MODULAR PERIODICITY OF LINEAR RECURRENCE
SEQUENCES

CURTIS BRIGHT

ABSTRACT. Integers which satisfy linear recurrence relations are always peri-
odic modulo m. Many results on the period and pre-period length are sum-
marized in this report, which have importance when studying some pseudo-
random number generators as well as primality tests like the Lucas—Lehmer
test for Mersenne primes. A Maple procedure is also provided allowing period
calculation for arbitrary linear recurrences.

1. INTRODUCTION
An integer sequence (X,,) which satisfies the linear recurrence relation
X,=a1 Xp_1+aXp o+ - +apXp_r+a (1)
for all n > k is known as a linear recurrence sequence. We call the k-tuple
Si= (X, Xig1, o, Xigr—1)

the ith state of the recurrence, so once (1) is given the value of X depends solely
on S;, and all values of the sequence are precisely defined by the inital conditions
So. Furthermore, the residue of X;;j (mod m) depends only on the elementwise
residues of S;, and since there are m possible residues for each of the k components
of state i, there are m* possibilities for S; (mod m).

Since there are finitely many state residue classes, there must exist some p > 0
and ¢ > 0 such that S; = Sy, (mod m). In fact, since S;+1 (mod m) depends
only on S; (mod m), we have

for all i > ¢, S; = Sitp (mod m), (2)

which establishes that all linear recurrence sequences are eventually periodic.

There is a minimal pair (p,q) which satisfies (2)—dependant on m, Sy and
the recurrence parameters a in (1). Since the minimal p and ¢ may be defined
independently of each other the minimal pair is unique (e.g., it is not possible to
accept an increase in p to decrease q).

2. PERIOD AND PRE-PERIOD

Definition 1. The period Ax(m) is defined to be the minimal p which satisfies (2)
and the pre-period px(m) is defined to be the minimal q which satisfies (2), both
with respect to the linear recurrence sequence (X,,). If the sequence is clear from
context we may just refer to A(m) and u(m).

Note that pu(m) 4+ A(m) < mF for all (X,,) because there are m” states reduced
modulo m and there can be no states repeated within the first u(m) + A(m) states
(by period and pre-period minimality).
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Lemma 1. For t € N, \(m)|t if and only if X; = X;1, (mod m) for all i > p(m).
Proof. Repeatedly applying (2) with the period and pre-period yields
for all s € N and i > p(m), Xi = Xitsa(m) (mod m), (3)

which shows the forwards direction since we have t = sA(m).
Alternatively, by the division algorithm there exist integers ¢, r such that ¢t =
gA(m) + r, with 0 < r < A(m). Then

Xi = Xitt = Xivga(my+r = Xigr  (mod m),

where the final equivalence uses (3) with s = ¢. But then X; = X;4, (mod m) and
r < A(m), so we have that 7 = 0 and A(m)|t. O

Theorem 1. For coprime my and ma, A(mims) = lem(A(m1), A(m2)).

Proof. In the following, let ¢ be any sufficiently large integer. To show equality we
will show each side divides the other.
Firstly, by definition we have X; = X, \(m,m,) (mod mimy), and thus

Xi = Xifa(mims) (mod my and may),

so by Lemma 1, A(m1)|A(mimz) and A(m2)|A(mims) which implies lem(A(my),
)\(mg))}/\(mlmg)

Secondly, since A(m1)|lem(A(m1), A(mz)) and A(mz)|lem(A(my), A(mz)) from
Lemma 1 we have

Xi = Xifiem(\(m1),\(ms)) (mod my and my)

and since mp and my are coprime, by the Chinese Remainder Theorem,

Xi = Xiflem(A(m1) A(my))  (mod mims)
so by Lemma 1, A(m1ma)|lem(A(my1), A(myz)). O
Theorem 2. For coprime m; and mg, pu(mims) = max{u(my), u(ms)}.
Proof. By the Chinese Remainder Theorem, the smallest value of ¢ which satisfies

Xi = Xiga(mimy) (mod mima),

will also be the smallest value of ¢ which satisfies both of

Xi = Xita(myms) (mod my and ms).

The smallest satisfying value of ¢ will be p(mq) for the first and u(ms) for the
second; thus the smallest satisfying both is max{u(m1), u(mae)}. O

Corollary 1. If m =[] p;* is the prime factorization, then A(m) = lem; A(p;*) and
p(m) = max; p(p§').

Proof. By repeated application of Theorems 1 and 2. (I
Lemma 2. Let (X,,) and (Y,,) satisfy the same recurrence, with (Y,,) having initial

conditions Sy = (0,0,...,0,1), that is, the final entry of Sy is 1 and all other entries
(if any) are 0. Then )\X(m)‘)\y(m).
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Proof. There exist constants by, by, ...,by_1 such that
Xn=b0Y, +01Y 1 +02Yi0+ -+ bp—1Yngr—1
which may be found by solving the system

X, = br—1
X, = br—2 + b1 Yi
Xy = br—3 + brk2Yk +  bp—1Ye41
Xk—1 = bo + -+ 4+ bp3Yopu + bp2Yor3 + bp_1Yor o
Then for all i > py (m),
Xitay (m) = b0Yigay m) T+ be—1Yigay (m)+h—1 (mod m)
=boY;+ -+ bp—1Yipr—1 (mod m)
= X; (mod m)
and by Lemma 1, Ax (m)[Ay (m). O

Lemma 3. Let (X,,) satisfy the homogeneous version of a recurrence satisfied by
(Y,,), that is, their recurrences share the coefficients a; but the (X,,) recurrence has
a =0. Then )\X(m)’)\y(m) when (Y,,) has initial conditions (0,0,...,0,1).
Proof. Let Z, =Y, — X,; then (Z,) satisfies the same recurrence as (Y,) so by
Lemma 2, )\Z(m)’/\y(m). Then for all ¢ > py (m),
Xitaym) = Yigry (m) = Zigay(m) = Yi — Z; = X;  (mod m),

and by Lemma 1, Ax (m)|Ay (m). O

The following theorems concern properties of the period function for recurrences
with initial conditions (0,0,...,0,1).
Theorem 3. For any prime p and ¢ > 1, )\(pe“'l)‘p)\(pe).
Proof. For all i > u(p®) we have that pe|Xi+,\(pe) — X;, so we may define the new
integer sequence (Y,) by
XntA@) +upe) ~ Xntu(pe)

pe

which can be seen to satisfy the homogeneous version of the (X,,) recurrence. Since
(X,) has initial conditions (0,0,...,0,1), by Lemma 3 we have Ay (m)|Ax(m) or
Yitax(pe) = Yi (mod p°) for sufficiently large 4. Using this in the form p°Y; \(pe) =
p¢Y; (mod p?¢) and the formula

Y, =

Xitape)+u(pr) = Xitu(pe) +0Yi

we can show by induction that

Xivin@e)+upe) = Xivppe) +p°Ys  (mod p*) (4)
for j € N. Taking j = p yields X; ey = Xi (mod peth) for 2e > e+ 1 (ie.,
e > 1), and the result follows. O

Corollary 2. For any prime p and e > 1, A(p¢*1) = A\(p®) or A(p°T1) = pA(p®).

Proof. An immediate consequence of Theorem 3 and the fact A(p®)|A(p°*!) (since
Xitape+1) = X; (mod p™) also holds modulo p©). O
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Theorem 4. For any primep and e > 2, if \(p®) # A(p®*!) then A(p¢T1) # A(p®T2).

Proof. Define (Y,,) as in the proof of Theorem 3. Notice from (4) we cannot have
p’Y; for all arbitrarily large i, otherwise we would have A(p¢) = A(p®*!). Thus,
when 2e > e+ 2 (i.e., e > 2) we have

Xiia@et)+u(pre) = Xivppe) +0HY; - (mod p+?)
and that there are arbitrarily large | such that pJ(Yl, so M(peTh) # A(pt?). O

Corollary 3. For any prime p and e > 2, if \(p®) # M(p®*!) then A\(p¢*") = p"A(p®)
for r € N.

Proof. By repeated application of Corollary 2 and Theorem 4. ([l

3. ExaMPLE USE

It may be shown that if (U,,) is the Fibonacci sequence (U, = U,,—1 + U,,_2 with
Uy = 0 and Uy = 1) then for all primes p # 5, )\(p)’p2 — 1. So, for example, to show
91 is not a prime, we can calculate A\(91) using the attached calcperiod function:

calcperiod([0, 11, [1, 1, 0], 91)[1];

returns 112. Since 912 = 105 # 1 (mod 112), 91 is not prime. Under 1000, there
are only 8 numbers which serve as ‘psedoprimes’: 161, 231, 323, 341, 377, 451, 671
and 903.
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Maple Code 1 Auxiliary function for calcperiod; tests if two lists x and y have all
equal elements with respect to the given index offsets.

equal := proc(x::list, xoffset::nonnegint, y::list, yoffset::nonnegint)
local i, k;
k := nops(x);
for i from 1 to k do
if x[i+xoffset mod k+1] <> y[i+yoffset mod k+1] then
break;
end if;
end do;
return evalb(i=k+1);
end;

Maple Code 2 Returns the period and pre-period modulo m of a linear recurrence
sequence (X,) using Floyd’s cycle-finding algorithm. Input z as the list Xo, X1,..., Xx—1
and a as the list ag,ax—1,...,0a1,a.

calcperiod := proc(x::list, a::list, m::posint)
local k, i, j, X, Y, Z, n, period, preperiod;
k := nops(x);

x mod m;

X;

X
Y
VA X;

for i from O do
if equal(X, i mod k, Y, 2%i mod k) and i>0 then
n :=1ij;
period := ij;
break;
end if;
X[i mod k+1] := X[i mod k+1]*al[k] + a[k+1] mod m;
Y[2%i mod k+1] := Y[2+#i mod k+1]l*al[k] + a[k+1] mod m;
for j from 1 to k-1 do
X[i mod k+1] := X[i mod k+1] + X[i+j mod k+1]l*a[k-j] mod m;
Y[2*i mod k+1] := Y[2*i mod k+1] + Y[2#i+j mod k+1]l*alk-j] mod m;
end do;
Y[2%i+1 mod k+1] := Y[2#i+1 mod k+1]*al[k] + alk+1] mod m;
for j from 1 to k-1 do
Y[2*i+1 mod k+1] := Y[2%i+1 mod k+1] + Y[2*i+1+j mod k+1]*al[k-j] mod m;
end do;
end do;

for i from O do

if equal(X, n+i mod k, Z, i mod k) then
preperiod := ij;
break;

end if;

X[n+i mod k+1] := X[n+i mod k+1]*alk] + al[k+1l] mod m;

Z[i mod k+1] := Z[i mod k+1]l*a[k] + a[k+1] mod m;

for j from 1 to k-1 do
X[n+i mod k+1] := X[n+i mod k+1] + X[n+i+j mod k+1]l*al[k-j] mod m;
Z[i mod k+1] := Z[i mod k+1] + Z[i+j mod k+1]*a[k-j] mod m;

end do;
if equal(X, i mod k, Y, n+i mod k) and period=n then
period := i+1;
end if;
end do;

return period, preperiod;
end;




