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Abstract
This paper introduces ALPHAMAPLESAT, a novel
Monte Carlo Tree Search (MCTS) based Cube-
and-Conquer (CnC) SAT solving method aimed at
efficiently solving challenging combinatorial prob-
lems. Despite the tremendous success of CnC
solvers in solving a variety of hard combinatorial
problems, the lookahead cubing techniques at the
heart of CnC have not evolved much for many
years. Part of the reason is the sheer difficulty
of coming up with new cubing techniques that are
both low-cost and effective in partitioning input for-
mulas into sub-formulas, such that the overall run-
time is minimized.
Lookahead cubing techniques used by current
state-of-the-art CnC solvers, such as March, keep
their cubing costs low by constraining the search
for the optimal splitting variables. By contrast,
our key innovation is a deductively-driven MCTS-
based lookahead cubing technique, that performs
a deeper heuristic search to find effective cubes,
while keeping the cubing cost low. We perform
an extensive comparison of ALPHAMAPLESAT
against the March CnC solver on challenging com-
binatorial problems such as the minimum Kochen–
Specker and Ramsey problems. We also perform
ablation studies to verify the efficacy of the MCTS
heuristic search for the cubing problem. Results
show up to 2.3× speedup in parallel (and up to 27×
in sequential) elapsed real time.

1 Introduction
In recent years, we have witnessed many hard combinatorial
problems such as the Boolean Pythagorean Triples [Heule
et al., 2016], Schur number five [Heule, 2018], and Lam’s
problem [Bright et al., 2021] being solved by SAT-based
techniques. Among these, the Cube-and-Conquer (CnC)
SAT solving approach has emerged as the most dominant
strategy [Heule et al., 2011]. This method efficiently uti-
lizes two distinct solvers: a lookahead “cubing or splitting
solver” responsible for partitioning the input Boolean for-
mula into sub-formulas using cubes (a conjunction of liter-
als) and a subsequent “conquering or worker solvers” (e.g.,

a Conflict-driven Clause Learning SAT solver [Silva and
Sakallah, 1996]) tasked with solving each sub-formula. CnC
techniques [Biere et al., 2021] have demonstrated superior
performance compared to sequential, portfolio, or traditional
divide-and-conquer solvers [Nejati, 2020] when dealing with
hard combinatorial instances obtained from diverse applica-
tions in geometry [Bright et al., 2021], physics [Li et al.,
2023], or cryptography [Zaikin, 2022].

The success of CnC solvers depends crucially on the order
in which variables are split. Consequently, lookahead cub-
ing solvers use empirically tested metrics (e.g., propagation
rate) to rank variables in an input formula and choose the vari-
able that ranks the best according to such metrics to then split
the input formula into sub-formulas, with the goal that they
can subsequently be handled relatively easily by conquering
solvers. Note that a cubing solver may produce many cubes
(each containing several literals) given an input formula. It
does this typically by splitting on multiple variables and prop-
agating them in a single run, resulting in these cubes.

Despite the dramatic success of CnC solvers, significant
challenges remain. For example, the cubes created by tra-
ditional CnC solvers, such as March [Heule et al., 2011],
are far from optimal, where optimality for cubes can be de-
fined in terms of minimizing the total elapsed real time of the
solver.1 Finding optimal cubes seems to require a deep looka-
head search, which can get prohibitively expensive as the size
of the input formula increases.
Problem Statement. Design and implement a (parallel)
lookahead cubing solver that takes as input a Boolean for-
mula F in conjunctive normal form (CNF), outputs a set
C = {c1, c2, . . . , ck} of cubes, where the sub-formulas F ∧ci
are solved by (parallel) conquering solver(s) s.t. the total CPU
and elapsed real time for cubing and solving F is minimized.
ALPHAMAPLESAT: An MCTS-based CnC Solver. To ad-
dress the above-stated problem, we present ALPHAMAPLE-

1We define total elapsed real time as the time taken by a (sequen-
tial or parallel) CnC solver to solve the input formula and produce a
SAT/UNSAT result. This is probably the most relevant metric in the
context of measuring the efficacy of a CnC solver, since users care
the most about the latency of a system, the time elapsed from when
a job is given to the time a result is obtained. While the definition of
this term is simple enough in the sequential context, it can be com-
plicated in a parallel setting depending on the kind of parallelization
used. See Section 5.5 for a more formal definition.



SAT, a novel cubing solver based on the integration of Monte
Carlo Tree Search (MCTS) [Coulom, 2006] with deductive
rewards, resulting in a heuristic search technique that is both
cost-effective and enables an informed exploration of the
cubes. In recent years, the popularity of MCTS has grown
significantly, especially because of its success in the context
of hard combinatorial search for two-player games such as
Go, Chess, and Shogi [Silver et al., 2017]. This has prompted
numerous endeavors to apply MCTS to tackle combinatorial
optimization problems by transforming these problems into
single-player games.

ALPHAMAPLESAT leverages the power of MCTS to peek
ahead in the search space of splitting trees associated with
the input formula, prioritizing splits that, while not neces-
sarily offering the immediate highest reward, hold the poten-
tial to unlock better ones at subsequent splitting depths. AL-
PHAMAPLESAT makes use of a deductive reward signal us-
ing an automated reasoning tool, a departure from traditional
reward signals/functions which are typically provided by hu-
man domain experts in the context of MCTS or reinforcement
learning. Deductive rewards, derived from automated reason-
ing tools (e.g., solvers), are very general and can be used to
construct richer reward functions by augmenting human un-
derstanding of a problem domain. This informed exploration,
guided by deductive reward signals, steers the search process
towards promising partitions, significantly reducing the total
elapsed time spent on both cubing and solving.

The use of deduction-based metrics in the context of looka-
head solvers is not new. In fact, March uses CDCL SAT
solvers to compute propagation rate and other deductively-
derived metrics to rank variables to split on. What is new here
is the combination of deductive reward with MCTS during se-
lection and rollout, resulting in a powerful splitting heuristic.

1.1 Contributions.
• We introduce ALPHAMAPLESAT, a novel CnC solver

that integrates Monte Carlo Tree Search (MCTS) to
overcome the limitations of both greedy (limited search
used in current CnC solvers such as March, resulting
in sub-optimal cubes) and exhaustive search approaches
for cubing (search cost overwhelms any benefits derived
from optimal cubes). MCTS strikes a balance between
immediate rewards and the potential for future rewards,
leading to significantly faster cubing and solving times
while keeping the cost of searching for good cubes low.

• ALPHAMAPLESAT departs from traditional reward sig-
nals/functions in the context of MCTS, in that it uses
an automated reasoning tool (a solver) to compute a de-
ductive feedback reward signal (propagation rate). This
novel approach is applied during the selection and roll-
out phases of MCTS, eliminating the use of neural net-
works commonly employed in AlphaGo-based learning
frameworks. The use of automated reasoning, when ap-
plicable, can effectively complement reward functions
based on human insight alone.

• We demonstrate the effectiveness of ALPHAMAPLE-
SAT through extensive comparisons with the state-of-
the-art March CnC solver on benchmark problems like

the minimum Kochen–Specker and the Ramsey prob-
lem. We also perform ablation studies to verify the effi-
cacy of the MCTS heuristic search for the cubing prob-
lem. Our results showcase up to 2.3× speedup in paral-
lel (and up to 27× in sequential) CnC elapsed real time,
highlighting ALPHAMAPLESAT’s potential as a signif-
icant improvement over existing CnC SAT solvers.

2 Related Work
The utilization of Monte Carlo Tree Search (MCTS) gained
momentum following its triumph in two-player games [Sil-
ver et al., 2017]. This success prompted researchers to
adapt MCTS for single-player games, leading to innova-
tive approaches for problem-solving. MCTS has also been
employed in the context of SAT solving by introducing a
UCT for choosing branching variables in the DPLL algo-
rithm [Previti et al., 2011]. Subsequent studies extended and
improved upon this approach by introducing reward functions
based on learned clauses and activity scores [Schloeter, 2017;
Keszocze et al., 2020].

Most recently, Monte Carlo Forest Search [Cameron et al.,
2022] combines MCTS with neural networks to identify can-
didate search trees for DPLL branching policies through an
offline learning approach to avoid the computational cost of
the reward function. Moreover, MCTS has also found ap-
plications in finding backdoors to Mixed Integer Linear Pro-
gramming (MILP) problems [Khalil et al., 2022].

CombOpt Zero uses Graph neural networks within the Al-
phaZero framework to solve NP-hard problems [Abe et al.,
2019]. Graph neural networks-based MCTS have also been
explored for solving the Quantified Boolean Formula Satis-
faction (QSAT) problem [Xu and Lieberherr, 2022]. The
combination of MCTS and neural networks has also been
proposed to guide the search in Satisfiability Modulo The-
ories (SMT) solvers [Graham-Lengrand and Färber, 2018].
For additional details, we refer our readers to a recent review
paper [Świechowski et al., 2023], which provides a detailed
overview of MCTS and its applications.

While MCTS is a heuristic search algorithm with roots
in AI planning, in recent years, it has been closely aligned
with reinforcement learning (RL) [Silver et al., 2017]. The
use of RL in the context of solvers is not new. Among the
first solvers to effectively use RL is MapleSAT [Liang et al.,
2016], where the branching heuristic is modeled as a Multi-
Armed Bandit (MAB) problem, and a deductive reward sig-
nal (conflict clauses) is used to guide the agent (the branching
heuristic).

In our work, we introduce a novel application of MCTS
for Cube-and-Conquer (CnC), employing a deductive reward
signal in an online learning fashion during the selection and
rollout phases of MCTS without the need for a neural net-
work. This represents the first instance of utilizing MCTS
(with deductive reward signal) in the context of CnC.

3 Background
3.1 MCTS
Monte Carlo Tree Search (MCTS) is an algorithm designed
for navigating complex combinatorial spaces, particularly in



the context of search trees [Coulom, 2006]. It has proven
effective in the context of reinforcement learning-based sys-
tems like AlphaGo [Silver et al., 2016] and AlphaZero [Sil-
ver et al., 2017] for games such as Go, Chess, and Shogi. In
such two-player games, MCTS aims to identify the optimal
action at each step of the game to maximize the probability
of winning. It builds an n-ary tree where the root node rep-
resents the current game state, edges represent valid actions,
and child nodes extend the parent’s state by playing the cor-
responding action. Terminal states are associated with scalar
reward values.

In more detail, MCTS iteratively runs a 4-step simulation:
(1) Selection: Starting from the root of the tree, a tree-search
policy traverses the tree until a leaf node is selected. Upper
Confidence bound for Trees (UCT) [Kocsis and Szepesvári,
2006] algorithm is used to maintain an exploitation and ex-
ploration trade-off by balancing average rewards and visit
counts. (2) Expansion: The tree is expanded from the leaf
node by adding child node(s) based on the selected unex-
plored actions. (3) Rollout: If the selected leaf node is non-
terminal, the simulation continues by subsequently choosing
actions according to a rollout policy until it reaches a termi-
nal state. (4) Backup: Rewards obtained at the terminal state
from the last step are propagated back to the root node of the
search tree.

This four-step loop is repeated until a termination condi-
tion (e.g., iteration budget), and the action corresponding to
the highest reward or most visited child of the root node is
played. The opponent responds, and the process repeats with
an updated search tree representing the current game state.
For additional details, we refer our readers to survey papers
on MCTS [Browne et al., 2012; Świechowski et al., 2023].

3.2 Cube-and-Conquer (CnC) Solvers
The Cube-and-Conquer (CnC) SAT solving approach was in-
troduced as a means to address challenging combinatorial
problems [Heule et al., 2011]. CnC solvers employ a two-
step process: a lookahead cubing solver to partition the input
SAT instance into distinct sub-problems, and a conquering or
worker solver (e.g., a CDCL SAT solver) to solve each sub-
problem with the goal of minimizing the total elapsed time
required to partition and solve the input SAT instance.
Definition 1 (Cube). A cube is a conjunction of literals, e.g.,
x1∧· · ·∧xn, where xi represents a literal in a given Boolean
formula.
Definition 2 (Propagation rate). Given a conjunction of a
formula F and a cube c, the propagation rate of F ∧ c is
defined as the ratio between the number of propagations de-
rived by a Boolean Constraint Propagation (BCP) [Davis et
al., 1962] method on the input F ∧ c, and the size of c. This
metric, widely recognized in the field of SAT solvers, serves
as a fundamental gauge of solver performance.
Definition 3 (Lookahead heuristics). Lookahead heuristics
iterate over all variables (or cubes) of a given formula, sim-
plify the formula with respect to the given cubes, and probe
them to decide the best variable to split on. Probing is the
process of computing quality metrics (e.g., propagation rate)
by running a SAT solver on the sub-formulas thus obtained.

Definition 4 (Cubing problem). Given a Boolean formula
F in conjunctive normal form (CNF), the cubing solver out-
puts a set C = {c1, c2, . . . , ck} of cubes. The resulting sub-
formulas F ∧ ci are defined as the partitions or sub-formulas
of the original formula F .

Definition 5 (Splitting or cubing tree). The splitting tree of
a formula is a full binary tree where each node in the tree is
a sub-formula, and the edges are marked by the values (True
and False) assigned to the splitting variable. A path from the
root of the splitting tree to the respective leaves represents a
cube.

Definition 6 (Cubing solver). A cubing solver takes as an in-
put a Boolean formula F in conjunctive normal form (CNF),
explores the space of different cubing trees, and outputs the
most rewarding cubing tree as output.

The value of lookahead heuristics is that they provide a
global view of the search space of an input formula, compared
to CDCL solvers that analyze the formula in a very local fash-
ion [Nejati, 2020], albeit at a higher cost in terms of searching
for splitting variables. Empirical evidence has demonstrated
the effectiveness of this CnC technique in solving hard SAT
problems that have not been solved by any other known tech-
nique. We refer the readers to the Handbook of Satisfiabil-
ity [Biere et al., 2021] for an overview of CnC solvers.

4 The Design and Implementation of
ALPHAMAPLESAT

In this section, we describe the design and implementation
of the cubing solver in ALPHAMAPLESAT 2. The chal-
lenge posed by the cubing problem involves navigating a
vast search space of splitting trees of large depth, resem-
bling the complexities found in strategic games like chess or
Go. Exhaustive exploration of this extensive space is infeasi-
ble. Drawing inspiration from AlphaGo [Silver et al., 2016],
we address this issue by heuristically truncating the splitting
trees, by approximating the rest of the tree via a value func-
tion. While AlphaGo utilizes a neural network during the se-
lection and rollout steps of the MCTS, our strategy employs
a solver, functioning as a deductive reasoning tool to calcu-
late the propagation rate. While propagation rate has proven
effective in our setting, we could easily extend this to other
metrics that solvers compute. As the simulation progresses
and the splitting trees get deeper during the cubing phase of
the CnC solver, thus enabling the cubing solver to compute
more accurate statistics, the MCTS policy is guided towards
searching over splitting trees that contain high reward cubes.

4.1 Input and Output
The input to ALPHAMAPLESAT is a CNF Formula F . The
output of the cubing solver is a set of k cubes which, re-
spectively, in conjunction with F , produce sub-formulas
{F1, F2, . . . , Fk} to be given to k (parallel) worker solvers.
The original instance is considered solved if at least one of
the sub-formulas is satisfiable or all of them are unsatisfiable.

2https://anonymous.4open.science/r/AlphaMapleSAT-B07C/



Instances Tools

Cubing and
simplification

elapsed
real time (s)

Total CPU time (s) Total elapsed
real time (s)

Total elapsed real time
speedup (wrt next best)

Ramsey (3,8)
March (eval var) 9,840 1,202,918 102,083 -
March (eval cls) 6,780 1,087,694 109,014 -
ALPHAMAPLESAT 4,200 1,169,307 78,749 1.30×

KS 19
March (eval var) 731 13,534 3,237 -
March (eval cls) 601 14,432 2,248 -
ALPHAMAPLESAT 516 7,756 1,559 1.44×

KS 20
March (eval var) 1,962 81,421 12,177 -
March (eval cls) 1,708 86,291 12,423 -
ALPHAMAPLESAT 988 57,899 7,759 1.57×

KS 21
March (eval var) 26,077 1,056,773 60,123 -
March (eval cls) 28,472 1,316,841 61,153 -
ALPHAMAPLESAT 2,170 673,365 25,693 2.34×

KS 22
March (eval var) 518,400 6,595,091 586,733 -
March (eval cls) 562,620 6,525,814 631,920 -
ALPHAMAPLESAT 202,200 3,385,952 260,635 2.25×

Table 1: Parallel Cubing and Parallel Solving: Comparison results between ALPHAMAPLESAT and the two heuristics by the March solver
across various benchmarks using parallel cubing and simplification with parallel solving and verification.

4.2 Problem Setup
We model the cubing problem as a sequential decision-
making problem. We view cubing as a single-player, deter-
ministic game. The goal is to find a set of cubes that max-
imizes the overall propagation rate. Thus, the cubing prob-
lem is modeled as a deterministic Markov Decision Process
(MDP). More specifically, the given problem can be modeled
as a tree MDP [Scavuzzo et al., 2022]. In the context of a
tree MDP, taking an action leads to the environment transi-
tioning into two or more new child states. Notably, each of
these child states adheres to the Markov property, where each
child is solely dependent on its current state. Tree MDP poli-
cies encapsulate algorithms that systematically break down
problems into two or more simpler, history-independent sub-
problems. For a more in-depth understanding of tree policies,
interested readers can refer to Monte Carlo Forest Search
(MCFS) [Cameron et al., 2022], which models the DPLL tree
search algorithm as tree MDPs. In our setting, the action is
the variable to split on, the child states being the sub-formulas
(formula in conjunction with the true and false directions of
the selected variable, respectively), and the reward being the
propagation rate.

4.3 Reward Function
Given a conjunction of a formula F and a cube c, the reward
function associated with c is the propagation rate of F ∧ c
(Definition 2). We use MiniSAT to compute this metric.

4.4 Termination Condition
The termination condition of a cube is a user-defined param-
eter n, which denotes that the splitting process at a particular

node must stop if at least n variables have been eliminated
(through propagation or as part of splitting variables) in the
cube. This choice in defining the termination condition is mo-
tivated by the objective of attaining balanced cubes within the
solving process [Heule et al., 2011].

4.5 Cubing Episode
The cubing process begins with a CNF formula that we aim to
cube on. Each cubing episode involves multiple steps. Start-
ing with the original CNF formula as the root node, we con-
struct a splitting tree: a binary tree where each node repre-
sents a (sub-)formula, and the edges from the node are the
true and false directions of the splitting variable. At each
node, we invoke the Monte Carlo Tree Search (MCTS) sim-
ulation to identify the best variable for splitting. Upon de-
termining the splitting variable, we create two new nodes by
conjuncting the selected variable’s true and false directions
into the original formula, respectively. We then assess if the
termination criteria for the current set of cubes have been met.
If not, we iteratively call the MCTS simulation on the newly
formed nodes, continuing the splitting process until the termi-
nation criteria are satisfied. At the end of the cubing episode,
we obtain the set of cubes which, in conjunction with the
original CNF formula, produce sub-formulas to be given to
worker solvers in parallel.

4.6 MCTS Simulation
The cubing episode invokes the MCTS simulation, generat-
ing an MCTS tree with the root node representing the for-
mula passed by the cubing episode. A user-defined simula-
tion budget dictates the number of simulations that are being
performed, with each simulation consisting of four steps:



Instances Tools Cubing elapsed
real time (s)

Total CPU time (s) Total elapsed
real time (s)

Total elapsed
real time speedup

KS 19
March (eval cls) 7,055 10,695 7,155 -
ALPHAMAPLESAT 206 4,183 328 21.81×

KS 20
March (eval cls) 237,262 299,375 237,836 -
ALPHAMAPLESAT 8,184 55,873 8,676 27.41×

KS 21
March (eval cls) Timeout Timeout Timeout -
ALPHAMAPLESAT 11,010 Timeout Timeout -

KS 22
March (eval cls) Timeout Timeout Timeout -
ALPHAMAPLESAT 29,761 Timeout Timeout -

Ramsey (3,8)
March (eval cls) Timeout Timeout Timeout -
ALPHAMAPLESAT 15,129 Timeout Timeout -

Table 2: Sequential Cubing and Parallel Solving: Comparison results between ALPHAMAPLESAT and the default heuristic employed by
the March solver across all benchmarks using sequential cubing and parallel solving.

• Selection. In the selection phase, we employ the ver-
sion of the PUCT algorithm [Rosin, 2011] used by Al-
phaGo [Silver et al., 2016] but without the use of neural
networks to provide an initial estimate of the available
next set of actions. Instead, we use a solver to provide
us with this estimate and help choose promising actions
during the search process. First, to identify valid actions
for our case (i.e., variables that have not been selected
or propagated yet), we utilize Boolean Constraint Prop-
agation (BCP) [Davis et al., 1962]. Now, for each of
these valid variables, we determine the number of prop-
agations in both the true and false directions using BCP.
These propagations from both directions are combined
into a single scalar value for each variable using the ex-
pression prop(xi) ·prop(¬xi)+prop(xi)+prop(¬xi)
(where prop(xi) is the number of propagations after set-
ting xi to true), following the approach employed by
March [Heule et al., 2011]. The resulting score is then
normalized to serve as the initial estimate P (s, a) of tak-
ing an action a (selecting a variable) from the state s
(formula).
Now, introducing the PUCT formula, the action selec-
tion is guided by the following equations [Silver et al.,
2016]:

achosen = argmax
a

(Q(s, a) + u(s, a)) (1)

u(s, a) = cpuct · P (s, a) ·
√∑

b N(s, b)

1 +N(s, a)
(2)

In this formula, we use standard notations as used by Al-
phaGo [Silver et al., 2016]. Q(s, a) is the expected re-
ward for taking action a from state s, and N(s, a) is the
number of times action a was selected from state s. cpuct
is a constant that influences the trade-off between explo-
ration and exploitation during the decision-making pro-
cess. This search control strategy initially favors actions
with high prior probability and low visit count, gradually
shifting towards actions with high action value as the ex-
ploration progresses. The improved policy is determined

by the variable that led to an overall higher propagation
rate obtained so far. We chose the cpuct to be 5 after grid
search on easier Kochen–Specker (KS) instances.

• Expansion. When encountering a new non-terminal
node, the expansion step ensures that unexplored regions
of the search space are systematically investigated. By
selecting the variable with the best score (calculated us-
ing BCP), we prioritize exploring promising branches.
We expand one level deeper in the MCTS tree by creat-
ing new child nodes.

• Rollout. Conducting random rollouts is resource-
intensive, involving numerous calls to BCP at each sub-
sequent node in order to determine valid actions and
check termination conditions. Furthermore, as the depth
increases, the creation of multiple child nodes at every
level results in an exponential increase in BCP calls. We
employ an alternative approach to mitigate this compu-
tational burden. Instead of relying on rewards at terminal
nodes, we leverage rewards (propagation rate) at the cur-
rent leaf nodes. Unlike other scenarios (Chess, Go, etc.),
we have access to rewards at the intermediate levels. By
incorporating rewards at intermediate stages, we strike a
balance between computational efficiency and decision-
making accuracy. This adjustment optimizes the rollout
strategy within the MCTS framework, ensuring a more
scalable and effective exploration of the problem space.

• Backup. The backup step in MCTS involves combin-
ing the scores from all the leaf nodes (which include
the newly created child nodes) and iteratively calculat-
ing it all the way back to the root node. We combine
the score of the two nodes using eval(xi) · eval(¬xi) +
eval(xi) + eval(¬xi), where eval(xi) is the propaga-
tion rate at node xi. This computation is inspired by the
scoring methodology commonly employed in lookahead
solvers [Heule et al., 2011].

After completing the MCTS simulations (bounded by the
specified simulation budget, which was selected to be 30 after
grid search on easier KS instances), we chose the variable that
has achieved the highest reward value.



Instances Tools Total CPU
time (s)

AMS + MCTS 1,169,307
Ramsey (3,8)

AMS − MCTS 1,290,851
AMS + MCTS 7,756

KS 19
AMS − MCTS 8,370
AMS + MCTS 57,899

KS 20
AMS − MCTS 74,291
AMS + MCTS 673,365

KS 21
AMS − MCTS 777,031
AMS + MCTS 3,385,952

KS 22
AMS − MCTS 5,274,015

Table 3: Ablation Study with MCTS switched ON/OFF in AL-
PHAMAPLESAT: Results of the ablation study evaluating the con-
tribution of Monte Carlo Tree Search (MCTS) in ALPHAMAPLE-
SAT (AMS) for performance across various benchmarks. A com-
parison is made between AMS with MCTS exploration enabled
(AMS + MCTS) and when the exploration mechanism is disabled
(AMS − MCTS).

5 Experimental Setup
5.1 Competing Tool
Our comparative analysis involves benchmarking our tool
against the well-established Cube-and-Conquer (CnC) solver
March [Heule et al., 2011], which stands as the state-of-the-
art in the field. For a comprehensive evaluation, we incor-
porate two distinct heuristics (eval cls and eval var)
provided by March. These heuristics rely on calculating the
number of propagated variables, along with some additional
metrics, to find the best splitting variables. Remarkably,
even after several years, March remains the dominant CnC
solver and has been employed in various combinatorial set-
tings [Heule, 2018; Bright et al., 2022; Semenov et al., 2023;
Li et al., 2023]. As detailed in Section 3.2, the CnC
methodology, particularly through the March CnC solver, has
demonstrated efficacy in resolving hard combinatorial prob-
lems in diverse fields.

Moreover, in recent SAT competitions (2022 and 2023),
Paracooba [Heisinger, 2022] and MergeSAT [Manthey,
2023], both leveraging lookahead techniques, have incorpo-
rated March as their lookahead cubing solver. This shows that
March remains the cutting-edge CnC SAT solver.

5.2 Benchmarks
Minimum Kochen–Specker problem
The minimum Kochen–Specker (KS) problem is of signifi-
cant importance in quantum mechanics and has captivated the
attention of physicists and mathematicians for decades. At its
core, the KS problem is intricately tied to the fundamental
principles of quantum mechanics, specifically addressing the
notion of contextuality.

We use the SAT encodings and instances created by pre-
vious work in this domain [Li et al., 2023] that used Cube-
and-Conquer (using March as their cubing solver) and a
SAT+CAS technique [Zulkoski et al., 2015; Bright et al.,

2022] to solve this problem. We replace March with our AL-
PHAMAPLESAT solver for the cubing process for an apples-
to-apples comparison. Moreover, we focus on CNF instances
of KS order 19 (with 3,876 variables and 233,219 clauses),
order 20 (with 4,560 variables and 408,455 clauses), order
21 (with 5,320 variables and 923,933 clauses), and order 22
(with 6,160 variables and 2,496,012 clauses) because of their
computation tractability. For more details about the KS prob-
lem, we refer our readers to the previous work [Li et al.,
2023].

Ramsey problem
The foundation of Ramsey Theory was laid by Frank P.
Ramsey [Ramsey, 1987], with Ramsey numbers standing as
renowned and challenging problems. Only nine non-trivial
Ramsey numbers are currently known. In this benchmark,
we specifically focus on the Ramsey problem of R(3, 8). This
problem seeks to determine the smallest value of n for which
every red/blue coloring of the complete graph on n vertices
must contain either a blue triangle or a red 8-clique. The com-
putationally established value for R(3, 8) is 28 [McKay and
Min, 1992].

Similar to the approach in solving the minimum Kochen–
Specker problem discussed earlier, we employ the SAT+CAS
technique to address the R(3, 8) problem. The encod-
ing of the Ramsey instance is adopted from [Fujita et al.,
2013], resulting in a CNF instance with 15,820 variables and
3,163,013 clauses. For more extensive literature on the Ram-
sey problem, readers can refer to a previous work [Radzis-
zowski, 2011].

5.3 Implementation and Computational
Environment

Our implementation is carried out in Python 3.10. We lever-
age MiniSAT’s propagate functionality integrated with the
PySAT library [Ignatiev et al., 2018] to calculate the prop-
agation rate through unit propagation.

Our experiments were conducted on a high-performance
CentOS V7 cluster equipped with Intel E5-2683 v4 Broad-
well processors running at 2.10 GHz, accompanied by 12 GiB
of memory. For the parallel cubing phase, a dedicated CPU
node featuring 16 cores was employed. Additionally, for the
parallel solving phase, the number of single-core CPU nodes
matched the count of cubes being generated, optimizing com-
putational efficiency.

5.4 Cubing, Solving, and Verification using
MathCheck

Our experimental setup makes use of the MathCheck [Li
et al., 2023] pipeline. MathCheck allows any lookahead
solver to be used in a parallel cubing setting, significantly
improving the efficiency of tackling combinatorial CNF in-
stances. Moreover, instead of pre-generating all cubes, the
cubing solver iteratively operates on the CNF instance. Sub-
sequently, the conquering solver (SAT+CAS) [Zulkoski et al.,
2015; Bright et al., 2022] solves each subproblem in parallel.
This strategic modification ensures efficient parallel solving
with proofs under 7 GiB. Additionally, for verification pur-
poses, MathCheck employs DRAT-trim [Wetzler et al., 2014].



5.5 Metrics
The metrics used by us have been widely used in this
field [Heule et al., 2011; Li et al., 2023], providing a thor-
ough assessment of the different tools. Our evaluation criteria
include the following metrics:

• Total CPU time: Total time spent across all CPUs to
perform cubing, simplification, solving, and verifica-
tion. It offers insights into the computational efficiency
and resource utilization of the (parallel) CnC solvers we
compared in our study.

• Elapsed real time: End-to-end wall clock time spent by
a solver to perform cubing, simplification, solving, and
verification to produce a result for a given benchmark.
This metric measures the latency or time-to-completion
of the (parallel) CnC solvers we compared. (Note that
elapsed real time does not include the job scheduling
times of the widely-used cluster we employed.)

6 Experimental Results and Ablation Study
In this Section, we present a detailed experimental compar-
ison of ALPHAMAPLESAT against March on the KS and
Ramsey problems. We also present an ablation study where
we switch our techniques (esp. MCTS) on and off in AL-
PHAMAPLESAT in order to properly study their efficacy.

6.1 Efficacy of ALPHAMAPLESAT against March
using Parallel Cubing and Parallel Solving

We conducted a comprehensive evaluation of our tool by
comparing it against two heuristics provided by the March
CnC solver, as detailed in Section 5.1. This comparison was
carried out on five challenging combinatorial instances, as de-
scribed in Section 5.2.

We use the parallel cubing and parallel solving pipeline
provided by MathCheck [Li et al., 2023], and integrated AL-
PHAMAPLESAT’s cubing solver into it. We used the same
command-line arguments for all three tools for an apples-to-
apples comparison. We present the results in terms of elapsed
cubing and simplification time, total CPU time, and overall
elapsed time spent in cubing, simplification, solving, and ver-
ification (Table 1).

We find that ALPHAMAPLESAT outperforms both the
March heuristics on all the benchmarks (Table 1). The results
are more pronounced on KS order 21, where ALPHAMAPLE-
SAT takes substantially less amount of time in cubing as
compared to the best March heuristic (12× speedup on KS
order 21), and still emerges to be the fastest in terms of total
elapsed time (2.34× speedup on KS order 21).

ALPHAMAPLESAT’s success can be attributed to its uti-
lization of Monte Carlo Tree Search (MCTS), enabling strate-
gic exploration of the search space. In contrast, the March
solver selects literals that locally optimize reductions with-
out considering potential long-term consequences. AL-
PHAMAPLESAT, with its MCTS-guided exploration, proves
adept at efficiently identifying superior cubes, contributing to
its overall enhanced performance.

6.2 Efficacy of ALPHAMAPLESAT against March
using Sequential Cubing and Parallel Solving

It’s important to highlight that neither March nor our tool,
ALPHAMAPLESAT, inherently offers parallel cubing func-
tionality. In our evaluation in Section 6.1, we discuss the
comparison between the parallel CnC versions of MathCheck
with ALPHAMAPLESAT against March. By contrast, be-
low we discuss the comparison of with ALPHAMAPLESAT
vs. March on the same aforementioned benchmarks, in their
default sequential cubing and solving setting.

We compare our tool against the default heuristic by March
(eval cls) in the sequential cubing followed by the par-
allel solving (using SAT+CAS) setting. We used identical
command-line arguments for both tools to ensure a fair com-
parison. The evaluation metrics include elapsed cubing time,
total CPU time, and total elapsed time (Table 2). Note that the
reported total CPU and elapsed real time only includes cubing
and solving. Simplification during cubing and verification us-
ing DRAT-trim were not performed for either solvers. More-
over, we set a timeout of 5 days for the cubing and solving
process.

The results show that ALPHAMAPLESAT outperforms
March significantly, even on relatively smaller instances
(21.8× on KS order 19 and 27.4× on KS order 20), as de-
tailed in Table 2. This performance distinction underscores
the efficiency of ALPHAMAPLESAT in both parallel and se-
quential cubing settings.

March cubing solver experienced time-outs after 5 days on
the remaining instances, whereas ALPHAMAPLESAT suc-
cessfully produced the cubes albeit experiencing time-outs
during the solving process. Note that we were able to obtain
the results for all the benchmarks in the parallel cubing and
parallel solving setting (Section 6.1) due to the incremental
cubing functionality of MathCheck (Section 5.4).

6.3 Ablation Studies
To assess the impact of MCTS on the performance improve-
ment observed earlier, we conducted an ablation study in the
parallel cubing and parallel solving setting using the same
benchmarks used in the previous sections. The objective is to
determine whether MCTS contributes to the enhanced results
achieved by ALPHAMAPLESAT.

To isolate the effect of MCTS, we turned off the MCTS
exploration in ALPHAMAPLESAT. This means the cubing
solver selects the variable with the highest propagation rate
in the current splitting level without exploring deeper into the
splitting tree.

The results of this ablation study are presented in Ta-
ble 3, revealing that ALPHAMAPLESAT without MCTS ex-
ploration performs comparatively worse on every benchmark.
This observation underscores the pivotal role of MCTS in the
overall effectiveness of ALPHAMAPLESAT, emphasizing its
contributions to our tool’s improved performance.

7 Conclusion and Future Work
We have presented ALPHAMAPLESAT, a novel Monte Carlo
Tree Search (MCTS) based Cube-and-Conquer (CnC) SAT
solving technique. Using an informed exploration of the



search space, our tool overcomes the limitations of both
greedy (limited search resulting in sub-optimal cubes) and
exhaustive approaches where the search cost can overwhelm
any benefits derived from the computation of optimal cubes.
The deductive reward signal employed by ALPHAMAPLE-
SAT offers a domain-agnostic metric for decision-making
across diverse combinatorial problems. For example, we
show experimental results on benchmarks from two differ-
ent domains (the minimum KS and Ramsey problems) with a
2.3× speedup in parallel (and up to 27× in sequential) CnC
elapsed real time, demonstrating the efficacy of our method
compared to the state-of-the-art March CnC solver. We also
conduct ablation studies to confirm the effectiveness of the
MCTS heuristic search in addressing the cubing problem.
In the future, we plan to explore the use of deep learning-
based MCTS techniques for the cubing problem to adapt and
learn across different instances from the same problem class,
thereby potentially leading to more efficient cubing strategies.
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