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In the 1970s and 1980s a series of exhaustive searches [1–4] showed that projective planes
of order ten do not exist. These searches required a significant amount of computing power
including almost three months of time on a CRAY-1A supercomputer. However, due to the
nature of the search it was not possible to present a formal proof of the result. Recently SAT
solvers have been used to derive proofs of results that require extensive computer search [5],
raising the possibility that SAT solvers could be useful searching for projective planes and
proving that projective planes of certain orders do not exist.

In this talk we report on work we have done in this direction, in particular, employing a hybrid
satisfiability checking and computer algebra (SAT+CAS) approach that has been recently
proposed [6] and successfully used in searches for other combinatorial objects [7–9]. In the
SAT+CAS paradigm a computer algebra system is used to generate theory lemmas that a SAT
solver would otherwise not be able to learn. In the search for projective planes we found that
a CAS is an effective tool for finding symmetries of partial projective planes that can be used
to dramatically improve the efficiency of the SAT solver.
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