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Abstract—This document describes a collection of satisfiability
instances that arise in Lam’s problem from discrete geometry.

I. INTRODUCTION

Instances in this benchmark encode subproblems that arise
in Lam’s problem from finite projective geometry—the prob-
lem of determining whether or not a finite projective plane of
order ten exists. Studied since the 1800s, Lam’s problem was
resolved in the late 1980s by a computer search culminating
in months of computational effort on a CRAY-1A supercom-
puter [1]. Recently, we used SAT solvers to verify a significant
portion of this search [2]–[4].

II. BACKGROUND

A finite projective plane of order ten is defined to consist
of a collection of 111 points, 111 lines, and an incidence
relationship between points and lines such that any two points
are incident with a unique line and any two lines are incident
with a unique point. Furthermore, every line is incident with
exactly 11 points and every point is incident with 11 lines.

From a computational perspective, a convenient way of
representing a finite projective plane of order ten is by a square
incidence matrix A of order 111 whose (i, j)th entry contains
a 1 exactly when the ith line is incident to the jth point. The
projective plane incidence relationship requires that any two
distinct rows or columns of A have an inner product of exactly
one. It follows that A satisfies the relationship

AAT = ATA = 10I + J

where I denotes the identity matrix and J denotes the matrix
consisting of all 1s.

It is hopeless to determine if such an A exists using this
simple definition alone—even though the search space is finite
it is far too large to be effectively searched. In the 1970s,
coding theory was used to derive conditions that A must satisfy
if it exists. In particular, it can be shown mathematically that
the rowspace of A (mod 2) must contain vectors of Hamming
weight 15 or 19 [5]. Furthermore, the existence of such vectors
greatly restrict the structure of A.

In particular, a vector of Hamming weight 15 appearing in
A’s rowspace implies that every entry appearing in either the
first 21 rows or 15 columns of A can be assumed without
loss of generality [6]. Similarly, the vectors of Hamming

weight 19 are of three possible types (called oval, 16-type, or
primitive [5]) and each case places restrictions on the possible
structure of A.

The twenty benchmarks in this collection each specify a dif-
ferent starting configuration for A—one benchmark resulting
from the weight 15 starting configuration, three benchmarks
resulting from 16-type starting configurations, and sixteen
benchmarks resulting from primitive weight 19 starting con-
figurations.

III. ENCODING

Let ai,j be a Boolean variable that is true exactly when
A[i, j] = 1. We say that two columns or rows of A intersect
if they share a 1 in the same location. The projective plane
incidence relationship requires that any two rows and any
two columns of A intersect exactly once. In our encoding we
require that

1) any two rows or columns intersect at most once, and
2) any row or column entirely specified by the starting

configuration intersects every other row or column at
least once.

These two conditions are sufficient to show that A cannot
exist (at least in the starting configurations that occur in this
collection of benchmarks). Moreover, these conditions are
naturally encoded in conjunctive normal form.

In the first condition, suppose that i and j are arbitrary row
indices. Then ∧

1≤k<l≤111

(¬ai,k ∨ ¬ai,l ∨ ¬aj,k ∨ ¬aj,l)

specify that rows i and j do not intersect twice (i.e., they
intersect at most once). Conditions of this form are required
for all 1 ≤ i < j ≤ 111.

In the second condition, suppose that i is the index of a row
completely specified by the starting configuration and that j
is the index of another row. Then∨

k:A[i,k]=1

aj,k

specifies that row i and j intersect at least once. This clause
is well-defined since all entries A[i, k] for 1 ≤ k ≤ 111 are
known in the starting configuration. We also include similar



clauses for each column completely specified by the starting
configuration.

Additionally, we used two optimizations of this encoding
which in our experiments made the instances easier to solve.

First, we do not include all 1112 variables in the instances.
Instead, we choose a submatrix of A and only encode the
constraints arising in that submatrix. The submatrix is exper-
imentally chosen to be small while still ensuring that there
are enough constraints to make the instance unsatisfiable. As
a rule of thumb, about one third of the entries of A are
usually required before the instance becomes unsatisfiable. In
our collection of benchmarks the weight 15 instance used 75
columns and 51 rows, the 16-type instances used 65 columns
and 80 rows, and the primitive weight 19 instances used up
to 54 columns and all 111 rows.

Second, we included symmetry breaking clauses that re-
move symmetries from the search space. In particular, we
enforce a lexicographical order on certain rows and columns
that are otherwise identical in the starting configuration. There
are also additional symmetries in the 16-type instances broken
using a lexicographic method—see [3] for details.

IV. SUMMARY

The benchmarks in this collection naturally arise in the
process of solving Lam’s problem from finite geometry. They
have been selected in order to provide the satisfiability commu-
nity a collection of instances relevant to solving an interesting
and celebrated mathematical problem. They were generated
as a part of the MathCheck project and can all be solved
in under an hour on a modern desktop using the cube-and-
conquer paradigm [7].
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