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A new lower bound in the 𝑎𝑏𝑐 conjecture
Curtis Bright

Abstract. We prove that there exist infinitely many coprime numbers 𝑎, 𝑏, 𝑐 with 𝑎 + 𝑏 = 𝑐 and
𝑐 > rad(𝑎𝑏𝑐) exp(6.563

√︁
log 𝑐/log log 𝑐) . These are the most extremal examples currently known

in the 𝑎𝑏𝑐 conjecture, thereby providing a new lower bound on the tightest possible form of the
conjecture. Ourwork builds on that of van Frankenhuysen (1999)who proved the existence of examples
satisfying the above bound with the constant 6.068 in place of 6.563. We show that the constant 6.563
may be replaced by 4

√︁
2𝛿/𝑒 where 𝛿 is a constant such that all unimodular lattices of sufficiently

large dimension 𝑛 contain a nonzero vector with ℓ1 norm at most 𝑛/𝛿.

1 Introduction

Three natural numbers 𝑎, 𝑏, 𝑐 are said to be an 𝑎𝑏𝑐 triple if they do not share a common
factor and satisfy the equation

𝑎 + 𝑏 = 𝑐.

Informally, the 𝑎𝑏𝑐 conjecture says that large 𝑎𝑏𝑐 triples cannot be ‘very composite’, in
the sense of 𝑎𝑏𝑐 having a prime factorization containing large powers of small primes.
The radical of 𝑎𝑏𝑐 is defined to be the product of the primes in the prime factorization
of 𝑎𝑏𝑐, i.e.,

rad(𝑎𝑏𝑐) B
∏
𝑝 |𝑎𝑏𝑐

𝑝.

The 𝑎𝑏𝑐 conjecture then states that 𝑎𝑏𝑐 triples satisfy

𝑐 = 𝑂
(
rad(𝑎𝑏𝑐)1+𝜖

)
(1.1)

for every 𝜖 > 0, where the implied big-𝑂 constant may depend on 𝜖 .
Presently, the conjecture is far from being proved; not a single 𝜖 is known for

which (1.1) holds.1 The best known upper bound is due to C. L. Stewart and K. Yu [10]
and says that 𝑎𝑏𝑐 triples satisfy

𝑐 = 𝑂
(
exp(rad(𝑎𝑏𝑐)1/3 (log rad(𝑎𝑏𝑐))3)

)
.

On the other hand, Stewart and Tijdeman [9] proved in 1986 that there are infinitly many
𝑎𝑏𝑐 triples with

𝑐 > rad(𝑎𝑏𝑐) exp
(
𝜅
√︁
log 𝑐/log log 𝑐

)
(1.2)

for all 𝜅 < 4. Such 𝑎𝑏𝑐 triples are exceptional in the sense that their radical is relatively
small in comparison to 𝑐 and they provide a lower bound on the best possible form

Keywords: 𝑎𝑏𝑐 conjecture; good 𝑎𝑏𝑐 examples; 𝑎𝑏𝑐 conjecture lower bound.
2020 Mathematics Subject Classification: 11D75, 11H06, 11G50, 11N25.
1A proof of the 𝑎𝑏𝑐 conjecture is claimed by S. Mochizuki, but this has not been accepted by the general

mathematical community. [8]
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2 C. Bright

of (1.1). In 1997, van Frankenhuysen [3] improved this lower bound by showing that (1.2)
holds for 𝜅 = 4

√
2, and in 1999 he improved this to 𝜅 = 6.068 using a sphere-packing

idea credited to H. W. Lenstra, Jr. We improve this further by showing that there are
infinitely many 𝑎𝑏𝑐 triples satisfying (1.2) with 𝜅 = 6.563.

2 Preliminaries

Let 𝑆 be a set of prime numbers. An 𝑆-unit is defined to be a rational number whose
numerator and denominator in lowest terms are divisible by only the primes in 𝑆. That
is, one has

𝑆-units B
{
±
∏
𝑝𝑖∈𝑆

𝑝
𝑒𝑖
𝑖
: 𝑒𝑖 ∈ Z

}
.

This generalizes the notion of units of Z; in particular, the ∅-units are ±1. The height
of a rational number 𝑝/𝑞 in lowest terms is ℎ(𝑝/𝑞) B max{|𝑝 |, |𝑞 |}. This provides
a convenient way of measuring the ‘size’ of an 𝑆-unit. Finally, if x = (𝑥1, . . . , 𝑥𝑛) is a
vector in R𝑛, we let

∥x∥𝑘 B
( 𝑛∑︁
𝑖=1

|𝑥𝑖 |𝑘
)1/𝑘

be its standard ℓ𝑘 norm. The existence of exceptional 𝑎𝑏𝑐 triples follows from some basic
results in the geometry of numbers along with estimates for prime numbers provided by
the prime number theorem. In particular, we rely on a result of Rankin [6] guaranteeing
the existence of a short nonzero vector in a suitably chosen lattice.

2.1 The odd prime number lattice

The result involves in an essential way the odd prime number lattice 𝐿𝑛 generated by the
rows b1, . . . , b𝑛 of the matrix

b1
b2
b3
...

b𝑛


=



log 3 log 3
log 5 log 5

log 7 log 7
. . .

...

log 𝑝𝑛 log 𝑝𝑛


where 𝑝𝑖 denotes the 𝑖th odd prime number. This lattice has a number of interesting
applications. For example, it is used in Schnorr’s factoring algorithm [7] andMicciancio’s
proof that approximating the shortest vector to within a constant factor is NP-hard under
a randomized reduction [5]. There is an obvious isomorphism between the points of 𝐿𝑛

and the positive {𝑝1, . . . , 𝑝𝑛}-units given by
𝑛∑︁
𝑖=1

𝑒𝑖b𝑖 ↔
𝑛∏
𝑖=1

𝑝
𝑒𝑖
𝑖
.

Furthermore, this relationship works well with a natural notion of size, as shown in the
following lemma.
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A new lower bound in the 𝑎𝑏𝑐 conjecture 3

Figure 1: Plots of { (𝑥, 𝑦) : (𝑥, 𝑦, 𝑧) ∈ 𝐿2,𝑚 } for 1 ≤ 𝑚 ≤ 8.

Lemma 2.1 ∥x∥1 = 2 log ℎ(𝑝/𝑞) wherex =
∑𝑛

𝑖=1 𝑒𝑖b𝑖 and 𝑝/𝑞 =
∏𝑛

𝑖=1 𝑝
𝑒𝑖
𝑖
is expressed

in lowest terms.

Proof Without loss of generality suppose 𝑝 ≥ 𝑞. Then

∥x∥1 =
𝑛∑︁
𝑖=1

��𝑒𝑖 log 𝑝𝑖 �� + ��� 𝑛∑︁
𝑖=1

𝑒𝑖 log 𝑝𝑖
��� = log 𝑝 + log 𝑞 + log 𝑝 − log 𝑞 = 2 log 𝑝

as required, since ℎ(𝑝/𝑞) = 𝑝 by assumption. ■

2.2 The kernel sublattice

Let 𝑃 be the set of positive {𝑝1, . . . , 𝑝𝑛}-units, and consider the map 𝜙 reducing the
elements of 𝑃 modulo 2𝑚. Since each 𝑝1, . . . , 𝑝𝑛 is odd, 𝜙 : 𝑃 → (Z/2𝑚Z)∗ is well-
defined. The odd prime number lattice 𝐿𝑛 has an important sublattice that we call the
kernel sublattice 𝐿𝑛,𝑚. It consists of those vectors whose associated {𝑝1, . . . , 𝑝𝑛}-units
lie in the kernel of 𝜙. Formally, we define

𝐿𝑛,𝑚 B

{ 𝑛∑︁
𝑖=1

𝑒𝑖b𝑖 :
𝑛∏
𝑖=1

𝑝
𝑒𝑖
𝑖
≡ 1 (mod 2𝑚)

}
.

Figure 1 plots the first two coordinates of vectors in the kernel sublattice for varying 𝑚.

Lemma 2.2 𝐿𝑛,𝑚 is a sublattice of 𝐿𝑛 of index 2𝑚−1 when 𝑛 ≥ 2.

Proof Note that 𝐿𝑛,𝑚 is discrete and closed under addition and subtraction. 𝐿𝑛,𝑚

also contains the 𝑛 linearly independent vectors ord2𝑚 (𝑝𝑖)b𝑖 for 1 ≤ 𝑖 ≤ 𝑛, so this
demonstrates that 𝐿𝑛,𝑚 is a full-rank sublattice of 𝐿𝑛.
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4 C. Bright

Since 3 and 5 generate (Z/2𝑚Z)∗, when 𝑛 ≥ 2 we have 𝜙(𝑃) = (Z/2𝑚Z)∗.
Since 𝐿𝑛 � 𝑃 and 𝐿𝑛,𝑚 � ker 𝜙 it follows that 𝐿𝑛/𝐿𝑛,𝑚 � (Z/2𝑚Z)∗ by the first
isomorphism theorem. Thus the index of 𝐿𝑛,𝑚 in 𝐿𝑛 is | (Z/2𝑚Z)∗ | = 2𝑚−1. ■

2.3 Hermite’s constant

The Hermite constant 𝛾𝑛 is defined to be the smallest positive number such that every
lattice of dimension 𝑛 and volume det(𝐿) contains a nonzero vector x with

∥x∥22 ≤ 𝛾𝑛 det(𝐿)2/𝑛.

We are interested in the “Manhattan distance” ℓ1 norm instead of the usual Euclidean
norm, so we define the related constants 𝛿𝑛 by the smallest positive number such that
every full-rank lattice of dimension 𝑛 contains a nonzero vector x with

∥x∥1 ≤ 𝛿𝑛 det(𝐿)1/𝑛.

By Minkowski’s theorem [2] applied to a generalized octahedron (a ‘sphere’ in the ℓ1
norm), every full-rank lattice of dimension 𝑛 contains a nonzero lattice point x with
∥x∥1 ≤ (𝑛! det(𝐿))1/𝑛. It follows that 𝛿𝑛 ≤ (𝑛!)1/𝑛 ∼ 𝑛/𝑒, but better bounds on 𝛿𝑛 are
known. Blichfeldt [1] showed that

𝛿𝑛 ≤

√︄
4(𝑛 + 1) (𝑛 + 2)

3𝜋(𝑛 + 3)

(
2(𝑛 + 1)
𝑛 + 3

(𝑛
2
+ 1

)
!
)1/𝑛

∼ 𝑛
√
1.5𝜋𝑒

,

where 𝑥! B Γ(𝑥 + 1). Improving this, Rankin [6] showed the following.

Lemma 2.3 For all integer 𝑛 and real 𝑥 ∈ [1/2, 1] , we have

𝛿𝑛 ≤
(2 − 𝑥

1 − 𝑥

) 𝑥−1 (1 + 𝑥𝑛

𝑥
(𝑥𝑛)!

)1/𝑛 𝑛1−𝑥
𝑥!

∼
(2 − 𝑥

1 − 𝑥

) 𝑥−1 ( 𝑥
𝑒

) 𝑥 𝑛
𝑥!
.

Corollary 2.4 Let 𝛿 be a constant such that 𝛿𝑛 ≤ 𝑛/𝛿 +𝑂 (log 𝑛). Then a permissible value
for 𝛿 is max

1/2≤𝑥≤1

( 1−𝑥
2−𝑥

) 𝑥−1 ( 𝑒
𝑥

) 𝑥
𝑥! ≈ 3.65931.

Proof Note that ((1 + 𝑥𝑛)/𝑥)1/𝑛 = 1 +𝑂 ((log 𝑛)/𝑛) and

(𝑥𝑛)!1/𝑛 =

(√
2𝜋𝑥𝑛

( 𝑥𝑛
𝑒

) 𝑥𝑛 (
1 +𝑂 (𝑛−1)

) )1/𝑛
=

( 𝑥𝑛
𝑒

) 𝑥 (
1 +𝑂

( log 𝑛
𝑛

) )
.

Then by Lemma 2.3 it follows that

𝛿𝑛 ≤
(2 − 𝑥

1 − 𝑥

) 𝑥−1 ( 𝑥
𝑒

) 𝑥 𝑛
𝑥!

+𝑂 (log 𝑛),

and the function 𝑥 ↦→
( 1−𝑥
2−𝑥

) 𝑥−1 ( 𝑒
𝑥

) 𝑥
𝑥! for 1/2 ≤ 𝑥 ≤ 1 reaches a maximum of

approximately 3.65931 at 𝑥 ≈ 0.645467. ■

The best possible value 𝛿 can achieve inCorollary 2.4 is unknown, but theMinkowski–
Hlawka theorem [2] applied to an generalized octahedron shows that in any dimension 𝑛
there is always a full-rank lattice 𝐿 with all of its nonzero lattice points x having
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A new lower bound in the 𝑎𝑏𝑐 conjecture 5

∥x∥1 > (𝜁 (𝑛)𝑛! det(𝐿))1/𝑛/2; here 𝜁 is the Riemann zeta function. It follows that
𝛿𝑛 > (𝜁 (𝑛)𝑛!)1/𝑛/2 ∼ 𝑛/(2𝑒), so we must have 𝛿 ≤ 2𝑒.

2.4 A full-rank kernel sublattice

Since 𝐿𝑛,𝑚 ∈ R𝑛+1 is of dimension 𝑛 (i.e., not full-rank) it is awkward to use Rankin’s
result on 𝐿𝑛,𝑚 directly. The basis matrix of 𝐿𝑛,𝑚 cannot simply be rotated to embed it
in R𝑛, since rotation does not preserve the ℓ1 norm. To circumvent this and work with
a full-rank lattice we adjoin the new basis vector b𝑛+1 = [0, . . . , 0, 𝑛3] to 𝐿𝑛 to form a
full-rank lattice 𝐿𝑛 (and similarly a full-rank lattice 𝐿𝑛,𝑚).

Lemma 2.5 The volume of 𝐿𝑛,𝑚 is 2𝑚−1𝑛3
∏𝑛

𝑖=1 log 𝑝𝑖 when 𝑛 ≥ 2.

Proof The basis matrix of 𝐿𝑛 adjoined with b𝑛+1 is an upper-triangular matrix, so
det(𝐿𝑛) = 𝑛3

∏𝑛
𝑖=1 log 𝑝𝑖 . The index of 𝐿𝑛,𝑚 in 𝐿𝑛 is 2𝑚−1 when 𝑛 ≥ 2 by the same

argument as in Lemma 2.2, so det(𝐿𝑛,𝑚) = 2𝑚−1 det(𝐿𝑛). ■

Our choice of 𝑚 will ultimately be asymptotic to 𝑛 log2 𝑛, and in this case
det(𝐿𝑛,𝑚)1/(𝑛+1) grows slightly more than linearly in 𝑛.

Lemma 2.6 If 𝑚 ∼ 𝑛 log2 𝑛 then det(𝐿𝑛,𝑚)1/(𝑛+1) = 𝑂 (𝑛1+𝜖 ) for all 𝜖 > 0.

Proof Lemma 2.5 implies det(𝐿𝑛,𝑚)1/(𝑛+1) < 2𝑚/𝑛𝑛3/𝑛
(∏𝑛

𝑖=1 log 𝑝𝑖
)1/𝑛. Note that

𝑚/𝑛 = log2 𝑛 + 𝑜(log2 𝑛) < (1 + 𝜖) log2 𝑛 for all 𝜖 > 0 and sufficiently large 𝑛. Thus
2𝑚/𝑛 < 𝑛1+𝜖 for sufficiently large 𝑛, and the remaining factors are𝑂 (𝑛𝜖 ) since 𝑛3/𝑛 =

𝑂 (1) and
(∏𝑛

𝑖=1 log 𝑝𝑖
)1/𝑛

< log 𝑝𝑛 = 𝑂 (log 𝑛). ■

Finally, we will require the fact that any vector in 𝐿𝑛 including a nontrivial coefficient
on b𝑛+1 must be sufficiently large (have length at least 𝑛3 in the ℓ1 norm).

Lemma 2.7 If x =
∑𝑛+1

𝑖=1 𝑒𝑖b𝑖 then ∥x∥1 ≥ 𝑛3 |𝑒𝑛+1 |.

Proof We have ∥x∥1 =
∑𝑛

𝑖=1 |𝑒𝑖 | log 𝑝𝑖 +
��∑𝑛

𝑖=1 𝑒𝑖 log 𝑝𝑖 + 𝑒𝑛+1𝑛3
��.

Without loss of generality suppose that 𝑒𝑛+1 > 0 and for contradiction suppose
∥x∥1 < 𝑛3𝑒𝑛+1. Then

𝑛∑︁
𝑖=1

𝑒𝑖 log 𝑝𝑖 + 𝑒𝑛+1𝑛
3 ≤

��� 𝑛∑︁
𝑖=1

𝑒𝑖 log 𝑝𝑖 + 𝑒𝑛+1𝑛
3
��� < 𝑛3𝑒𝑛+1 −

𝑛∑︁
𝑖=1

|𝑒𝑖 | log 𝑝𝑖

implies
∑𝑛

𝑖=1 (𝑒𝑖 + |𝑒𝑖 |) log 𝑝𝑖 < 0, and this is nonsensical since the left-hand side is
nonnegative. ■

2.5 Asymptotic formulae

Let 𝑥 B 𝑝𝑛 and let 𝜋(𝑥) be the prime counting function, so that 𝑛 = 𝜋(𝑥) − 1. The
prime number theorem [4] states that 𝜋(𝑥) ∼ li(𝑥) where li(𝑥) is the logarithmic integral

2023/10/18 01:54



6 C. Bright∫ 𝑥

0
d𝑡

log 𝑡 with asymptotic expansion

li(𝑥) = 𝑥

log 𝑥
+ 𝑥

log2 𝑥
+ 2𝑥
log3 𝑥

+𝑂

( 𝑥

log4 𝑥

)
. (2.1)

In fact, the error term 𝜋(𝑥) − li(𝑥) is 𝑂 (𝑥/exp(𝐶 log1/2 𝑥)) for some constant 𝐶 > 0.
The following estimates are consequences of this (cf. [9, Lemma 2]). For the convenience
of the reader, proofs are given in the appendix.

Lemma 2.8
∑𝑛

𝑖=1 log 𝑝𝑖 = 𝑛 log 𝑝𝑛 − 𝑛 − 𝑝𝑛/log2 𝑝𝑛 +𝑂 (𝑝𝑛/log3 𝑝𝑛).

Lemma 2.9
∑𝑛

𝑖=1 log log 𝑝𝑖 = 𝑛 log log 𝑝𝑛 − 𝑝𝑛/log2 𝑝𝑛 +𝑂 (𝑝𝑛/log3 𝑝𝑛).

3 Exceptional 𝒂𝒃𝒄 triples

For our purposes the importance of the kernel sublattice is that it lets us show the
existence of 𝑎𝑏𝑐 triples in which 𝑐 is large relative to rad(𝑎𝑏𝑐). The following lemma
shows how this may be done.

Lemma 3.1 For all𝑚 ≲ 𝑛 log2 𝑛 and sufficiently large 𝑛, there exists an 𝑎𝑏𝑐 triple satisfying

2𝑚−1∏𝑛
𝑖=1 𝑝𝑖

rad(𝑎𝑏𝑐) ≤ 𝑐 and 2 log 𝑐 ≤ 𝑛 +𝑂 (log 𝑛)
𝛿

(
2𝑚−1𝑛3

𝑛∏
𝑖=1

log 𝑝𝑖
)1/(𝑛+1)

.

Proof By the definition of 𝛿 from Corollary 2.4, for all sufficiently large 𝑛 there exists
a nonzero x ∈ 𝐿𝑛,𝑚 with

∥x∥1 ≤
(𝑛 + 1

𝛿
+𝑂 (log 𝑛)

)
det(𝐿𝑛,𝑚)1/(𝑛+1) . (3.1)

Sayx =
∑𝑛+1

𝑖=1 𝑒𝑖b𝑖 . For sufficiently large 𝑛wemust have 𝑒𝑛+1 = 0, since by Lemma 2.7 if
𝑒𝑛+1 ≠ 0 then ∥x∥1 ≥ 𝑛3. This would contradict (3.1) since by Lemma 2.6 the right-hand
side is𝑂 (𝑛2+𝜖 ).

Let
∏𝑛

𝑖=1 𝑝
𝑒𝑖
𝑖

= 𝑝/𝑞 be expressed in lowest terms. By construction of the kernel
sublattice, we have that 𝑝/𝑞 ≡ 1 (mod 2𝑚). Let 𝑐 B ℎ(𝑝/𝑞) = max{𝑝, 𝑞}, 𝑏 B
min{𝑝, 𝑞}, and 𝑎 B 𝑐 − 𝑏, so that 𝑎, 𝑏, 𝑐 form an 𝑎𝑏𝑐 triple. Furthermore, we see that

𝑐 ≡ 𝑏 (mod 2𝑚)

so that 𝑐 = 𝑏 + 𝑘2𝑚 for some positive integer 𝑘 ≤ 𝑐/2𝑚. Note 𝑎 is divisible by 2 and any
other prime that divides it also divides 𝑘 , so that rad(𝑎) ≤ 2𝑘 ≤ 𝑐/2𝑚−1. Furthermore,
by construction of 𝑏 and 𝑐, rad(𝑏𝑐) ≤ ∏𝑛

𝑖=1 𝑝𝑖 and the first bound follows. The second
bound follows from (3.1) and Lemmas 2.1 and 2.5. ■

3.1 Optimal choice of 𝒎

The first bound in Lemma 3.1 allows us to show the existence of infinitely many 𝑎𝑏𝑐
triples whose ratio of 𝑐 to rad(𝑎𝑏𝑐) grows arbitrarily large. Using the second bound, we
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A new lower bound in the 𝑎𝑏𝑐 conjecture 7

can even show that this ratio grows faster than a function of 𝑐. It is not immediately clear
how to choose 𝑚 optimally, i.e., to maximize the ratio 𝑐/rad(𝑎𝑏𝑐).

For convenience, let 𝑅 denote the right-hand side of the second inequality in
Lemma 3.1 with 𝑙𝑛 B 𝑂 (log 𝑛). Then 2𝑚−1 =

(
𝛿𝑅
𝑛+𝑙𝑛

)𝑛+1/(𝑛3 ∏𝑛
𝑖=1 log 𝑝𝑖), so the

bounds of Lemma 3.1 can be rewritten in terms of 𝑅:

(𝛿𝑅/(𝑛 + 𝑙𝑛))𝑛+1
𝑛3

∏𝑛
𝑖=1 𝑝𝑖 log 𝑝𝑖

rad(𝑎𝑏𝑐) ≤ 𝑐 and 2 log 𝑐 ≤ 𝑅. (3.2)

The question now becomes how to choose 𝑅 in terms of 𝑛 so that 𝑐/rad(𝑎𝑏𝑐) is
maximized.

Taking the logarithm of the first inequality in (3.2) gives

(𝑛 + 1) log
( 𝛿𝑅

𝑛 + 𝑙𝑛

)
− 3 log 𝑛 −

𝑛∑︁
𝑖=1

log 𝑝𝑖 −
𝑛∑︁
𝑖=1

log log 𝑝𝑖 + log rad(𝑎𝑏𝑐) ≤ log 𝑐.

Using the asymptotic formulae in Lemmas 2.8 and 2.9 with log(𝑛+ 𝑙𝑛) = log 𝑛+𝑂 (𝑙𝑛/𝑛),
this becomes

𝑛 log
( 𝑒𝛿𝑅

𝑛𝑝𝑛 log 𝑝𝑛

)
+ 2𝑝𝑛
log2 𝑝𝑛

+𝑂

( 𝑝𝑛

log3 𝑝𝑛

)
+ log rad(𝑎𝑏𝑐) ≤ log 𝑐. (3.3)

By the prime number theorem 𝑛 = li(𝑝𝑛) +𝑂 (𝑝𝑛/log2 𝑝𝑛) and (2.1) the leftmost term
becomes

𝑛 log
(

𝑒𝛿𝑅

𝑝2𝑛
(
1 + 1/log 𝑝𝑛 +𝑂 (1/log2 𝑝𝑛)

) ) ,
and with log(1 + 1/𝑥) = 1/𝑥 +𝑂 (1/𝑥2) as 𝑥 → ∞, this is

𝑛 log
( 𝑒𝛿𝑅
𝑝2𝑛

)
− 𝑛

log 𝑝𝑛
+𝑂

( 𝑛

log2 𝑝𝑛

)
.

Using (2.1) again on the last two terms and putting this back into (3.3), we get

𝑛 log
( 𝑒𝛿𝑅
𝑝2𝑛

)
+ 𝑝𝑛

log2 𝑝𝑛
+𝑂

( 𝑝𝑛

log3 𝑝𝑛

)
+ log rad(𝑎𝑏𝑐) ≤ log 𝑐, (3.4)

and our goal becomes to choose 𝑅 as a function of 𝑛 to maximize 𝑛 log(𝑒𝛿𝑅/𝑝2𝑛). Choos-
ing 𝑅 as asymptotically slow-growing as possible in terms of 𝑛 will maximize this in
terms of 𝑅. We must take 𝑅 > 𝑝2𝑛/(𝑒𝛿) for the logarithm to be positive, so we take
𝑅 B 𝑘 𝑝2𝑛 for some constant 𝑘 . Note that with this choice 𝑚 ∼ 𝑛 log2 𝑛, so Lemma 3.1
applies. We have that 𝑛 log(𝑒𝛿𝑅/𝑝2𝑛) simplifies to

𝑛 log(𝑒𝛿𝑘) ∼ 𝑝𝑛

log 𝑝𝑛
log(𝑒𝛿𝑘) =

√︁
𝑅/𝑘

log
√︁
𝑅/𝑘

log(𝑒𝛿𝑘) ∼
2
√︁
𝑅/𝑘

log 𝑅
log(𝑒𝛿𝑘).

For fixed 𝑅 this is maximized when 𝑘 B 𝑒/𝛿. Using 𝑅 = 𝑒𝑝2𝑛/𝛿 in (3.4),

2𝑛 + 𝑝𝑛

log2 𝑝𝑛
+𝑂

( 𝑝𝑛

log3 𝑝𝑛

)
+ log rad(𝑎𝑏𝑐) ≤ log 𝑐.
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By the prime number theorem and (2.1) again,

2𝑝𝑛
log 𝑝𝑛

+ 3𝑝𝑛
log2 𝑝𝑛

+𝑂

( 𝑝𝑛

log3 𝑝𝑛

)
+ log rad(𝑎𝑏𝑐) ≤ log 𝑐.

Rewriting in terms of 𝑅,

2
√︁
𝛿𝑅/𝑒

log
√︁
𝛿𝑅/𝑒

+
3
√︁
𝛿𝑅/𝑒

log2
√︁
𝛿𝑅/𝑒

+𝑂

( √
𝑅

log3 𝑅

)
+ log rad(𝑎𝑏𝑐) ≤ log 𝑐.

Simplifying,

4
√︁
𝛿𝑅/𝑒

log(𝛿𝑅/𝑒) +
12
√︁
𝛿𝑅/𝑒

log2 (𝛿𝑅/𝑒)
+𝑂

( √
𝑅

log3 𝑅

)
+ log rad(𝑎𝑏𝑐) ≤ log 𝑐.

Using 1/(𝑥 + 𝑦) = 1/𝑥 − 𝑦/𝑥2 +𝑂 (𝑥−3) as 𝑥 → ∞ this gives

4
√︁
𝛿𝑅/𝑒

log(𝑅/2) +
(12 − 4 log(2𝛿/𝑒))

√︁
𝛿𝑅/𝑒

log2 𝑅
+𝑂

( √
𝑅

log3 𝑅

)
+ log rad(𝑎𝑏𝑐) ≤ log 𝑐.

Using that 2𝛿 < 𝑒4 the second term on the left is positive, and so for sufficiently large 𝑅
the middle two terms are necessarily positive. Therefore for sufficiently large 𝑅 this can
be simplified to

4
√︁
𝛿𝑅/𝑒

log(𝑅/2) + log rad(𝑎𝑏𝑐) ≤ log 𝑐.

Using that 2 log 𝑐 ≤ 𝑅 from (3.2) and the increasing monotonicity of
√
𝑅/log(𝑅/2) for

sufficiently large 𝑅, we finally achieve that

4
√︁
2(𝛿/𝑒) log 𝑐
log log 𝑐

+ log rad(𝑎𝑏𝑐) ≤ log 𝑐.

Taking the exponential, this proves the following theorem.

Theorem 3.1 There are infinitely many 𝑎𝑏𝑐 triples satisfying

exp
(
4
√︁
2(𝛿/𝑒) log 𝑐
log log 𝑐

)
rad(𝑎𝑏𝑐) ≤ 𝑐.

Using the permissible value for 𝛿 derived by Rankin’s bound in Corollary 2.4, the
constant in the exponent becomes approximately 6.56338. As mentioned in Section 2.3,
the best known upper bound on 𝛿 is 2𝑒, meaning that the constant in the exponent would
become 8 if this upper bound was shown to be tight.
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Appendix

Lemma 2.8
∑𝑛

𝑖=1 log 𝑝𝑖 = 𝑛 log 𝑝𝑛 − 𝑛 − 𝑝𝑛/log2 𝑝𝑛 +𝑂 (𝑝𝑛/log3 𝑝𝑛).

Proof Let 𝑥 B 𝑝𝑛, so the prime number theorem (with error term) gives 𝑛 = li(𝑥) +
𝑂 (𝑥/log4 𝑥). Rearranging the asymptotic expansion of the logarithmic integral (2.1) gives

𝑥 = 𝑛 log 𝑥 − 𝑥

log 𝑥
− 2𝑥
log2 𝑥

+𝑂

( 𝑥

log3 𝑥

)
= 𝑛 log 𝑥 − 𝑛 − 𝑥

log2 𝑥
+𝑂

( 𝑥

log3 𝑥

)
.

An alternate form of the prime number theorem is 𝑥 =
∑

𝑝≤𝑥 log 𝑝 + 𝑂 (𝑥/log3 𝑥), so
the left-hand side may be replaced by

∑𝑛
𝑖=1 log 𝑝𝑖 from which the result follows. ■

Lemma 2.9
∑𝑛

𝑖=1 log log 𝑝𝑖 = 𝑛 log log 𝑝𝑛 − 𝑝𝑛/log2 𝑝𝑛 +𝑂 (𝑝𝑛/log3 𝑝𝑛).

Proof By Abel’s summation formula with 𝑓 (𝑘) B log log 𝑘 and

𝑎𝑘 B

{
1 if 𝑘 is an odd prime
0 otherwise

for 𝑘 up to 𝑥 B 𝑝𝑛, we have
𝑛∑︁
𝑖=1

log log 𝑝𝑖 = 𝑛 log log 𝑥 −
∫ 𝑥

2

𝜋(𝑡) − 1
𝑡 log 𝑡

d𝑡.

We have 𝜋(𝑡) − 1 = 𝑡/log 𝑡 +𝑂 (𝑡/log2 𝑡) by the prime number theorem, so that∫ 𝑥

2

𝜋(𝑡) − 1
𝑡 log 𝑡

d𝑡 =
∫ 𝑥

2

d𝑡
log2 𝑡

+𝑂

(∫ 𝑥

2

d𝑡
log3 𝑡

)
.

The first integral on the right works out to∫ 𝑥

2

d𝑡
log2 𝑡

= li(𝑥) − 𝑥

log 𝑥
+𝑂 (1) = 𝑥

log2 𝑥
+𝑂

( 𝑥

log3 𝑥

)
by the asymptotic expansion of the logarithmic integral. The second integral on the right
can split in two (around

√
𝑥) and then estimated by∫ √

𝑥

2

d𝑡
log3 𝑡

+
∫ 𝑥

√
𝑥

d𝑡
log3 𝑡

≤
√
𝑥

log3 2
+ 𝑥 −

√
𝑥

log3
√
𝑥
= 𝑂

( 𝑥

log3 𝑥

)
.

Putting everything together gives
𝑛∑︁
𝑖=1

log log 𝑝𝑖 = 𝑛 log log 𝑥 − 𝑥

log2 𝑥
+𝑂

( 𝑥

log3 𝑥

)
. ■
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