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Recent advances in satisfiability (SAT) solving and computer algebra systems (CAS) have led to the development of search tools that
can solve mathematical problems significantly larger than ever before—and in a faster, more verifiable way. Many long-standing open
mathematical problems have been solved using these methods in the past few years and in this article we provide an overview of
this “SAT+CAS” paradigm by describing some of its recent successes. In particular, we describe how it produced the first certifiable
solution of Lam’s problem from geometry (uncovering bugs in previous solutions in the process) and how it produced new results on
Williamson’s conjecture from combinatorics—such as the determination of its minimal counterexample and the discovery of many
new Williamson matrices, including a new infinite family. The SAT+CAS paradigm is well-suited for solving problems that require
both efficient search and sophisticated mathematics.

ACM Reference Format:
Curtis Bright, Ilias Kotsireas, and Vijay Ganesh. 2022. When Satisfiability Solving Meets Symbolic Computation: The Science of
Less-Than-Brute Force. 1, 1 (June 2022), 12 pages. https://doi.org/10.1145/3500921

INTRODUCTION

Mathematicians have long been fascinated by objects that exhibit exceptionally nice combinatorial properties. However,
it is often difficult to determine whether or not objects satisfying a given combinatorial property exist. Sometimes, the
only feasible method of definitively answering the question of existence is simply to perform a systematic search. A
famous example of this is the proof of the four colour theorem—that four colours suffice to colour the regions of a planar
map with adjacent regions are coloured differently [3]. The theorem has been known to be true since 1977, but every
known proof relies on computer calculations in an essential way. Mathematical arguments are used to reduce the search
for counterexamples to a finite number of cases, and the cases are then exhaustively checked using a custom-written
computer program in order to rule out any counterexamples.

Independently, over the last fifty years computer scientists have made significant progress on developing general-
purpose programs that can automatically solve many kinds of mathematical problems. Satisfiability solving and symbolic

computation are two important branches of computer science that each specialize in solving mathematical problems.
Both of these fields have long histories and have produced impressive tools—satisfiability (SAT) solvers in the former
and computer algebra systems (CASs) in the latter. Originally, SAT solvers were designed to solve problems in logic,
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and CASs were tools to manipulate and simplify algebraic expressions. As we will see, these tools have since found an
abundance of new applications outside of these original domains.

Despite their common specialization in solvingmathematical problems, the SAT and CAS communities have developed
independently of each other [1]. Broadly speaking, the SAT community has focused on effective search methods, while
the CAS community has focused on effective mathematical algorithms. Recently, these two communities have started to
collaborate in crossover initiatives like the SC-square project1 [2]. Since the insights of these communities are largely
complementary, bringing them together has resulted in new solutions to problems that were out-of-reach of either
community separately and has produced advances in problems involving nonlinear real arithmetic [13], linear integer
arithmetic [12], and Boolean polynomials [28] (to name a few). In this overview, we focus on our own contribution to
this ongoing project—a hybrid SAT and CAS system called MathCheck2 that we have applied to mathematical problems
in graph theory [45], finite geometry [5], combinatorics [9], and number theory [11]. For more applications of the
SAT+CAS paradigm see the overview article [17] appearing in a special issue of the Journal of Symbolic Computation
devoted to SAT and CAS synergies.

Satisfiability Solving

A satisfiability (SAT) solver is a program that solves the satisfiability problem from Boolean logic—given a formula in
conjunctive normal form, is there an assignment to its variables that makes the expression true? At first glance, SAT
solvers seem disconnected from the kinds of problems that most mathematicians and engineers care about. However,
stunning progress in applied SAT solving over the last several decades [43] has lead to a surprising diversity of
applications for SAT solvers—from generating or solving puzzles like Sudoku [8] to software verification [30] and
hardware design [36]. This “SAT revolution” has even led to the resolution of decades-old mathematical problems such
as the Boolean Pythagorean triples problem [26] and the determination of the fifth Schur number [25]. These problems
are solved by first reducing them to a set of constraints in Boolean logic. The constraints are provided to SAT solvers
that search for solutions of the constraints and provide nonexistence certificates when no solutions exist.

The search spaces in the aforementioned problems are enormous and could never be exhaustively searched without
very clever and powerful search methods. The fact that SAT solvers are currently the only tools that can solve these
problems speak to their exceptional search ability. However, SAT solvers do struggle with some kinds of problems—
particularly those with an underlying mathematical structure that is unknown to the solver.

As a simple example of this phenomenon, consider the following problem: Find a way to put 𝑛 pigeons into 𝑛 − 1
holes given that each hole is only large enough to contain a single pigeon. A moment’s thought reveals that the problem
is not solvable and this can be justified by a simple counting argument. The problem is also straightforwardly expressed
in Boolean logic—but embarrassingly, SAT solvers are known to take an infeasible amount of time to solve it using the
most straightforward encoding [23]. The issue is that during the reduction to Boolean logic the mathematical context
of the problem is lost; SAT solvers simply don’t realize that a counting argument suffices to rule out the existence of a
solution. In this case, there are additional mathematical facts that can be encoded into Boolean logic and that allow
SAT solvers to effectively show the problem is unsatisfiable for large 𝑛. However, in many problems—such as the ones
we consider in this article—the mathematical facts that greatly reduce the search space are not easily expressible in
Boolean logic. It would seem as if we either have to ignore the mathematical facts or avoid using a SAT solver entirely.

1www.sc-square.org
2www.uwaterloo.ca/mathcheck
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Symbolic Computation

A computer algebra system (CAS) is a program that can manipulate and simplify mathematical expressions and objects.
They have a long history and often incorporate functionality from wide-ranging mathematical topics—including
polynomial arithmetic and factorization, computational algebraic geometry, algorithmic number theory, symbolic
combinatorics, symbolic integration, the solution of differential equations, exact linear algebra, and quantifier elimination.
A stunning amount of research—including the 1999 Nobel prize in physics3—relies on the precise calculations made
possible by computer algebra systems. For example, they were essential in the resolution of Kepler’s 1611 conjecture
that the most efficient way of packing spheres is in a pyramid shape [24]. This proof made use of numerous CAS
functionalities including linear programming, global nonlinear optimization, and interval arithmetic.

CASs are particularly effective at solving problems with so much structure that they can be solved by an algorithm
that does not have to resort to a general search.4 Because of this, CASs are often much more efficient at solving problems
whenever they apply. For example, many CASs have routines for finding the factorization of a polynomial that work
much faster than finding factors through a general search. The CASs are able to exploit the algebraic structure inherent
in the factorization problem and thereby sidestep the need for a general search.

On the other hand, CASs are not typically optimized to perform search with learning as done by modern SAT
solvers [1]. Note that the search spaces for mathematical objects are typically of an exponential size and this will quickly
overwhelm any system that has not been designed to cope with this immenseness. Simply put, finding a needle in a
exponentially-large haystack requires tools specifically designed to find clever ways of pruning the search space down
to a manageable size and this has not traditionally been in the domain of symbolic computation research.

The Best of Both Worlds

Although the SAT and CAS worlds have both been applied to solve very hard mathematical problems, they have
traditionally been applied in isolation—with SAT solvers applied to Boolean constraint problems involving huge search
spaces and CASs applied to complicated mathematical problems involving minimal search. While each tool is very
effective at solving problems in their respective worlds, a driving motivation of our work is that there are many problems

whose solutions demand effectiveness in both worlds.
In 2015, Ábrahám proposed to join the techniques of the SAT and CAS worlds together in order to solve problems

that are intractable using the techniques of either world in isolation [1]. Independently, the MathCheck project was
started and demonstrated the effectiveness of this combination by improving the best known bounds in some graph
theoretic conjectures [46]. However, MathCheck can be applied much more generally and over the past five years
MathCheck has solved problems from a variety of branches of mathematics. In the remainder of this article we describe
how MathCheck has been applied to two long-standing problems in finite geometry and combinatorial matrix theory.
This article draws inspiration from Heule and Kullmann’s The Science of Brute Force [26] which describes how SAT
solvers can use “brute force” reasoning to solve problems with enormous search spaces. Within this framework the
reasoning of a SAT+CAS solver then becomes “less-than-brute force”.

LAM’S PROBLEM

The roots of Lam’s problem date back to 300 BC, when Euclid defined five postulates that he believed characterized
geometry. While all five postulates were considered obvious, the fifth or “parallel” postulate was significantly more
3www.nobelprize.org/prizes/physics/1999/press-release/
4We thank a reviewer for raising this point.
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𝑝

𝑞

(a) Unique line through points 𝑝 and 𝑞.

𝐴 𝐵

(b) Unique point on skew lines 𝐴 and 𝐵.

𝐴 𝐵

line at infinity

(c) Unique point on “parallel” lines 𝐴 and 𝐵.

Fig. 1. Visual demonstrations of the axioms of a projective plane.

complicated than his other postulates. For over 2000 years this bothered some mathematicians and many attempts were
made to prove the parallel postulate from Euclid’s other postulates.

Surprisingly, it was not until the 1800s when it was finally realized that this task was impossible—because there are
alternate geometries that satisfy Euclid’s first four postulates but in which the parallel postulate does not hold. For
example, this happens in a projective plane which is a collection of points and lines satisfying the following two axioms:

(1) There is exactly one line through any two points.
(2) Any two lines intersect at a unique point.

These axioms are visually demonstrated in Figure 1. The first axiom holds in the usual Euclidean plane and is visualized
in Figure 1a. The second axiom does not hold in the usual Euclidean plane—if two lines are skew (shown in Figure 1b)
they will intersect in a unique point, but if the lines are parallel they will not meet at all, let alone in a unique point. To
remedy this situation, the usual Euclidean plane may be augmented with a “line at infinity” on which any two formerly
parallel lines will intersect (shown in Figure 1c). The resulting structure satisfies both axioms (1) and (2).

An interesting question can now be raised: are there any other structures that also satisfy these axioms? For example,
are there examples of projective planes with a finite number of points? There are some trivial ways of satisfying the
axioms—for example, if the plane consists of a single line containing every point. Disqualifying these trivial examples,
counting arguments can be used to show that if a finite projective plane exists then it contains the same number of
lines and points and every point lies on the same number of lines. If each point lies on 𝑛 + 1 lines then the plane is said
to be of order 𝑛 and it will contain exactly 𝑛2 + 𝑛 + 1 points. Determining the set of possible orders for projective planes
has been of significant mathematical interest for over 200 years and today it remains a major open problem.

(a) Projective plane of order 1. (b) Projective plane of order 2. (c) Projective plane of order 3.

Fig. 2. Visual depictions of projective planes in orders 1–3. Each point and line are drawn in a separate colour.
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Projective planes in the orders up to three may be explicitly visualized through the structures shown in Figure 2. By
inspection, one can verify the axioms that any two points lie on a unique line and any two lines intersect in a unique
point. Some might protest that the “lines” in these planes are not necessarily represented by straight lines—but so long
as the lines satisfy the axioms they can be drawn however we like!

1 2 3 4 5 6 7 8 9 10
✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ?

✓ Projective plane existence
✗ Projective plane nonexistence
? Lam’s problem

Fig. 3. A summary of when projective planes exist in orders up to
ten. Lam’s problem is to determine if a projective plane of order
ten exists.

Figure 3 demonstrates the small orders for which pro-
jective planes are known to exist. Immediately what
jumps out is that projective planes do generally exist
in small orders—except in order six, when a projective
plane would contain 43 points. What is special about this
order? In 1949, Bruck and Ryser proved that if the order
of a projective plane is of the form 4𝑘 + 1 or 4𝑘 + 2 then
it must be the sum of two integer squares [14]. Since six
is of the form 4𝑘 + 2 but it is not the sum of two squares
it follows that no projective plane of order six can exist.
However, the Bruck–Ryser theorem cannot be used to
rule out order ten, as ten is the sum of two squares (32 and 12). This case has attracted a huge amount of interest since
no projective plane of order ten is known—yet no one knows any theoretical reason why one shouldn’t exist. Lam’s

problem is to resolve this dilemma and determine how to correctly complete the missing entry in Figure 3.

A Computational Solution

1 1 0 1 0 0 00
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

Fig. 4. The incidence matrix of a
projective plane of order 2.

Lam’s problem was eventually resolved in the late 1980s by using a sophisticated
case breakdown and an enormous amount of computing to separately search each
case [32]. No cases were found to lead to a solution, thereby disproving the existence
of a projective plane of order ten.

The case breakdown was based on properties that a binary error-correcting code
associated with a hypothetical projective plane of order ten must satisfy. This code is
derived from the projective plane’s incidence matrix—the {0, 1}-matrix that contains a 1
in its (𝑖, 𝑗)th entry exactly when the 𝑖th line is incident with the 𝑗 th point (see Figure 4).
A codeword is a {0, 1}-vector in the row space (mod 2) of this incidence matrix and a
codeword’s weight is how many nonzero entries it has. Analyzing the properties of
these codewords through some powerful theorems of coding theory shows that a projective plane of order ten must
produce at least one codeword of weight 15, 16, or 19—thus splitting the search into three cases.

“I want to emphasize that this is only an experimen-
tal result and it desperately needs an independent
verification.” C. W. H. Lam [32]

The weight 15 case was resolved in 1973 using several
hours on a mainframe computer [35], the weight 16 case
was resolved in 1986 using 2,000 hours on a supermini
computer [33] and 100 hours on a supercomputer [15],
and the weight 19 case was resolved in 1989 using about

20,000 hours on a supermini computer and 2,000 hours on a supercomputer [34]. These searches were performed using
code specifically written for each case and the authors acknowledged that mistakes were a real possibility. The source
codes are not publicly available, and even if they were, they were designed to be run on specialized computers that

Manuscript submitted to ACM



6 Curtis Bright, Ilias Kotsireas, and Vijay Ganesh

are no longer produced. In order to believe that Lam’s problem has in fact been resolved, we now have to resolve a
different and serious problem—how can these searches be verified?

A New Hope

Developments in the fields of satisfiability checking and symbolic computation offer the promise that Lam’s problem
can be resolved more efficiently and also resolved to a higher standard of rigour. This is because SAT solvers—though
complicated pieces of software—are well-tested and produce certificates that allow their results to be validated by
external certificate verifiers. This means that it is no longer necessary to trust the implementation of a complicated
search algorithm. Instead, one need only trust the certificate verifier.

Brute reasoning with discerning
tools can search exponentially large
haystacks.

Naturally, the SAT solver will be used as the “combinatorial workhorse” that
searches for a projective plane in each possible case. But of what use is the CAS
in the search? To answer this, imagine you have a haystack for which you know
the left and right sides are perfectly symmetrical. If you want to find a needle in
this haystack a brilliant insight is to split the haystack down the middle and only
search through one side—since anything in the left side appears on the right side
and vice versa.

The same reasoning also applies more generally. Whenever a symmetry is
detected in the search space, the space should ideally be split up and reduced to
a single nonsymmetric component. In many problems solved by SAT solvers [25,
26] this is done through the introduction of additional “symmetry breaking”
constraints which prevent the SAT solver from exploring identical parts of the
search space. This method of adding “static” constraints requires the blocked
symmetries to be known in advance and works best when there is a concise
set of constraints which block those symmetries. Unfortunately, Lam’s problem
contains some complicated symmetries that are not so easy to block. However, if

these symmetries can be detected during the search then it is possible to block them dynamically and such an approach
has successfully been used in various SAT solvers [18, 38, 42]. Computing symmetries is one of the things that CASs
excel at—including the complicated symmetries that arise in Lam’s problem. Thus, a SAT+CAS system is perfectly
suited to take advantage of the strengths of both SAT solvers and CASs.

SAT solver CAS

Compute symmetry

Input constraints

Solution or
UNSAT certificate

Fig. 5. An outline of the SAT+CAS method as applied to searching
for projective planes. The SAT solver provides a partial projective
plane to the CAS which computes the symmetries present. This
example shows blocking the symmetry of rotating the partial plane
by 180 degrees.

How should the SAT solver and CAS communicate?
The basic connection is outlined in Figure 5. As the SAT
solver is searching it finds “partial” projective planes—
structures that satisfy the projective plane constraints
up to some point. These are provided to the CAS and
the CAS will send back additional symmetry blocking
constraints that remove other partial projective planes
(symmetric to the one that was found) from the search
space.

This kind of connection takes inspiration from
the Davis–Putnam–Logemann–Loveland DPLL(𝑇 ) algo-
rithm [39] with the first-order logic 𝑇 -solver replaced by
Manuscript submitted to ACM
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a CAS. This connection also exploits the conflict-driven clause learning used by modern SAT solvers, since after a
blocking constraint is generated it forms a conflict that the SAT solver can use to control how much the search should
backtrack. We stress that this connection is very general and can be applied in many other circumstances than symmetry
breaking (as we will see in the next section). Indeed, one of the strengths of CASs is their huge amount of mathematical
functionality—something that can be exploited to learn a variety of mathematical facts that the SAT solver would
otherwise have no way of knowing. This also allows the SAT+CAS method to be applied on a wider variety of problems
than “SAT modulo theory” (SMT) solvers which are similar in that they also solve problems using the DPLL(𝑇 ) algorithm.
However, SMT solvers are typically limited to solving problems that are specified in one of a fixed number of theories
like the theory of integers, reals, or strings.

The Effectiveness of SAT+CAS

How does the effectiveness of the SAT+CAS approach compare with previous approaches? The weight 15 search that
was first solved in 1973 [35] has since been confirmed by at least four independent implementations, some requiring
up to 80 minutes on a modern desktop [6]. The fastest previous implementation that we are aware of uses highly
optimized C code and requires about 30 seconds to complete [16]. Using a straightforward SAT reduction this case
can be solved in about 6 minutes with a modern SAT solver—already faster than some searches specifically written to
perform this search. This speaks to the efficiency of modern SAT solvers, as a mathematical analysis of the search space
reveals many symmetries that SAT solvers ignore. Using a SAT+CAS solver that does this (as described in Figure 5) the
search completes in about 7 seconds, the fastest approach yet [6].

The weight 16 search is significantly more involved and has a much larger search space compared with the weight 15
search. Much of the symmetry in the weight 16 search space can be analyzed by theoretical means and removed by
splitting the search into ten distinct cases. However, some cases still have over a thousand symmetries in their search
space which are harder to deal with—leading to dramatic speedups in the running time when these symmetries can
be detected and removed by a CAS. Following the exhaustive searches of the space completing in 1986 [15, 33] we
are aware of only a single previous independent confirmation: an optimized C implementation using the CAS library
nauty [37] that required 16,000 hours on a cluster of desktops in 2011 [41]. In comparison, the SAT approach with CAS
symmetry removal resolves this case in 30 hours [5].

The weight 19 search is even more involved than the weight 16 search, and following the exhaustive search in
1989 [34] the only independent confirmation we are aware of required 19,000 hours in 2011 [41]. The initial step of
this case splits the search into about 650,000 distinct cases. The previous CAS-based search required about 7 hours to
complete the initialization step while our SAT-based approach without CAS symmetry breaking used 62 hours. Adding
in CAS symmetry breaking sped up the computation by a factor of 150 and resulted in the initialization being completed
in 25 minutes. Unfortunately, after the initialization step the search space is usually not very symmetric, meaning we
cannot expect to achieve a big speedup through symmetry breaking. Even still, without any special-purpose search
algorithm the SAT+CAS method completed the search in about 16,000 hours [4] and ran an average of 25% faster than
the special-purpose code used in the 2011 confirmation of Lam’s problem when benchmarked on the same hardware.

A final advantage of the SAT+CAS method is that the certificates produced by the solver may be verified by an
independent party. They only need to trust the SAT encoding and the CAS-generated constraints—not the actual
procedure used to generate the certificates. This does not prove our searches are error-free but does significantly
reduce the amount of trust necessary. This is a particularly important consideration for “experimental” results lacking
formal proof because we can be almost certain that custom-written programs contain bugs. This is not a sleight on the
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authors but a simple reality of software development: without extensive formal verification even the most well-used
and well-tested software cannot be made bug-free.

Fig. 6. A 51-column partial projective
plane previously claimed to not exist.
Red entries denote 1s known in advance
and blue entries denote 1s determined
by MathCheck.

Indeed, our searches uncovered errors in several previous searches, including
both the original 1989 search and its 2011 confirmation. Errors can be detected
when the intermediate results of these searches (e.g., the claimed nonexistence
of a partial solution) contradict the partial solutions that are found by the SAT
solver. For example, the 2011 confirmation of the weight 15 case was based upon
proving the nonexistence of a certain 51-column partial projective plane—which
in fact actually exists and is explicitly shown in Figure 6. Note that it is easy to
check that such a matrix is in fact a partial projective plane, as every column
contains the same number of 1s and any two distinct columns share exactly a
single 1 in the same location.

In summary, the SAT+CAS method works well in Lam’s problem because it
allows searching for projective planes using the powerful search routines of a
modern SAT solver while simultaneously allowing the mathematical properties
revealed by a computer algebra system to greatly constrain the search space. Fur-
thermore, it removes the need to write a custom special-purpose search algorithm
and therefore ultimately makes executing the search a more straightforward and
trustworthy process.

WILLIAMSON CONJECTURE

Next, we discuss some of the impact the SAT+CAS method has had on com-
binatorial matrix theory. We begin with a motivating example: say you need
to communicate with someone over a noisy channel. In other words, the data
that you send may not be the data that is received. How can you increase the
likelihood the recipient can perfectly recover your original message? One way

to do this is to first encode your message using a set of codewords that you and your recipient agree on in advance.
Because the codewords may be corrupted while being sent it makes sense to choose the codewords to be as different as
possible. For example, if you have 𝑛 binary codewords of length 𝑛 you could try to maximize the minimum pairwise
Hamming distance of the codewords. Plotkin’s bound from coding theory [40] says that this minimum distance cannot
be strictly larger than 𝑛/2. In certain cases it is possible to reach this bound and find a set of 𝑛 binary codewords of
length 𝑛 such that the Hamming distance of any two distinct codewords is exactly 𝑛/2.

In this context it is convenient to represent a binary codeword as a {±1}-vector. Then two codewords of length 𝑛

have a Hamming distance of 𝑛/2 exactly when they are orthogonal vectors and a set of 𝑛 such codewords with pairwise
Hamming distances of 𝑛/2 form the rows of a matrix 𝐴 such that the off-diagonal entries of 𝐴𝐴𝑇 are zero. Such a
matrix is called a Hadamard matrix after the French mathematician Jacques Hadamard who studied them in 1893 [22].
Even though they have been extensively studied for over 125 years there remain many open problems concerning
them—we still don’t even know all the orders in which they exist. Hadamard was able to prove that if a Hadamard
matrix has order larger than two then its order must necessarily be a multiple of four. The Hadamard conjecture is that
this necessary condition is also sufficient.

Manuscript submitted to ACM
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Since a proof of the Hadamard conjecture has not been forthcoming, mathematicians and computer scientists have
constructed Hadamard matrices in as many orders as possible; currently 𝑛 = 167 is the smallest case for which a
Hadamard matrix of order 4𝑛 is not known. Because the search space for general Hadamard matrices is so enormous it
makes sense to focus on special constructions that have more structure to exploit. One such construction was presented
by the mathematician John Williamson in 1944 [44]. In this construction we have four symmetric {±1}-matrices 𝐴,
𝐵, 𝐶 , 𝐷 of order 𝑛 which for simplicity we assume are circulant (each row is a cyclic shift of the previous row). If
𝐴2 + 𝐵2 + 𝐶2 + 𝐷2 is the identity matrix scaled by a factor of 4𝑛 then a Hadamard matrix of order 4𝑛 exists and is
explicitly presented in Figure 7. In this case the matrices 𝐴, 𝐵, 𝐶 , 𝐷 are known as a set of Williamson matrices.

𝐴 𝐵 𝐶 𝐷

−𝐵 𝐴 −𝐷 𝐶

−𝐶 𝐷 𝐴 −𝐵
−𝐷 −𝐶 𝐵 𝐴

Fig. 7. The general form of
Hadamard matrices constructed
via the Williamson construction.

In the 1960s, while developing codes for spacecraft communication, scientists at
NASA’s Jet Propulsion Laboratory discovered the first set of Williamson matrices
of order twenty-three and conjectured that Williamson matrices exist for all values
of 𝑛 [21]. This conjecture was disproven in 1993 when the counterexample 𝑛 = 35 was
discovered by exhaustive computer search [19]. At the time it was noted that this is the
smallest odd counterexample but not much was known about the even orders—though
Williamson himself found some examples in even orders including all powers of two
up to 𝑛 = 32. He expressed interest in proving an existence theorem which could
generalize this pattern but was unable to do so. The search space for the next power
of two 𝑛 = 64 was out of the range of feasibility for computational searches, so for 75
years it was unknown if Williamson matrices of order 64 existed or not.

“It would be interesting to determine whether the
results of this paper are isolated results or are par-
ticular cases of some general theorem.”

J. Williamson [44]

A SAT+CAS Solution

MathCheck was able to greatly improve our knowledge
of Williamson matrices by exhaustively searching for
Williamson matrices in many orders 𝑛 ≤ 70 (see Figure 8

for one example). Two immediate surprises were uncovered: first, Williamson matrices exist in all even orders 𝑛 ≤ 70
(including 𝑛 = 64), and second, Williamson matrices are much more plentiful when their order is divisible by a large
power of two. For example, there are over 70,000 sets of Williamson matrices in order 64 alone and fewer than 100 sets
of Williamson matrices in all the odd orders up to 64. Moreover, analyzing the structure of the Williamson matrices in
order 64 revealed a structure that can be generalized to all powers of two. Thus, as a result of the searches of MathCheck
we have improved Williamson’s result that Williamson matrices of order 2𝑘 exist with 𝑘 ≤ 5; we now know that
Williamson matrices of this form actually exist for all 𝑘 [10]. These results raise the possibility that Williamson matrices
actually exist in all even orders and this has become known as the even Williamson conjecture.

SAT solvers can be used to search forWilliamsonmatrices because the arithmetical defining relationship ofWilliamson
matrices may be directly encoded using straightforward arithmetic circuits. However, this encoding is not at all
competitive with special-purpose solvers and tops out around order thirty [7]. The reason special-purpose solvers are
much more effective is because they can exploit mathematical properties that Williamson matrices are known to satisfy.
One example of this is known as the power spectral density or PSD condition.

Briefly, the PSD of a vector 𝑋 = [𝑥0, . . . , 𝑥𝑛−1] is the vector of squared magnitudes of the discrete Fourier transform
of 𝑋 . In other words, the 𝑘th entry of PSD(𝑋 ) is

��∑𝑛−1
𝑗=0 𝑥 𝑗𝜔

𝑗𝑘
��2 where 𝜔 is a primitive 𝑛th root of unity. Amazingly, if

𝐴 is the first row of a Williamson matrix then all entries of PSD(𝐴) are at most 4𝑛. This is a very useful condition since
Manuscript submitted to ACM
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the vast majority of {±1}-vectors do not satisfy it—thus exploiting it dramatically reduces the size of the search space.
The problem, of course, is that SAT solvers have no conception of what a PSD value is and the condition is not easily
encoded into Boolean logic.

Fig. 8. A Hadamard matrix of order 280 gener-
ated from a set of Williamson matrices of order 70.
Coloured entries represent 1s and white entries rep-
resent −1s.

However, CASs are adept at computing PSD values using the fast
Fourier transform. Thus, when a SAT solver finds a matrix that it
thinks might appear in a set of Williamson matrices it can provide
this matrix to a CAS. The CAS checks if it can be ruled out using
the PSD condition, and if so—because the first row of the matrix has
a PSD value larger than 4𝑛—then the matrix is removed from the
search space. The SAT solver will continue to search for matrices
that satisfy the constraints until either a set of Williamson matrices
is found or it is able to certify that no Williamson matrices exist in
the given order. This general method is outlined in Figure 9.

The SAT+CAS method using PSD filtering easily outperforms ap-
proaches using either SAT solvers alone or CASs alone—particularly
in large orders where the SAT+CAS method can perform orders of
magnitude faster [9]. The size of the search space for Williamson ma-
trices of order 70 is about 24(70/2) ≈ 1042 making it rather surprising
that such a space can be searched exhaustively. But using the pow-
erful search routines of SAT solvers coupled with the sophisticated

mathematical capabilities available in CASs (and some additional powerful filtering criteria [20]) make this search
tractable to complete on a modern CPU in under 1,000 hours. The minimal counterexample of the Williamson conjecture
(𝑛 = 35) can be verified in a few minutes.

SAT solver CAS

Compute PSD

Input constraints

Solution or
UNSAT certificate

Fig. 9. A outline of the SAT+CAS method as applied to searching
for Williamson matrices. The matrix provided to the CAS is blocked
when it has a PSD value that is too large.

CONCLUSION

The coupling of SAT solvers with computer algebra sys-
tems can effectively search large spaces specified via
mathematical constraints—combining the search capabili-
ties of SAT solvers with the expressiveness and rich math-
ematical knowledge of CASs. Although in this overview
we’ve focused on applications to finite geometry and
combinatorics, the paradigm is quite general and we have
also used MathCheck to improve the known bounds on
conjectures in graph theory [45] and number theory [11].
The graph theory and number theory applications pro-
vide even more of a taste of the variety of possibilities—relying on CAS functionality like a travelling salesperson
solver, a shortest path solver, and a nonlinear real optimizer. Most recently, we’ve used MathCheck to derive a new
lower bound on the size of Kochen–Specker systems—an object from quantum mechanics used to prove the “Free Will
Theorem” that if humans have free will then so do elementary particles.

Manuscript submitted to ACM



When Satisfiability Solving Meets Symbolic Computation 11

The type of problems particularly attractive for pursuing with SAT+CAS methods have two primary characteristics.
First, the problem is somehow “Booleanizable”—in other words, a large part of the search space can be specified in
Boolean logic, allowing the search power of SAT solvers to be exploited. Second, there are mathematical properties,
theorems, or invariants that cannot easily be specified in Boolean logic but significantly decrease the search space
size. These kinds of constraints lie perfectly in the wheelhouse of a CAS and as we’ve seen can dramatically improve
the efficiency of a solver. Best of all, they are not limited to any particular branch of mathematics, and indeed there
have been applications of SAT+CAS methods to a surprising variety of problems in areas like cryptanalysis [27],
program synthesis [29], and circuit verification [31]. These applications along with those pioneered by initiatives like
the SC-square project [17] have convinced us that SAT+CAS methods will be with us for a long time to come—solving
problems larger and larger than previously thought possible.
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