability problems to prune the search space has also been exploited by sym-
metry breaking [13, 28]. SAT-based results on the Erdős discrepancy conjecture [16]
inspired the previous version of MathCheck [39]. This version also combined SAT
with computer algebra systems but specialized in graph theory and used the CAS to
uncover theory lemmas as the search progressed. Work related to finding Hadamard
matrices has been referenced in Section 3.

8 Conclusions and Future Work

We have presented the advantages of utilizing the power of SAT solvers in combination
with domain specific knowledge and algorithms provided by computer algebra systems.
Our main mathematical problem was the verification of the Hadamard conjecture for
some orders by using MathCheck2 to search for and discover Williamson matrices. We
verified independently, as requested by D. Ðoković, that there is no Hadamard Matrix
of order 4 · 35 which is generated by Williamson matrices. Moreover, we discovered 160
Hadamard matrices that are not equivalent to any matrix in the Magma Hadamard
database.

A future direction is to scale to Hadamard matrices of higher order. For this, we
plan to refine the methods (e.g., by examining other construction types), and possibly
implement certain search strategies directly into the SAT solver. We also want to
analyze the UNSAT cores generated by Technique 3 to explain their effectiveness in
certain cases, as well as exploring the usage of incremental SAT solvers [3, 24]. Finally,
we plan to use MathCheck2 and our newly acquired knowledge to consider other
combinatorial problems. There are many problems which can be expressed as a search
for objects which satisfy certain autocorrelation equations (as just one example, those
involving complex Golay sequences). Since the ability to work with autocorrelation is
already built-in to MathCheck2, we should be able to execute such searches with
minor modifications.
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