
Neural Networks for

Insurance Fraud Detection

Phillip Keung
Joycelin Karel
Curtis Bright

April 16, 2009

According to the Insurance Information Institute, auto insurance fraud
in 2007 amounted to $4.8 billion to $6.8 billion of claims in America alone.
However, looking for fraud with claims adjusters is expensive and time-
consuming. The application of statistical tools for the detection of fraud can
help focus the insurer’s resources and reduce the number of claims adjusters
required. Furthermore, sophisticated models may be able to determine con-
nections between variables that a human being would not have considered.
Although neural networks are not within the scope of this course, the team
decided that a neural network would be well-suited to the problem of finding
dependencies and patterns in the data set. This report discusses a 2 hidden
layer feedforward neural network created to analyze fraud data.

Neural networks were inspired by discoveries in biology. Researchers hy-
pothesized that the brain is essentially a large neural network. Connections
between adjacent neurons strengthened or weakened based on the amount of
relevant stimulation that the neurons received, and connected neurons fire to
induce other neurons to fire. This insight provided a neural network which
could be mathematically modelled, and has been used extensively in machine
learning and classification.

A neural network was implemented in R using 1994 auto insurance data
from an unnamed insurer as a training set. The data set was adjusted before
training began: many of the timing-related columns were summarized with
a single “Days between accident and claim” column. The categorical data
was converted into binary variates and the timing variate was entered as an

1

Ford
X Mazda

Toyota
...

−→
Ford Mazda Toyota · · ·

0 1 0 · · ·

Table 1: Converting the variate ‘Make’ into binary variates

integer. (Table 1) To reduce the number of input nodes required, variates
were grouped under the following labels: timing, demographics, policy, rating
and socioeconomic status. Each node of the neural network took inputs, and
had a weight for each input. The weights were set between −1 and 1 to
reflect how certain factors can increase or decrease the probability of fraud.
These weights can be interpreted as the importance of each input, as large
weights affect the output significantly. The inner product of the inputs and
the weights is called the activation value, denoted R.

R =
n∑

i=1

(weight
i
)× (input

i
)

Each neuron outputted a number between 0 and 1 as its response to the
inputs, calculated using

Output =
1

1 + e−R
.

The ideal set of weights, or ‘brain’, of the network is the vector of 160
real numbers between −1 and 1 that maximizes the average precision of the
network. As the brain of the network is a vector in R

160, Newton’s method
and other forms of deterministic optimization were deemed unfeasible. They
are too sensitive to choice of initial parameters, and no good estimates were
available. Instead, a genetic algorithm was used to construct a decent, if
not optimal, brain. Constrained Newton-type optimization (i.e., parameters
restricted to the [−1, 1]160 hypercube) was also attempted using the genetic
algorithm brain as a starting point. Unfortunately, the constrained opti-
mization requires the calculation of the Hessian to build up a picture of the
surface being optimized, and function evaluations (i.e., the neural network
evaluating a set of data) were so computationally expensive that 48 hours of
computing time was insufficient to find a solution within default tolerance.

2

Timing Socio Rating Demog Policy

Figure 1: A schematic of the implemented network

The neural network, after 460 generations through the genetic algorithm,
had an average precision of 27.7% on the training data set. This is a great
improvement over the 6.7% average precision that would be expected with
random ranking (note that the proportion of fraud in the training data is
6.7%.) The team members eagerly await the announcement of the effective-
ness of their neural network on the test data set.

APPENDIX A: R Code

load genetic algorithm library

library(genalg)

returns a number for every observation

this number is used to rank the observation

against other observations in the data set

neuralNet<-function(dataMatrix,params){

returnMe<-c()

for(i in 1:6141){

3

group the data under labels

timingData<-as.numeric(dataMatrix[i,c(3,64:71,103:106)])

socioData<-as.numeric(dataMatrix[i,c(4:20,31:39,56:59,76:83,107:110)])

ratingData<-as.numeric(dataMatrix[i,c(21,22,29,30,60:63,72:75,93:96)])

demogData<-as.numeric(dataMatrix[i,c(23:28,84:92)])

policyData<-as.numeric(dataMatrix[i,c(40:55,97:102,111:113)])

parameters on the input nodes

ptiming<-params[1:13]

pdemog<-params[14:28]

psocio<-params[29:70]

ppolicy<-params[71:95]

prating<-params[96:111]

parameters on first hidden layer nodes

pl11<-params[112:116]

pl12<-params[117:121]

pl13<-params[122:126]

pl14<-params[127:131]

pl15<-params[132:136]

parameters on second hidden layer nodes

pl21<-params[137:141]

pl22<-params[142:146]

pl23<-params[147:151]

pl24<-params[152:156]

parameters on the output node

pout<-params[157:160]

feed data and parameters into input nodes

timing<-inputNode(timingData,ptiming)

demog<-inputNode(demogData,pdemog)

socio<-inputNode(socioData,psocio)

policy<-inputNode(policyData,ppolicy)

rating<-inputNode(ratingData,prating)

toLayer1<-c(timing,demog,socio,policy,rating)

feed data and parameters into first hidden layer

l11<-layer1(toLayer1,pl11)

l12<-layer1(toLayer1,pl12)

l13<-layer1(toLayer1,pl13)

l14<-layer1(toLayer1,pl14)

l15<-layer1(toLayer1,pl15)

toLayer2<-c(l11,l12,l13,l14,l15)

feed data and parameters into second hidden layer

l21<-layer2(toLayer2,pl21)

l22<-layer2(toLayer2,pl22)

l23<-layer2(toLayer2,pl23)

l24<-layer2(toLayer2,pl24)

feed data and parameters into output node

4

toOutput<-c(l21,l22,l23,l24)

out<-output(toOutput,pout)

returnMe<-c(returnMe,out)

}

return(returnMe)

}

the nodes below simply return the inner product

inputNode<-function(datavec,paramvec){

return(1/(1+exp(-sum(datavec*paramvec))))

}

layer1<-function(datavec,paramvec){

return(1/(1+exp(-sum(datavec*paramvec))))

}

layer2<-function(datavec,paramvec){

return(1/(1+exp(-sum(datavec*paramvec))))

}

output<-function(datavec,paramvec){

return(1/(1+exp(-sum(datavec*paramvec))))

}

the avgp function is bundled inside because

genalg minimizes the objective function

optimizeMe<-function(optimParam){

return(-1*avgp(fraud,neuralNet(binData,optimParam)))

}

binData<-read.csv("claims.csv")

binData<-as.matrix(binData[1:6141,])

fraud<-as.numeric(binData[,2])

this might take a while to run...

initialGuess<-rbga(stringMin=rep(-1,160), stringMax=rep(1,160),

suggestions=list(initialGuess),popSize=60, iters=460,

evalFunc=optimizeMe)$population[1,]

predictions<-neuralNet(binData,initialGuess)

5

