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Abstract. Integers which satisfy linear recurrence relations are always peri-

odic modulo m. Many results on the period and pre-period length are sum-
marized in this report, which have importance when studying some pseudo-

random number generators as well as primality tests like the Lucas–Lehmer

test for Mersenne primes. A Maple procedure is also provided allowing period
calculation for arbitrary linear recurrences.

1. Introduction

An integer sequence (Xn) which satisfies the linear recurrence relation

Xn = a1Xn−1 + a2Xn−2 + · · ·+ akXn−k + a (1)

for all n ≥ k is known as a linear recurrence sequence. We call the k-tuple

Si = (Xi, Xi+1, . . . , Xi+k−1)

the ith state of the recurrence, so once (1) is given the value of Xi+k depends solely
on Si, and all values of the sequence are precisely defined by the inital conditions
S0. Furthermore, the residue of Xi+k (mod m) depends only on the elementwise
residues of Si, and since there are m possible residues for each of the k components
of state i, there are mk possibilities for Si (mod m).

Since there are finitely many state residue classes, there must exist some p > 0
and q ≥ 0 such that Sq ≡ Sq+p (mod m). In fact, since Si+1 (mod m) depends
only on Si (mod m), we have

for all i ≥ q, Si ≡ Si+p (mod m), (2)

which establishes that all linear recurrence sequences are eventually periodic.
There is a minimal pair (p, q) which satisfies (2)—dependant on m, S0 and

the recurrence parameters a in (1). Since the minimal p and q may be defined
independently of each other the minimal pair is unique (e.g., it is not possible to
accept an increase in p to decrease q).

2. Period and Pre-period

Definition 1. The period λX(m) is defined to be the minimal p which satisfies (2)
and the pre-period µX(m) is defined to be the minimal q which satisfies (2), both
with respect to the linear recurrence sequence (Xn). If the sequence is clear from
context we may just refer to λ(m) and µ(m).

Note that µ(m) + λ(m) ≤ mk for all (Xn) because there are mk states reduced
modulo m and there can be no states repeated within the first µ(m) + λ(m) states
(by period and pre-period minimality).
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Lemma 1. For t ∈ N, λ(m)
∣∣t if and only if Xi ≡ Xi+t (mod m) for all i ≥ µ(m).

Proof. Repeatedly applying (2) with the period and pre-period yields

for all s ∈ N and i ≥ µ(m), Xi ≡ Xi+sλ(m) (mod m), (3)

which shows the forwards direction since we have t = sλ(m).
Alternatively, by the division algorithm there exist integers q, r such that t =

qλ(m) + r, with 0 ≤ r < λ(m). Then

Xi ≡ Xi+t ≡ Xi+qλ(m)+r ≡ Xi+r (mod m),

where the final equivalence uses (3) with s = q. But then Xi ≡ Xi+r (mod m) and
r < λ(m), so we have that r = 0 and λ(m)

∣∣t. �

Theorem 1. For coprime m1 and m2, λ(m1m2) = lcm(λ(m1), λ(m2)).

Proof. In the following, let i be any sufficiently large integer. To show equality we
will show each side divides the other.

Firstly, by definition we have Xi ≡ Xi+λ(m1m2) (mod m1m2), and thus

Xi ≡ Xi+λ(m1m2) (mod m1 and m2),

so by Lemma 1, λ(m1)
∣∣λ(m1m2) and λ(m2)

∣∣λ(m1m2) which implies lcm(λ(m1),
λ(m2))

∣∣λ(m1m2).
Secondly, since λ(m1)

∣∣ lcm(λ(m1), λ(m2)) and λ(m2)
∣∣ lcm(λ(m1), λ(m2)) from

Lemma 1 we have

Xi ≡ Xi+lcm(λ(m1),λ(m2)) (mod m1 and m2)

and since m1 and m2 are coprime, by the Chinese Remainder Theorem,

Xi ≡ Xi+lcm(λ(m1),λ(m2)) (mod m1m2)

so by Lemma 1, λ(m1m2)
∣∣ lcm(λ(m1), λ(m2)). �

Theorem 2. For coprime m1 and m2, µ(m1m2) = max{µ(m1), µ(m2)}.

Proof. By the Chinese Remainder Theorem, the smallest value of i which satisfies

Xi ≡ Xi+λ(m1m2) (mod m1m2),

will also be the smallest value of i which satisfies both of

Xi ≡ Xi+λ(m1m2) (mod m1 and m2).

The smallest satisfying value of i will be µ(m1) for the first and µ(m2) for the
second; thus the smallest satisfying both is max{µ(m1), µ(m2)}. �

Corollary 1. If m =
∏
pei
i is the prime factorization, then λ(m) = lcmi λ(pei

i ) and
µ(m) = maxi µ(pei

i ).

Proof. By repeated application of Theorems 1 and 2. �

Lemma 2. Let (Xn) and (Yn) satisfy the same recurrence, with (Yn) having initial
conditions S0 = (0, 0, . . . , 0, 1), that is, the final entry of S0 is 1 and all other entries
(if any) are 0. Then λX(m)

∣∣λY (m).
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Proof. There exist constants b0, b1, . . . , bk−1 such that

Xn = b0Yn + b1Yn+1 + b2Yn+2 + · · ·+ bk−1Yn+k−1

which may be found by solving the system

X0 = bk−1

X1 = bk−2 + bk−1Yk
X2 = bk−3 + bk−2Yk + bk−1Yk+1

...
Xk−1 = b0 + · · · + bk−3Y2k−4 + bk−2Y2k−3 + bk−1Y2k−2

Then for all i ≥ µY (m),

Xi+λY (m) ≡ b0Yi+λY (m) + · · ·+ bk−1Yi+λY (m)+k−1 (mod m)

≡ b0Yi + · · ·+ bk−1Yi+k−1 (mod m)

≡ Xi (mod m)

and by Lemma 1, λX(m)
∣∣λY (m). �

Lemma 3. Let (Xn) satisfy the homogeneous version of a recurrence satisfied by
(Yn), that is, their recurrences share the coefficients ai but the (Xn) recurrence has
a = 0. Then λX(m)

∣∣λY (m) when (Yn) has initial conditions (0, 0, . . . , 0, 1).

Proof. Let Zn = Yn − Xn; then (Zn) satisfies the same recurrence as (Yn) so by
Lemma 2, λZ(m)

∣∣λY (m). Then for all i ≥ µY (m),

Xi+λY (m) ≡ Yi+λY (m) − Zi+λY (m) ≡ Yi − Zi ≡ Xi (mod m),

and by Lemma 1, λX(m)
∣∣λY (m). �

The following theorems concern properties of the period function for recurrences
with initial conditions (0, 0, . . . , 0, 1).

Theorem 3. For any prime p and e ≥ 1, λ(pe+1)
∣∣pλ(pe).

Proof. For all i ≥ µ(pe) we have that pe
∣∣Xi+λ(pe) −Xi, so we may define the new

integer sequence (Yn) by

Yn =
Xn+λ(pe)+µ(pe) −Xn+µ(pe)

pe

which can be seen to satisfy the homogeneous version of the (Xn) recurrence. Since
(Xn) has initial conditions (0, 0, . . . , 0, 1), by Lemma 3 we have λY (m)

∣∣λX(m) or
Yi+λX(pe) ≡ Yi (mod pe) for sufficiently large i. Using this in the form peYi+λ(pe) ≡
peYi (mod p2e) and the formula

Xi+λ(pe)+µ(pe) = Xi+µ(pe) + peYi

we can show by induction that

Xi+jλ(pe)+µ(pe) ≡ Xi+µ(pe) + jpeYi (mod p2e) (4)

for j ∈ N. Taking j = p yields Xi+pλ(pe) ≡ Xi (mod pe+1) for 2e ≥ e + 1 (i.e.,
e ≥ 1), and the result follows. �

Corollary 2. For any prime p and e ≥ 1, λ(pe+1) = λ(pe) or λ(pe+1) = pλ(pe).

Proof. An immediate consequence of Theorem 3 and the fact λ(pe)
∣∣λ(pe+1) (since

Xi+λ(pe+1) ≡ Xi (mod pe+1) also holds modulo pe). �
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Theorem 4. For any prime p and e ≥ 2, if λ(pe) 6= λ(pe+1) then λ(pe+1) 6= λ(pe+2).

Proof. Define (Yn) as in the proof of Theorem 3. Notice from (4) we cannot have
p
∣∣Yi for all arbitrarily large i, otherwise we would have λ(pe) = λ(pe+1). Thus,

when 2e ≥ e+ 2 (i.e., e ≥ 2) we have

Xi+λ(pe+1)+µ(pe) ≡ Xi+µ(pe) + pe+1Yi (mod pe+2)

and that there are arbitrarily large l such that p-
∣∣Yl, so λ(pe+1) 6= λ(pe+2). �

Corollary 3. For any prime p and e ≥ 2, if λ(pe) 6= λ(pe+1) then λ(pe+r) = prλ(pe)
for r ∈ N.

Proof. By repeated application of Corollary 2 and Theorem 4. �

3. Example Use

It may be shown that if (Un) is the Fibonacci sequence (Un = Un−1 +Un−2 with
U0 = 0 and U1 = 1) then for all primes p 6= 5, λ(p)

∣∣p2 − 1. So, for example, to show
91 is not a prime, we can calculate λ(91) using the attached calcperiod function:

calcperiod([0, 1], [1, 1, 0], 91)[1];

returns 112. Since 912 ≡ 105 6≡ 1 (mod 112), 91 is not prime. Under 1000, there
are only 8 numbers which serve as ‘psedoprimes’: 161, 231, 323, 341, 377, 451, 671
and 903.
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Maple Code 1 Auxiliary function for calcperiod; tests if two lists x and y have all
equal elements with respect to the given index offsets.

equal := proc(x::list, xoffset::nonnegint, y::list, yoffset::nonnegint)
local i, k;
k := nops(x);
for i from 1 to k do

if x[i+xoffset mod k+1] <> y[i+yoffset mod k+1] then
break;

end if;
end do;
return evalb(i=k+1);

end;

Maple Code 2 Returns the period and pre-period modulo m of a linear recurrence
sequence (Xn) using Floyd’s cycle-finding algorithm. Input x as the list X0, X1, . . . , Xk−1

and a as the list ak, ak−1, . . . , a1, a.

calcperiod := proc(x::list, a::list, m::posint)
local k, i, j, X, Y, Z, n, period, preperiod;
k := nops(x);
X := x mod m;
Y := X;
Z := X;

for i from 0 do
if equal(X, i mod k, Y, 2*i mod k) and i>0 then

n := i;
period := i;
break;

end if;
X[i mod k+1] := X[i mod k+1]*a[k] + a[k+1] mod m;
Y[2*i mod k+1] := Y[2*i mod k+1]*a[k] + a[k+1] mod m;
for j from 1 to k-1 do

X[i mod k+1] := X[i mod k+1] + X[i+j mod k+1]*a[k-j] mod m;
Y[2*i mod k+1] := Y[2*i mod k+1] + Y[2*i+j mod k+1]*a[k-j] mod m;

end do;
Y[2*i+1 mod k+1] := Y[2*i+1 mod k+1]*a[k] + a[k+1] mod m;
for j from 1 to k-1 do

Y[2*i+1 mod k+1] := Y[2*i+1 mod k+1] + Y[2*i+1+j mod k+1]*a[k-j] mod m;
end do;

end do;

for i from 0 do
if equal(X, n+i mod k, Z, i mod k) then

preperiod := i;
break;

end if;
X[n+i mod k+1] := X[n+i mod k+1]*a[k] + a[k+1] mod m;
Z[i mod k+1] := Z[i mod k+1]*a[k] + a[k+1] mod m;
for j from 1 to k-1 do

X[n+i mod k+1] := X[n+i mod k+1] + X[n+i+j mod k+1]*a[k-j] mod m;
Z[i mod k+1] := Z[i mod k+1] + Z[i+j mod k+1]*a[k-j] mod m;

end do;
if equal(X, i mod k, Y, n+i mod k) and period=n then

period := i+1;
end if;

end do;
return period, preperiod;

end;


