
Applicable Algebra in Engineering, Communication and Computing manuscript No.
(will be inserted by the editor)

A Nonexistence Certificate for Projective Planes of Order Ten
with Weight 15 Codewords

Curtis Bright · Kevin Cheung · Brett Stevens ·
Dominique Roy · Ilias Kotsireas · Vijay Ganesh

Received: October 30, 2019 / Accepted: February 14, 2020

Abstract Using techniques from the fields of symbolic computation and satisfiability check-
ing we verify one of the cases used in the landmark result that projective planes of order ten do
not exist. In particular, we show that there exist no projective planes of order ten that generate
codewords of weight fifteen, a result first shown in 1973 via an exhaustive computer search.
We provide a simple satisfiability (SAT) instance and a certificate of unsatisfiability that can
be used to automatically verify this result for the first time. All previous demonstrations
of this result have relied on search programs that are difficult or impossible to verify—in
fact, our search found partial projective planes that were missed by previous searches due to
previously undiscovered bugs. Furthermore, we show how the performance of the SAT solver
can be dramatically increased by employing functionality from a computer algebra system
(CAS). Our SAT+CAS search runs significantly faster than all other published searches
verifying this result.

Keywords Combinatorial search · Projective planes · Symbolic computation · Satisfiability
checking · SAT+CAS

1 Introduction

A projective plane is a geometric structure where parallel lines do not exist. In other words,
any two lines in a projective plane must meet at some point, a property that does not hold in the

C. Bright
University of Waterloo
E-mail: cbright@uwaterloo.ca
Webpage: https://cs.uwaterloo.ca/~cbright/

K. Cheung, B. Stevens
Carleton University

D. Roy
Canada Revenue Agency

I. Kotsireas
Wilfrid Laurier University

V. Ganesh
University of Waterloo

https://cs.uwaterloo.ca/~cbright/

2 Curtis Bright, Kevin Cheung, Brett Stevens, et al.

standard Euclidean plane. The existence of non-Euclidean planes is initially counterintuitive
but they have been widely studied since the beginning of the 18th century. As a simple
example of this phenomenon, consider the case of geometry on a sphere. In this case the lines
on a sphere are the “great circles” of the sphere and any two distinct lines intersect in exactly
two antipodal points.

A more exotic type of geometry known as finite geometry occurs when only a finite
number of points exist. In this article we are concerned with finite projective geometry, i.e.,
geometry that include axioms that say that only a finite number of points exist and that
parallel lines do not exist. A finite projective plane is a model of the finite projective geometry
axioms (see Section 2 for the complete list). In particular, a finite projective plane is said to
be of order n if there are n+1 points on every line.

An important open question in finite geometry concerns the orders n for which finite
planes exist. Finite projective planes of order n can be constructed whenever n is a prime
power but it is unknown if any exist when n is not a prime power. Despite a significant
amount of effort no one has ever been able to construct a finite plane in an order n that is not
a prime power and it has been widely conjectured that such a plane cannot exist [13].

A partial result was proven by Bruck and Ryser [11] who showed that n must be the sum
of two integer squares if a finite plane of order n exists with n congruent to 1 or 2 (mod 4).
Bruck and Ryser’s result implies that a projective plane of order six cannot exist. Every other
n < 10 is a prime power and therefore a finite plane of order n does exist; the smallest order
that is not a prime power and not covered by the Bruck–Ryser theorem is ten.

A first step towards solving the existence question in order ten was completed by
MacWilliams, Sloane, and Thompson [42]. In their paper the error-correcting code gen-
erated by a hypothetical projective plane of order ten was studied. In particular, they showed
that the search could be reduced to four cases that they called the weight 12, 15, 16, and 19
cases (see Section 2). Furthermore, they used a computer search to show that the weight 15
case did not lead to a projective plane of order ten.

In the 1980s a number of extensive computer searches were performed to settle the
question of existence of a projective plane of order ten. In particular, the weight 12 case was
solved by Lam, Thiel, Swiercz, and McKay [40], the weight 16 case was solved by Lam,
Thiel, and Swiercz [38] (continuing work by Carter [14]) and the weight 19 case was solved
by Lam, Thiel, and Swiercz [39], finally showing that a projective plane of order ten does not
in fact exist.

Each of these cases required a significant amount of computational resources to solve,
including about 2.7 months of computing time on a CRAY-1A supercomputer to solve the
weight 19 case. More recently, Roy [48] performed a verification of the nonexistence of
the projective plane of order ten using 3.2 months of computing time with 15 CPU cores
running at 2.4 GHz. Several recent works [15,16,46] have also performed verifications of the
weight 15 case using custom-written search code. These verifications used the programming
language C or the programming languages of the computer algebra systems GAP and
Mathematica. Additionally, Bruen and Fisher [12] showed that the weight 15 case can be
solved using a result of Denniston [21] but this was also obtained via a computer search.

In this paper we perform a verification of the weight 15 case using the properties derived
by MacWilliams, Sloane, and Thompson [42]. Our verification is unique in that we translate
the properties of a projective plane into Boolean logic and then perform the search using a
SAT solver. SAT solvers are known to be some of the best tools to perform combinatorial
searches; for example, Heule, Kullmann, and Marek [29] state that today they are the “best
solution” for most kinds of combinatorial searches. Even so, they mention that there are some

A Nonexistence Certificate for Projective Planes of Order Ten with Weight 15 Codewords 3

problems that SAT solvers have not yet been successfully applied to. In fact, they explicitly
list the search for a projective plane of order ten as one of these problems:

An example where only a solution by [special purpose solvers] is known is the
determination that there is no projective plane of order 10 [. . .] To the best of our
knowledge the effort has not been replicated, and there is definitely no formal proof.

The fact that we perform our search using a SAT solver means that we can produce a
formally verifiable certificate that the weight 15 case does not lead to a solution. In contrast
to all previous searches that have been completed, one can verify our results without needing
to trust the particular choice of hardware, compiler, or search algorithms that we happened to
use in our verification. Instead, one merely needs to trust our encoding of the problem into
SAT (see Section 3) and our SAT instance generation script (see Section 4).

We do not claim our verification is a formal proof of nonexistence because it relies
on mathematical results that (at least currently) have no machine-verifiable formal proof.
However, compared to previous approaches our verification has the advantage that it is not
necessary to trust code that implements a search algorithm. This is particularly important
considering that efficient search algorithms often need to be written in a convoluted way to
obtain optimum performance. In fact, while verifying that our SAT encoding was producing
correct results we uncovered bugs in previous searches (see Section 4).

Our result is also a first step towards a formal proof. The SAT encoding is deliberately
chosen to be as simple as possible so that (1) the possibility of an encoding bug is less likely,
and (2) it will be as simple as possible to formally generate the SAT clauses directly from the
axioms that define a projective plane of order ten. This approach of reducing a problem to
SAT, solving the resulting SAT instance, formally verifying the nonexistence certificate, and
then finally formally verifying the SAT encoding in a theorem prover has recently successfully
formally verified the proofs of the Boolean Pythagorean triples conjecture [19,28] and the
Erdős discrepancy conjecture for discrepancy up to three [33,34].

We also show how to use a computer algebra system (CAS) to greatly improve the
efficiency of the SAT solver (see Section 3.2). This “SAT+CAS” approach of combining SAT
solvers with computer algebra systems has recently been applied to a variety of problems
including verifying the correctness of Boolean arithmetic circuits [32], finding new algorithms
for 3×3 matrix multiplication [27], and finding or disproving the existence of certain kinds
of combinatorial designs [7]. For more detailed surveys on the SAT+CAS paradigm and the
kinds of problems that it has been applied to see [9,20]. Our SAT+CAS approach for solving
the weight 15 case performs better than all other searches that have been previously published
(see Section 4.3).

2 Projective plane preliminaries

A finite projective plane of order n consists of a set of lines and a set of points that satisfy the
following axioms:

P1. There are n+1 points on every line and there are n+1 lines through every point.
P2. There is exactly one line between every two distinct points and every two distinct lines

intersect in exactly one point.

A consequence of these axioms is that a finite projective plane of order n contains exactly
n2 +n+1 points and exactly n2 +n+1 lines [31].

4 Curtis Bright, Kevin Cheung, Brett Stevens, et al.

One convenient way of representing a finite projective plane is by an incidence matrix
that encodes which points lie on which lines. This matrix has a 1 in the (i, j)th entry if point j
is on line i and has a 0 in the (i, j)th entry otherwise. In this representation axiom P2 says
that every pair of columns or pair of rows intersect exactly once (where two columns or rows
intersect if they both contain a 1 in the same location). The number of times that two columns
or rows intersect is given by the inner product (over the reals) of the two columns or rows, so
axiom P2 says that the inner product product of any two columns or rows is exactly one.

It follows that a finite projective plane of order ten is equivalent to a {0,1}-matrix of size
111×111 such that:
P1. Every row and column contains exactly eleven 1s.
P2. The inner product of any two distinct rows or two distinct columns is exactly 1.
The ordering of the rows and columns of the incidence matrix of a projective plane is arbitrary
and we say that two matrices are equivalent if one matrix can be transformed into the other
by a reordering of the rows and columns.

Suppose P is the incidence matrix of a hypothetical projective plane of order ten. The
elements of the row space of P (mod 2) are known as the codewords of P and the number
of 1s in a codeword is known as the weight of the codeword. Let wk denote the number
of codewords of P of weight k. For example, w0 = 1 because the zero vector is in the row
space of P and no other codeword has a weight of zero. Also, it was shown by Assmus and
Mattson [3] that the values of all wk for 0 ≤ k ≤ 111 can be determined from just the values
of w12, w15, and w16.

The relationships between the values of wk are what ultimately lead to the contradiction
that showed that a projective plane of order ten cannot exist. For example,

w12 = w15 = w16 = 0 imply that w19 = 24,675.

However, a number of exhaustive computer searches [14,38,39,40,42] found no codewords
of weights 12, 15, 16, or 19—thus implying the hypothetical projective plane P cannot exist.

In fact, it is known that w15 and w19 cannot both be zero [14,24]. Furthermore, Carter [14]
and Hall [24] show that the weight 19 codewords either arise from weight 12 codewords,
weight 16 codewords, or are of a third kind that they call primitive. They show that if w15
and w16 are zero then the number of primitive weight 19 codewords must be positive. Thus,
to show that a projective plane of order ten does not exist it suffices to show that there exists
no codewords of P of weights 15, 16, or primitive weight 19 codewords. In the remainder of
this paper we describe the construction of a SAT instance that necessarily has a solution if a
codeword of P of weight 15 exists. We then provide a certificate that this SAT instance is
unsatisfiable and therefore solve one of the three cases necessary to prove the nonexistence
of a projective plane of order ten.

2.1 Incidence matrix structure

MacWilliams et al. [42] derive a number of properties that the structure of a projective plane
of order ten with weight 15 codewords must satisfy. In particular, they show that up to
equivalence the incidence matrix of such a projective plane can be partitioned into a 3×3
grid of submatrices as follows:

15 60 36
heavy 6 (5 0 6)

medium 15 3 8 0
light 90 1 6 4

A Nonexistence Certificate for Projective Planes of Order Ten with Weight 15 Codewords 5

Here the numbers outside the matrix denote the number of rows or columns in that part of
the matrix and the numbers inside the matrix are the number of 1s that appear in each row
of the submatrix in that part of the matrix. MacWilliams et al. [42] call the first 15 columns
the A points, the next 60 columns the C points, and the remaining columns the B points.
Furthermore, Roy [48] calls the first 6 rows the heavy lines, the next 15 rows the medium
lines, and the remaining rows the light lines.

MacWilliams et al. [42] also show that up to equivalence there is exactly one way of
assigning the 1s in each submatrix except for the last two submatrices of the last row. Fur-
thermore they provide an explicit representation of the unique assignment up to equivalence.

2.2 Initial entries

Up to equivalence, a number of entries of a projective plane of order ten containing a
weight 15 codeword can be initialized in advance, including all entries in the first 21 rows
and 15 columns [42]. In our search we focus on the first 75 columns and 51 rows of the
projective plane. The entries of this submatrix that we fix in advance are shown in Figure 1.

The first 6 rows (the heavy lines) of the projective plane are taken to be identical with
the representation of MacWilliams et al. [42]. The next 21 rows (the medium lines) are
equivalent to MacWilliams’ representation—we have only applied a column permutation
to their representation to more clearly explain how we assigned the 1s in the later rows. In
particular, the specific ordering of columns 16–75 that was used in Figure 1 was chosen in
order to allow initializing the diagonal line of 1s that appears in rows 22–51 (see below).

The first 15 columns in Figure 1 are also specified to be identical to the representation
given by MacWilliams et al. [42]. They choose to order the rows so that the light rows
containing a 1 in the first column appear first, followed by the light lines containing a 1 in the
tenth, fifteenth, eleventh, and fourteenth columns (in that order). This ordering was chosen in
an attempt to maximize the number of overlapping columns with unassigned entries in the
light rows. While searching for completions of the unassigned entries, conflicts between two
light rows will occur in columns where both light rows contain unassigned entries—therefore
maximizing the number of overlapping columns with unassigned entries tends to increase the
number of conflicts and speed up the search.

This leaves the lower-right 30×60 submatrix of Figure 1. The zeros that appear in this
submatrix are easily determined; if they were 1s then the column that they are on would
intersect more than once with another column. For example, consider the 22nd entry of the
22nd line—if this entry was a 1 then the first and 22nd column would intersect twice, in
contradiction to the matrix of Figure 1 being a partial projective plane.

Next we show that the diagonal line of 1s that appears on the left of the 30×60 submatrix
can be assumed without loss of generality. For example, consider the light rows that contain
a 1 in the first column (rows 22–27). By the projective plane axiom P2, these lines must share
a point of intersection with the fourth medium line (row 10). By inspection, there are exactly
six possible columns for this point of intersection (namely, columns 16–21). In other words,
there must be a 1 in each row of the submatrix given by rows 22–27 and columns 16–21.

Since each of the rows 22–27 are already pairwise intersecting in the first column they
must not be pairwise intersecting in the columns 16–21. Similarly, each of the columns 16–21
are already pairwise intersecting in the tenth row so they must not be pairwise intersecting in
the rows 22–27. In other words, each row and column of the submatrix given by rows 22–27
and columns 16–21 contains at most a single 1. By reordering the rows 22–27 we can assume

6 Curtis Bright, Kevin Cheung, Brett Stevens, et al.

< points 1-15 >< points 16-75 >
> 1111100

10000111100
lines 010001000111000
1-6 00100010010011000

00010001001010100

< 00001000100101100

> 100000000100001000000000000000000000001111110000000010000100000000000000000
100000000010010000000111111000000000000000000000000000100000010000000000000
100000000001100000000000000111111000000000000000100000000000000000100000000
0100001000000011111110001000100000000
010000010000010000000000000000010001000000000000000000000101100010000100001
010000001000100000000000010000000000010000010110000000000010000100000001000
001001000000001000000001000000000010000000000000111000001000000110000000000

lines 001000010001000000100000001000000000000100000001000100000000000000000001110
7-21 001000001010000010000000000000001000000001000000000001000000001000011000001

000101000000010001000000000100000000000000001100000111010000000000000000000
000100100001000000000100000000000111111000000000000000000000000000001000000
000100001100000000001000000000100000000000000000000000101000000001000110100
000011000000100100000010000000000000100010000001000000000000100000010010000
000010100010000000000000000010000000000000101000010000000011000001000000010

< 000010010100000000010000000001000100000000000010001000010000011000000000000

> 1000000000000001␣␣␣␣␣000000000000␣␣␣␣␣000000␣␣␣␣0␣␣␣0␣0␣␣0␣␣␣0␣␣␣␣0␣␣␣␣␣␣␣␣
100000000000000␣1␣␣␣␣000000000000␣␣␣␣␣000000␣␣␣␣0␣␣␣0␣0␣␣0␣␣␣0␣␣␣␣0␣␣␣␣␣␣␣␣
100000000000000␣␣1␣␣␣000000000000␣␣␣␣␣000000␣␣␣␣0␣␣␣0␣0␣␣0␣␣␣0␣␣␣␣0␣␣␣␣␣␣␣␣
100000000000000␣␣␣1␣␣000000000000␣␣␣␣␣000000␣␣␣␣0␣␣␣0␣0␣␣0␣␣␣0␣␣␣␣0␣␣␣␣␣␣␣␣
100000000000000␣␣␣␣1␣000000000000␣␣␣␣␣000000␣␣␣␣0␣␣␣0␣0␣␣0␣␣␣0␣␣␣␣0␣␣␣␣␣␣␣␣
100000000000000␣␣␣␣␣1000000000000␣␣␣␣␣000000␣␣␣␣0␣␣␣0␣0␣␣0␣␣␣0␣␣␣␣0␣␣␣␣␣␣␣␣
000000000100000␣␣␣␣001␣␣␣␣␣␣␣00␣␣0␣␣␣␣000000␣␣0␣␣␣0␣0␣0000␣␣␣00␣␣0␣␣␣00␣0␣␣
000000000100000␣␣␣␣00␣1␣␣␣␣␣␣00␣␣0␣␣␣␣000000␣␣0␣␣␣0␣0␣0000␣␣␣00␣␣0␣␣␣00␣0␣␣
000000000100000␣␣␣␣00␣␣1␣␣␣␣␣00␣␣0␣␣␣␣000000␣␣0␣␣␣0␣0␣0000␣␣␣00␣␣0␣␣␣00␣0␣␣
000000000100000␣␣␣␣00␣␣␣1␣␣␣␣00␣␣0␣␣␣␣000000␣␣0␣␣␣0␣0␣0000␣␣␣00␣␣0␣␣␣00␣0␣␣
000000000100000␣␣␣␣00␣␣␣␣1␣␣␣00␣␣0␣␣␣␣000000␣␣0␣␣␣0␣0␣0000␣␣␣00␣␣0␣␣␣00␣0␣␣
000000000100000␣␣␣␣00␣␣␣␣␣1␣␣00␣␣0␣␣␣␣000000␣␣0␣␣␣0␣0␣0000␣␣␣00␣␣0␣␣␣00␣0␣␣
000000000000001000000␣␣00␣␣1␣␣␣␣␣␣0␣␣␣000000␣␣␣␣000␣0␣␣␣00␣␣␣␣␣00␣0␣␣␣␣␣␣␣␣
000000000000001000000␣␣00␣␣␣1␣␣␣␣␣0␣␣␣000000␣␣␣␣000␣0␣␣␣00␣␣␣␣␣00␣0␣␣␣␣␣␣␣␣

lines 000000000000001000000␣␣00␣␣␣␣1␣␣␣␣0␣␣␣000000␣␣␣␣000␣0␣␣␣00␣␣␣␣␣00␣0␣␣␣␣␣␣␣␣
22-51 000000000000001000000␣␣00␣␣␣␣␣1␣␣␣0␣␣␣000000␣␣␣␣000␣0␣␣␣00␣␣␣␣␣00␣0␣␣␣␣␣␣␣␣

000000000000001000000␣␣00␣␣␣␣␣␣1␣␣0␣␣␣000000␣␣␣␣000␣0␣␣␣00␣␣␣␣␣00␣0␣␣␣␣␣␣␣␣
000000000000001000000␣␣00␣␣␣␣␣␣␣1␣0␣␣␣000000␣␣␣␣000␣0␣␣␣00␣␣␣␣␣00␣0␣␣␣␣␣␣␣␣
000000000010000␣0␣␣␣␣000000␣0␣␣␣01␣␣␣␣␣␣␣00␣0␣␣␣␣0␣␣␣00␣␣␣00␣00␣␣0␣00␣␣␣␣00
000000000010000␣0␣␣␣␣000000␣0␣␣␣0␣1␣␣␣␣␣␣00␣0␣␣␣␣0␣␣␣00␣␣␣00␣00␣␣0␣00␣␣␣␣00
000000000010000␣0␣␣␣␣000000␣0␣␣␣0␣␣1␣␣␣␣␣00␣0␣␣␣␣0␣␣␣00␣␣␣00␣00␣␣0␣00␣␣␣␣00
000000000010000␣0␣␣␣␣000000␣0␣␣␣0␣␣␣1␣␣␣␣00␣0␣␣␣␣0␣␣␣00␣␣␣00␣00␣␣0␣00␣␣␣␣00
000000000010000␣0␣␣␣␣000000␣0␣␣␣0␣␣␣␣1␣␣␣00␣0␣␣␣␣0␣␣␣00␣␣␣00␣00␣␣0␣00␣␣␣␣00
000000000010000␣0␣␣␣␣000000␣0␣␣␣0␣␣␣␣␣1␣␣00␣0␣␣␣␣0␣␣␣00␣␣␣00␣00␣␣0␣00␣␣␣␣00
000000000000010␣␣0␣␣␣0000000␣␣␣0␣␣␣0␣␣1␣␣␣␣␣00␣␣␣␣␣00000␣0␣000␣␣0␣␣␣␣0␣␣␣␣0
000000000000010␣␣0␣␣␣0000000␣␣␣0␣␣␣0␣␣␣1␣␣␣␣00␣␣␣␣␣00000␣0␣000␣␣0␣␣␣␣0␣␣␣␣0
000000000000010␣␣0␣␣␣0000000␣␣␣0␣␣␣0␣␣␣␣1␣␣␣00␣␣␣␣␣00000␣0␣000␣␣0␣␣␣␣0␣␣␣␣0
000000000000010␣␣0␣␣␣0000000␣␣␣0␣␣␣0␣␣␣␣␣1␣␣00␣␣␣␣␣00000␣0␣000␣␣0␣␣␣␣0␣␣␣␣0
000000000000010␣␣0␣␣␣0000000␣␣␣0␣␣␣0␣␣␣␣␣␣1␣00␣␣␣␣␣00000␣0␣000␣␣0␣␣␣␣0␣␣␣␣0

< 000000000000010␣␣0␣␣␣0000000␣␣␣0␣␣␣0␣␣␣␣␣␣␣100␣␣␣␣␣00000␣0␣000␣␣0␣␣␣␣0␣␣␣␣0

Fig. 1: Our initial instantiation of the first 75 columns and 51 rows of P where blank spaces
represent unknown entries.

A Nonexistence Certificate for Projective Planes of Order Ten with Weight 15 Codewords 7

without loss of generality that the submatrix given by rows 22–27 and columns 16–21 is the
identity matrix.

This explains why we may initialize the diagonal 1s that appear in the rows 22–27 of
Figure 1. The same reasoning explains the initializations in the rows 28–33 (with columns
22–27), rows 34–39 (with columns 28–33), rows 40–45 (with columns 34–39), and rows
46–51 (with columns 39–44). Note that in the final case the set of columns that are used
overlaps with columns that are used in the second last case, and this causes the diagonal to be
offset in the last six rows.

Once the 1s in the lower-right submatrix of Figure 1 have been assigned some previously
undetermined entries can be set to 0 but for simplicity we do not include these in Figure 1. In
any case, it is mostly inconsequential if these entries are included in our initial instantiation
or not. If they are not given the SAT solver will almost immediately discern these entries
using Boolean constraint propagation on the clauses used in our projective plane encoding.

The entries of Figure 1 were all derived using mathematical arguments and not via a
computer search. A SAT solver could also be used to derive some of these entries, but this
would require a more complicated encoding (see Section 3). Thus, we prefer to take the
entries of Figure 1 as given and fixed in advance.

3 SAT encoding

In this section we describe the encoding we used to show the nonexistence of codewords of
weight 15 in a projective plane of order ten. Our encoding uses the Boolean variables pi, j
where i and j are between 1 and 111. When pi, j is true it represents that the (i, j)th entry of P
is 1 and when pi, j is false it represents that the (i, j)th entry of P is 0. Thus, when the (i, j)th
entry in Figure 1 is a 1 we include the unit clause pi, j in our SAT instance and when the entry
is a 0 we include the unit clause ¬pi, j in our SAT instance.

3.1 Incidence constraints

We now describe the constraints we used to specify that the incidence matrix defined by the
Boolean variables pi, j forms a projective plane. In particular, axiom P2 from Section 2 says
that all rows and columns intersect exactly once. We encode this axiom by splitting it up into
the following two constraints:

1. The pairwise row and column inner products of P are at most one.
2. The pairwise row and column inner products of P are at least one.

Furthermore, in the second case, we found that it was only necessary to consider inner
products between the medium rows and the light rows and the inner products between
the first 15 columns and the later columns. We also only used the first 51 rows and 75
columns of P. Our searches found no satisfying assignments of even this strictly smaller set
of constraints. The fact that these constraints are unsatisfiable therefore shows more than just
the nonexistence of weight 15 codewords; we also show the nonexistence of partial projective
planes that complete Figure 1.

We do not directly encode axiom P1 in our SAT instances. This axiom is present merely
to exclude “degenerate” cases from being considered as projective planes (where the rows
of degenerate projective planes of order ten have weights 1, 2, 110, or 111). However, an
examination of even the first row of Figure 1 shows that degenerate cases are naturally

8 Curtis Bright, Kevin Cheung, Brett Stevens, et al.

excluded by our encoding. Thus, the completions of P that satisfy axiom P2 naturally satisfy
axiom P1. It is possible to encode axiom P1 in conjunctive normal form (for example, by
using a sequential counter encoding [49]). However, this introduces new variables and in our
experiments decreased the performance of the SAT solver.

3.1.1 Encoding that columns and rows intersect at most once

Consider rows i and j for arbitrary 1 ≤ i, j ≤ 111 with i ̸= j. To enforce that these rows
intersect at most once we must enforce that there do not exist column indices k and l (where
1 ≤ k, l ≤ 111 and k ̸= l) such that pi,k, pi,l , p j,k, and p j,l are all simultaneously true. In other
words, for each pair of distinct indices (i, j) and (k, l) at least one variable pi,k, pi,l , p j,k,
or p j,l must be false; this also implies that pairwise all columns intersect at most once. As
clauses in conjunctive normal form we encode this as∧

i< j

∧
k<l

(¬pi,k ∨¬pi,l ∨¬p j,k ∨¬p j,l).

3.1.2 Encoding that columns and rows intersect at least once

Consider rows i and j for arbitrary 1 ≤ i, j ≤ 111 with i ̸= j. To enforce that these rows
intersect at least once we must enforce that there exist a column index k with 1 ≤ k ≤ 111
such that pi,k and p j,k are simultaneously true. This can be encoded as∧

i< j

∨
k

(pi,k ∧ p j,k),

however, this formula is not in conjunctive normal form (CNF) and therefore cannot be used
directly with a standard SAT solver. However, in certain cases this formula easily simplifies
into a formula in CNF.

In particular, consider the case when i is the index of a medium line and j is the index of
a light line (i.e., 7 ≤ i ≤ 21 and 22 ≤ j ≤ 111). In this case, the truth values of the variables
pi,k for all 1 ≤ k ≤ 111 can be determined in advance. Their values are forced by the unit
clauses encoding the entries displayed in Figure 1 and the fact that each row i is already
known to contain eleven 1s (so pi,k must be false for 76 ≤ k ≤ 111).

Let S(i) denote the indices k such that pi,k is true. Then∨
1≤k≤111

(pi,k ∧ p j,k) simplifies to
∨

k∈S(i)

p j,k.

Furthermore, the expression on the right can be determined in advance since the entries of
row i of P are completely known.

We encode the fact that the columns k and l intersect at least once (where 1 ≤ k ≤ 15 and
16 ≤ l ≤ 75) in a similar way. Let T (k) denote the set of row indices i such that pi,k is true;
since the first 15 columns of P are known these sets can be determined in advance. Then we
encode the fact that columns k and l intersect at least once by

∨
i∈T (k) pi,l .

Altogether we encode these constraints in conjunctive normal form by∧
7≤i≤21

22≤ j≤51

∨
k∈S(i)

p j,k and
∧

16≤l≤75
k∈{1,10,11,14,15}

∨
i∈T (k)

pi,l .

A Nonexistence Certificate for Projective Planes of Order Ten with Weight 15 Codewords 9

Note that we have limited ourselves to only using variables from the first 51 rows and 75
columns in these clauses—in the right formula we only use the k for which the entries in
T (k) are from the set {22, . . . ,51}.

More than 51 rows and 75 columns can be used but these values were chosen in an
attempt to minimize the number of variables necessary to show the impossibility completing
the initial values of P into a complete projective plane. In particular, the entries of S(i) are
from the set {16, . . . ,75} so it is necessary to use at least 75 columns. Using a smaller number
of rows is possible—for example, only 45 rows could be used by taking k ∈ {1,10,11,15} in
the right formula. However, this SAT instance was experimentally found to be satisfiable (see
Figure 3 in Section 4.1).

3.2 Symmetry breaking

When search spaces are highly symmetric, SAT solvers generally perform poorly because they
typically have not been optimized to detect symmetries. Thus, in the presence of symmetry a
SAT solver will tend to repeat the same search for every symmetry that exists. A common
method of improving their performance is to add constraints that eliminate or “break” the
symmetry [18]. Symmetry breaking is not essential to our method, but it does greatly increase
its effectiveness. In Section 4 we provide timings for our method both with and without
symmetry breaking.

The symmetry group of a given matrix is the set of row and column permutations that fix
its entries. As an explicit example, consider the upper-left 6×15 submatrix of P:

111110000000000
100001111000000
010001000111000
001000100100110
000100010010101
000010001001011

The symmetry group of this matrix is isomorphic to S6, the symmetric group of degree 6. It
contains 6! = 720 distinct permutations, including, for example, the permutation that swaps
the first two rows and swaps column i with column i+4 for 2 ≤ i ≤ 5. The symmetry group
of the upper-left 21×75 submatrix of P is also isomorphic to S6 and we call this symmetry
group S.

We may apply the permutations from S to partial completions of the first 75 columns
of P. Such an action necessarily produces another equivalent partial completion (up to a
reordering of the light rows). In our search, we attempt to eliminate as many equivalent partial
completions from the search space as possible, leaving only partial completions that are not
equivalent to each other.

We now focus on the first six light rows (rows 22–27) and the completions of those rows.
We use the permutations in S to transform completions of this submatrix into other equivalent
completions of this submatrix. We only consider permutations of S that fix the first column
of this submatrix, since it is not possible for any permutation that moves the first column to
fix the upper-left 27×75 submatrix of Figure 1 (due to the 1s on the first column of rows
22–27). The subgroup of S fixing the first column of the upper-left 21×75 submatrix of P is
isomorphic to S4 ×S2 and contains 4! ·2 = 48 permutations.

10 Curtis Bright, Kevin Cheung, Brett Stevens, et al.

> 100000000000000100000000000000000000000000000000000000010000000100001100010
100000000000000010000000000000000001000000000010010100000000000000000010000

lines 100000000000000001000000000000000100000000000000000000000010000010010000100
22-27 100000000000000000100000000000000010000000000100000000000000101001000000000

100000000000000000010000000000000000010000001001000000001000000000000000001

< 100000000000000000001000000000000000100000000000001001000001000000000001000

Fig. 2: A completion of rows 22–27 and the first 75 columns. Gray entries denote initially
known entries and black entries denote the completions of the initially unassigned entries.

3.2.1 Programmatic SAT

We now describe our symmetry breaking method using the programmatic SAT paradigm [22].
A programmatic SAT solver can learn clauses in a programmatic fashion, for example through
a piece of code that queries a computer algebra system. In our application, whenever a com-
pletion of the upper-left 27×75 submatrix of P is found we record it and programmatically
learn clauses that block the completion as well as all completions that are equivalent to it.
The search then continues until all inequivalent completions have been recorded.

See Figure 2 for an explicit example of such a completion. Say that C is the set of variables
whose values were initially unknown but have been assigned to true in a completion. The
set C must contain exactly 30 variables since there are 30 columns with unknown variables
and each unassigned column must contain a single 1 in order to intersect with the first column
exactly once.

Once the SAT solver finds a valid C we programmatically learn the clause
∨

p∈C ¬p
which says to block the completion specified by C (in order to perform an exhaustive search
for all completions). Additionally, suppose that ϕ is a permutation of S that fixes the first
column (as described above). We let ϕ(C) denote the set of true variables in the completion
generated by applying ϕ to the completion specified by C. Explicitly, ϕ(C) is computed by
applying the column permutations of ϕ to all the variables in C, followed by applying row
permutations so that the 1s in columns 16–21 remain fixed (as they may have been disturbed
by the column permutations).

For each completion C found by the SAT solver we record C and learn the clauses

∨
p∈ϕ(C)

¬p for all symmetries ϕ fixing the first column.

These clauses block all completions that are equivalent to C, leaving only the nonequivalent
completions in the search space. We then continue the search in this manner until no comple-
tions remain. At the conclusion of the search we will have recorded a list of all nonequivalent
completions of the upper-left 27×75 submatrix of P, i.e., a list of all the completions up to
symmetry.

4 Results

In this section we discuss our implementation, timings, and compare our results with those of
previous searches.

A Nonexistence Certificate for Projective Planes of Order Ten with Weight 15 Codewords 11

4.1 Implementation

A Python script of less than 200 lines was written to generate a SAT instance containing the
clauses described in Section 3 (our source code is available at uwaterloo.ca/mathcheck).
The instance contains 51 ·71 = 3825 distinct variables and 79,248 distinct clauses, including
3075 unit clauses and therefore 750 unknown variables. The symmetry breaking method
described in Section 3.2 was implemented using the programmatic SAT solver MapleSAT [41]
with the symmetry groups and row and column permutations computed by the computer
algebra system Maple 2019 [5].

MapleSAT found 42,496 completions of the rows 22–27 of P, of which 1021 of these
completions were inequivalent. This naturally splits the search space into 1021 distinct
subspaces, one for each nonequivalent completion of the rows 22–27. We now discuss how
these completions can be used to help the SAT solver solve the SAT instance containing the
remaining rows 28–51.

The simplest option is simply to generate a distinct SAT instance for each distinct
completion of the rows 22–27 and to include the true variables that appear in the completion
as unit clauses. However, to avoid the overhead of calling a SAT solver 1021 times it is
better to generate a single incremental SAT (see [45]) instance that contains 1021 sets of
assumptions. A second option is to use a single SAT instance and add blocking clauses for
each of the 42,496−1021 = 41,475 completions that are equivalent to one of the remaining
1021 completions. For example, if C is the set of variables assigned to true in a completion
then the completion can be blocked by adding the clause

∨
p∈C ¬p into the instance.

Experimentally it was determined that it is possible to find completions of P using the
first 45 rows and 75 columns. In fact, MapleSAT was able to find explicit completions of
the upper-left 45×75 submatrix in about 2 seconds (see Figure 2). The completion shown
in Figure 2 is special in that regardless which representative chosen for rows 22–27 the
representative can always be extended to 45 rows. In each of the other 1020 cases there
is at least one representative of the rows 22–27 for which it is impossible to extend that
representative to 45 rows.

4.2 Timings

We used the SAT solver MapleSAT [41] running on an Intel i7 CPU at 2.7 GHz for all
timings unless otherwise specified. The base SAT instance using 51 rows and 75 columns
and no symmetry breaking was shown to be unsatisfiable in 6.3 minutes. A DRUP proof
of size 1.6 GB was produced and was verified using the proof checker DRAT-trim [50].
Interestingly, the cube-and-conquer paradigm [29] is particularly effective on SAT instances
of this form. The CnC solver of M.J.H. Heule [25] outperformed the non-programmatic
version of MapleSAT by solving the SAT instance in 5.2 minutes (1.9 minutes for cubing
using March_cu [30] and 3.3 minutes for conquering using Glucose [4]). The CnC solver
generated a proof of size 1.2 GB (or 410 MB after trimmed and compressed in the binary
DRAT format).

Using our programmatic encoding as described in Section 3.2, MapleSAT found all
42,496 completions (and 1021 nonequivalent completions) of the first 27 rows in 2.4 seconds.
Afterwards, the incremental SAT instance showing that none of the 1021 nonequivalent
completions of the first 27 rows can be extended to 51 rows was solved in 4.4 seconds. There
does not seem to be a standard proof format for incremental SAT instances, so this run was
not formally verified. However, we did formally verify that the SAT instance containing the

https://uwaterloo.ca/mathcheck/

12 Curtis Bright, Kevin Cheung, Brett Stevens, et al.

> 100000000000000100000000000000000001000000000000000100000000001101000000000
100000000000000010000000000000000100000000000100010000000000100000000000100
100000000000000001000000000000000000000000000010000000000000000010001010010
100000000000000000100000000000000010000000000000000000010010000000010100000
100000000000000000010000000000000000010000001001000000001000000000000000001
100000000000000000001000000000000000100000000000001001000001000000000001000
000000000100000000000100000000000000000000000000000001000000100100100000010
000000000100000010000010000000010010000000001000000000000000000000000001000
000000000100000001000001000000001001000000000001000000000010000000000000000
000000000100000000000000100010000000010000000000000100000000000010010000000
000000000100000000100000010100000000100000000000010000000000000000000000001

lines 000000000100000100000000001000000000000000000100100000000001000000001000000
22-45 000000000000001000000000000100000000000000000000000000000000110001001001000

000000000000001000000000010010000100000000000001000001000000000000000100000
000000000000001000000100000001000000000000000000000100000010000000000010001
000000000000001000000000001000100001000000001010000000000000000000010000000
000000000000001000000000000000010000100000000100000000100000001000000000010
000000000000001000000010000000001000010000000000000000010001000000000000100
000000000010000000100000000000010100000000000000000010000000000100000010000
000000000010000100000000000100000010000000000010000000000100000000000000100
000000000010000000000000000000000001000010000000000000011000000000100001000
000000000010000000010000000000000000100000010000100100000000000000000100000
000000000010000001000000000000100000010100000000001000000000100000000000000

< 000000000010000000001000000001000000001000000101000000000000000010000000000

Fig. 3: An assignment to the first 75 columns and rows 22–45 of P that produces a 45×75
partial projective plane.

symmetry “blocking clauses” was unsatisfiable. This instance contained clauses blocking
the 41,475 completions of the first 27 rows that are known to be equivalent to one of the
remaining 1021 completions. MapleSAT solved this instance in 13 seconds and produced a
DRUP proof of size 147 MB (or 35 MB after trimmed and compressed in the binary DRAT
format, available at uwaterloo.ca/mathcheck).

We did not attempt to optimize the generation of the SAT instances because we wanted
to make the generation scripts as straightforward as possible. In any case, the generation of
the SAT instances required less than a second using our Python script.

4.3 Comparison with previous searches

There have been a number of previous searches verifying the nonexistence of projective
planes of order ten containing weight 15 codewords [15,16,21,42,46,47,48]. To the best of
our knowledge, all previous searches have relied on computers in an essential way—there is
no known “purely theoretical” explanation for this result.

The first searches by Denniston [21] and MacWilliams, Sloane, and Thompson [42] used
punch cards or paper tape and so we are not able to rerun their searches on modern hardware.
Denniston used 90 minutes on an Elliott 4130 mainframe computer and MacWilliams
et al. used 3 hours on a General Electric 635 mainframe computer. Their searches were
similar though Denniston used the light rows that intersect the columns numbered 1, 10, 15,
and 5, and some different symmetry removal argumentation.

The next search that we are aware of is by Roy [47] in 2005 and was completed using a
special-purpose search program written in the programming language C, relying on the nauty
symbolic computation library [44] for solving the graph isomorphism problem. We ran this
program on the same hardware we used for our SAT searches and it completed in 78 minutes.

https://uwaterloo.ca/mathcheck/

A Nonexistence Certificate for Projective Planes of Order Ten with Weight 15 Codewords 13

Authors Year Language Time
Roy [47] 2005 C 78 minutes

Casiello, Indaco, and Nagy [15] 2010 GAP 3.3 minutes
Clarkson and Whitesides [16] 2014 C 27 seconds

Perrott [46] 2016 Mathematica 55 minutes
Bright et al. [this work] 2019 SAT 6.3 minutes
Bright et al. [this work] 2019 SAT+CAS 6.8 seconds

Table 1: A comparison of the searches for weight 15 codewords for which source code is
available.

Casiello, Indaco, and Nagy [15] completed another search in 2010 using the computer
algebra system GAP [23]. However, they claim to find no completions of the first 39 rows and
75 columns (using the same inital 21 rows and 15 columns from Figure 1). Closer inspection
of their source code revealed that incorrect indices were used in one block compatibility
check and this caused them to assert the nonexistence of a partial projective plane that actually
exists (as demonstrated in Figure 3). After fixing the incorrect indices their program does
appear to produce correct results and requires about 3.3 minutes (on the same hardware from
above) to assert the nonexistence of completions of the first 51 rows and 75 columns.

Next, Clarkson and Whitesides [16] completed a search in 2014 using the light rows that
intersect the columns numbered 1, 10, 15, 5, and 8. It was performed using a custom-written
and highly optimized search program in the programming language C. We obtained the
source code from the authors and it completed in 27 seconds on the same hardware from
above.

In 2016, Perrott [46] completed a search using the computer algebra system Mathemat-
ica [51]. We were not able to run his code on the same hardware as above (due to the fact
Mathematica is proprietary software). However, his search completed in 55 minutes running
on an Intel Xeon X5675 at 3.07 GHz.

Roy [48] performed a search in 2011 using a similar approach as MacWilliams et al. [42]
except attempting to complete the partial matrix column-by-column instead of row-by-row
and using the columns that were labeled 76–111 in this paper. These 36 columns can be split
into six blocks of six columns each, each block consisting of the columns that are incident to
one of the first six rows of P. This search found no completions of the first four blocks in 2.3
minutes. We attempted to verify this result, but found completions of all six blocks (available
at uwaterloo.ca/mathcheck). Thus, we conclude there was likely an undiscovered bug in
the search program of [48] that caused the search to be incomplete. Unfortunately, this source
code is no longer available so it is impossible to determine the source of the discrepancy for
certain.

In comparison, we completed our search using MapleSAT (augmented with a program-
matic learning method as described in Section 3.2) in 6.8 seconds. Of this time, 2.4 seconds
was used to exhaustively find all nonequivalent completions of the first 27 rows and 4.4 sec-
onds was used to show that all of these completions do not extend to 51 rows. Even counting
the time it takes to generate the SAT instances and the overhead of calling MapleSAT, our
search terminates in under 8 seconds. A comparison of the searches for which source code is
available is shown in Table 1.

https://uwaterloo.ca/mathcheck/

14 Curtis Bright, Kevin Cheung, Brett Stevens, et al.

5 Related work

As recounted in the introduction, SAT solvers have been used to perform searches in many
different combinatorial problems. Some of the first successes were computing van der Waer-
den numbers by Kouril and Paul [35] and Ahmed, Kullmann, and Snevily [2], computing
Green–Tao numbers by Kullmann [36], as well as solving a special case of the Erdős discrep-
ancy conjecture by Konev and Lisitsa [34]. Other more recent combinatorial applications
include proving the Boolean Pythagorean triples conjecture [28] and a new case of the
Ruskey–Savage conjecture [52], as well as computing Ramsey numbers [17], Williamson
matrices [8], complex Golay sequences [10], and Schur numbers [26].

We are not aware of any work prior to ours that used SAT solvers to search for (or prove
the nonexistence of) projective planes. However, there has been work formalizing the axioms
of projective planes in the theorem prover Coq by Magaud, Narboux, and Schreck [43] and
Braun, Magaud, and Schreck [6].

6 Conclusion

In this paper we have performed a verification of the first nonexistence result that was crucial
in the renowned proof that a projective plane of order ten does not exist [37]. In particular,
we verified that a projective plane of order ten does not generate codewords of weight fifteen.
There have been a number of exhaustive searches for such a codeword but all previous
searches are difficult to verify.

In particular, the searches [21,42,48] rely on code that can no longer be run. The pa-
per [15] provides source code but as described in Section 4.3 their code has a bug that caused
them to assert the nonexistence of a partial projective plane that we found actually exists. The
paper [46] verifies the same result that we verified in this paper but does so using about ten
pages of sophisticated Mathematica code, and similarly the works [16,47] rely on optimized
C programs that are difficult to verify.

In contrast, we have given a simple translation of properties of a weight fifteen codeword
into Boolean logic and have shown that these properties are sufficient to prove that such
a codeword cannot exist. This was done by a simple Python script that generates a SAT
instance that encodes the necessary properties in conjunctive normal form. Furthermore, we
solved the resulting SAT instance and provide a 439 MB formally verifiable certificate that
the SAT instance indeed has no solution (or a 37 MB certificate with symmetry breaking
clauses included).

Additionally, in Section 3.2 we showed how to use a programmatic SAT solver coupled
with a computer algebra system to perform symmetry breaking and greatly decrease the
running time of the search. In particular, an off-the-shelf version of MapleSAT completed
the search in 6.3 minutes, while a programmatic version of MapleSAT augmented with our
CAS symmetry breaking method completed the search in 6.8 seconds. This demonstrates the
utility of the SAT+CAS method and provides further evidence (as originally argued by [1]
and independently by [53]) for the power of the method.

Our work shows for the first time that SAT solvers can be effectively used in the search
for finite projective planes—our code is currently the fastest available that can verify the
weight 15 nonexistence result (see Table 1). Although we do not provide a machine-checkable
formal proof directly from the axioms of a projective plane we have performed the most
rigorous verification of this nonexistence result to date. In particular, our code is much simpler
than the code used in any previous approach to this problem. We were able to simplify the

A Nonexistence Certificate for Projective Planes of Order Ten with Weight 15 Codewords 15

code by relying on a SAT solver to do the hard exhaustive search work. As a bonus this also
produces a nonexistence certificate that can be formally independently verified.

We expect the SAT+CAS paradigm to also be useful in proving the nonexistence of
codewords of weight 16 and 19 as well—in fact, our system has already solved the former
case. The basic SAT encoding is very similar to the encoding provided in this paper, though
the symmetry breaking method used in this paper is specific to the weight 15 search. A
number of structural differences between the cases cause the weight 16 and 19 searches to be
more complicated—this will be the subject of future research.

References

1. Ábrahám, E.: Building bridges between symbolic computation and satisfiability checking. In: S. Linton
(ed.) Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation,
pp. 1–6. ACM (2015)

2. Ahmed, T., Kullmann, O., Snevily, H.: On the van der Waerden numbers w(2;3, t). Discrete Applied
Mathematics 174, 27–51 (2014)

3. Assmus Jr., E.F., Mattson Jr., H.F.: On the possibility of a projective plane of order 10. Algebraic Theory
of Codes II, Air Force Cambridge Research Laboratories Report AFCRL-71-0013, Sylvania Electronic
Systems, Needham Heights, Mass (1970)

4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: C. Boutilier (ed.)
IJCAI-09: Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence, pp.
399–404 (2009)

5. Bernardin, L., Chin, P., DeMarco, P., Geddes, K.O., Hare, D.E.G., Heal, K.M., Labahn, G., May, J.P.,
McCarron, J., Monagan, M.B., Ohashi, D., Vorkoetter, S.M.: Maple programming guide (2019)

6. Braun, D., Magaud, N., Schreck, P.: Formalizing some “small” finite models of projective geometry in
Coq. In: J. Fleuriot, D. Wang, J. Calmet (eds.) International Conference on Artificial Intelligence and
Symbolic Computation, pp. 54–69. Springer (2018)

7. Bright, C., Ðoković, D., Kotsireas, I., Ganesh, V.: A SAT+CAS approach to finding good matrices: New
examples and counterexamples. In: P. Van Hentenryck, Z.H. Zhou (eds.) Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence (AAAI-19), pp. 1435–1442. AAAI Press (2019)

8. Bright, C., Kotsireas, I., Ganesh, V.: A SAT+CAS method for enumerating Williamson matrices of even
order. In: S.A. McIlraith, K.Q. Weinberger (eds.) Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI-18), pp. 6573–6580. AAAI Press (2018)

9. Bright, C., Kotsireas, I., Ganesh, V.: SAT solvers and computer algebra systems: A powerful combination
for mathematics. In: T. Pakfetrat, G. Jourdan, K. Kontogiannis, R. Enenkel (eds.) Proceedings of the 29th
International Conference on Computer Science and Software Engineering, pp. 323–328 (2019)

10. Bright, C., Kotsireas, I., Heinle, A., Ganesh, V.: Enumeration of complex Golay pairs via programmatic
SAT. In: C. Arreche (ed.) Proceedings of the 2018 ACM International Symposium on Symbolic and
Algebraic Computation, ISSAC ’18, pp. 111–118. New York, NY, USA (2018)

11. Bruck, R.H., Ryser, H.J.: The nonexistence of certain finite projective planes. Canad. J. Math 1(191), 9
(1949)

12. Bruen, A., Fisher, J.C.: Blocking sets, k-arcs and nets of order ten. Advances in Mathematics 10(2),
317–320 (1973)

13. Bush, K.A.: Unbalanced Hadamard matrices and finite projective planes of even order. Journal of
Combinatorial Theory, Series A 11(1), 38–44 (1971)

14. Carter, J.L.: On the existence of a projective plane of order ten. University of California, Berkeley (1974)
15. Casiello, D., Indaco, L., Nagy, G.P.: Sull’approccio computazionale al problema dell’esistenza di un piano

proiettivo d’ordine 10. Atti del Seminario matematico e fisico dell’Università di Modena e Reggio Emilia
57, 69–88 (2010)

16. Clarkson, K., Whitesides, S.: On the non-existence of maximal 6-arcs in projective planes of order 10. In:
Poster session at IWOCA 2014, the 25th International Workshop on Combinatorial Algorithms (2014)

17. Codish, M., Frank, M., Itzhakov, A., Miller, A.: Computing the Ramsey number R(4,3,3) using abstraction
and symmetry breaking. Constraints 21(3), 375–393 (2016)

18. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predicates for search problems.
In: L.C. Aiello, J. Doyle, S.C. Shapiro (eds.) Proceedings of the Fifth International Conference on Princi-
ples of Knowledge Representation and Reasoning, KR’96, pp. 148–159. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1996)

16 Curtis Bright, Kevin Cheung, Brett Stevens, et al.

19. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Formally verifying the solution to the Boolean
Pythagorean triples problem. Journal of Automated Reasoning (2018)

20. Davenport, J.H., England, M., Griggio, A., Sturm, T., Tinelli, C.: Symbolic computation and satisfiability
checking. Journal of Symbolic Computation (in press)

21. Denniston, R.H.F.: Non-existence of a certain projective plane. Journal of the Australian Mathematical
Society 10(1-2), 214–218 (1969)

22. Ganesh, V., O’Donnell, C.W., Soos, M., Devadas, S., Rinard, M.C., Solar-Lezama, A.: Lynx: A pro-
grammatic SAT solver for the RNA-folding problem. In: A. Cimatti, R. Sebastiani (eds.) International
Conference on Theory and Applications of Satisfiability Testing, pp. 143–156. Springer (2012)

23. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.10.2 (2019). URL https:
//www.gap-system.org

24. Hall Jr., M.: Configurations in a plane of order ten. Annals of Discrete Mathematics 6, 157–174 (1980)
25. Heule, M.J.H.: Cube-and-conquer tutorial (2018). URL https://github.com/marijnheule/CnC
26. Heule, M.J.H.: Schur number five. In: S.A. McIlraith, K.Q. Weinberger (eds.) Proceedings of the

Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), pp. 6598–6606. AAAI Press
(2018)

27. Heule, M.J.H., Kauers, M., Seidl, M.: New ways to multiply 3×3-matrices. arXiv 1905.10192 (2019)
28. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean Pythagorean triples

problem via cube-and-conquer. In: N. Creignou, D. Le Berre (eds.) International Conference on Theory
and Applications of Satisfiability Testing, pp. 228–245. Springer (2016)

29. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving very hard problems: Cube-and-conquer, a hybrid
SAT solving method. In: C. Sierra (ed.) Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, pp. 4864–4868 (2017)

30. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guiding CDCL SAT solvers
by lookaheads. In: K. Eder, J. Lourenço, O. Shehory (eds.) Haifa Verification Conference, pp. 50–65.
Springer (2011)

31. Kåhrström, J.: On projective planes. Technical report (2002)
32. Kaufmann, D., Biere, A., Kauers, M.: Verifying large multipliers by combining SAT and computer algebra.

In: Proceedings of Formal Methods in Computer-Aided Design (to appear)
33. Keller, C.: SMTCoq: Mixing automatic and interactive proof technologies. In: G. Hanna, D.A. Reid,

M. de Villiers (eds.) Proof Technology in Mathematics Research and Teaching, pp. 73–90. Springer
International Publishing, Cham (2019)

34. Konev, B., Lisitsa, A.: Computer-aided proof of Erdős discrepancy properties. Artificial Intelligence 224,
103–118 (2015)

35. Kouril, M., Paul, J.L.: The van der Waerden number W (2,6) is 1132. Experimental Mathematics 17(1),
53–61 (2008)

36. Kullmann, O.: Green-Tao numbers and SAT. In: O. Strichman, S. Szeider (eds.) International Conference
on Theory and Applications of Satisfiability Testing, pp. 352–362. Springer (2010)

37. Lam, C.W.H.: The search for a finite projective plane of order 10. American Mathematical Monthly 98(4),
305–318 (1991)

38. Lam, C.W.H., Thiel, L., Swiercz, S.: The nonexistence of code words of weight 16 in a projective plane
of order 10. Journal of Combinatorial Theory, Series A 42(2), 207–214 (1986)

39. Lam, C.W.H., Thiel, L., Swiercz, S.: The non-existence of finite projective planes of order 10. Canad. J.
Math 41(6), 1117–1123 (1989)

40. Lam, C.W.H., Thiel, L., Swiercz, S., McKay, J.: The nonexistence of ovals in a projective plane of order
10. Discrete Mathematics 45(2-3), 319–321 (1983)

41. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for SAT
solvers. In: N. Creignou, D. Le Berre (eds.) Theory and Applications of Satisfiability Testing - SAT 2016 -
19th International Conference, Bordeaux, France, July 5–8, 2016, Proceedings, pp. 123–140 (2016). URL
https://ece.uwaterloo.ca/maplesat/

42. MacWilliams, F.J., Sloane, N.J.A., Thompson, J.G.: On the existence of a projective plane of order 10.
Journal of Combinatorial Theory, Series A 14(1), 66–78 (1973)

43. Magaud, N., Narboux, J., Schreck, P.: Formalizing projective plane geometry in Coq. In: T. Sturm,
C. Zengler (eds.) International Workshop on Automated Deduction in Geometry, pp. 141–162. Springer
(2008)

44. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. Journal of Symbolic Computation 60, 94–112
(2014)

45. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: A. Cimatti, R. Sebastiani (eds.)
International Conference on Theory and Applications of Satisfiability Testing, pp. 242–255. Springer
(2012)

46. Perrott, X.: Existence of projective planes. arXiv 1603.05333 (2016)

https://www.gap-system.org
https://www.gap-system.org
https://github.com/marijnheule/CnC
https://ece.uwaterloo.ca/maplesat/

A Nonexistence Certificate for Projective Planes of Order Ten with Weight 15 Codewords 17

47. Roy, D.J.: Proving w15 = 0 in a hypothetical projective plane of order 10. Course Project for CSI 5165,
University of Ottawa (2005)

48. Roy, D.J.: Confirmation of the non-existence of a projective plane of order 10. Master’s thesis, Carleton
University (2011)

49. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: P. van Beek (ed.)
International conference on principles and practice of constraint programming, pp. 827–831. Springer
(2005)

50. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trimming using expressive
clausal proofs. In: C. Sinz, U. Egly (eds.) International Conference on Theory and Applications of
Satisfiability Testing, pp. 422–429. Springer (2014)

51. Wolfram Research, Inc.: Mathematica, Version 12.0. Champaign, IL, 2019
52. Zulkoski, E., Bright, C., Heinle, A., Kotsireas, I., Czarnecki, K., Ganesh, V.: Combining SAT solvers with

computer algebra systems to verify combinatorial conjectures. Journal of Automated Reasoning 58(3),
313–339 (2017)

53. Zulkoski, E., Ganesh, V., Czarnecki, K.: MathCheck: A math assistant via a combination of computer
algebra systems and SAT solvers. In: A.P. Felty, A. Middeldorp (eds.) International Conference on
Automated Deduction, pp. 607–622. Springer, Cham (2015)

	Introduction
	Projective plane preliminaries
	SAT encoding
	Results
	Related work
	Conclusion

