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Lemma (§2.2). An order relation > on Zn≥0 is a well-ordering [every nonempty
subset of Zn≥0 has a smallest element] if and only if every strictly decreasing
sequence in Zn≥0

α(1) > α(2) > α(3) > · · ·

eventually terminates.

Proof. We show the contrapositive:
If > is not a well-ordering then some subset of Zn≥0 does not have a smallest

element; from this subset we can form a strictly decreasing sequence (α(i))
which does not terminate.

If some strictly decreasing sequence (α(i)) does not eventually terminate then⋃
i α(i) is a nonempty subset of Zn≥0 which does not have a smallest element;

thus > is not a well-ordering.

Definition (§2.3). Let α, β ∈ Zn≥0. We say α >lex β if in the vector difference
α− β ∈ Zn, the leftmost nonzero entry is positive.

Proposition (§2.4). >lex on Zn≥0 is a monomial ordering.

Proof. We show >lex satisfies each monomial ordering requirement:

(i) [>lex is a total ordering]

This can be shown inductively, using the fact that the usual > on Z≥0 is a
total ordering and that >lex on Zn≥0 can be defined in terms of > on Z≥0

(if first entries are unequal) and >lex on Zn−1
≥0 (if first entries are equal).

(ii) [α >lex β =⇒ α+ γ >lex β + γ]

α >lex β is defined by the value of α− β and α+ γ >lex β + γ is defined
by (α+ γ)− (β + γ) = α− β, the same value.

(iii) [>lex is a well-ordering]

If >lex wasn’t a well-ordering, by Lemma §2.2 there exists an infinite
strictly decreasing Zn≥0-sequence; their first entries will form a decreas-
ing sequence in Z≥0. Since Z≥0 is well-ordered, it cannot be a strictly
decreasing sequence and therefore must eventually stabilize. Afterwards,
the other entries will form an infinite strictly decreasing Zn−1

≥0 -sequence;
repeatedly applying the above argument will eventually yield a strictly
decreasing Z≥0-sequence: a contradiction.
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Lemma (§2.8). Let f, g ∈ k[x1, . . . , xn] be nonzero polynomials. Then:

• multideg(fg) = multideg(f) + multideg(g)

• If f + g 6= 0, then

multideg(f + g) ≤ max(multideg(f),multideg(g)).

Equality occurs if either

• multideg(f) 6= multideg(g)

• multideg(f) = multideg(g) and LC(f) 6= −LC(g)

Proof. Let f =
∑
α aαx

α and g =
∑
α bαx

α. Point 1:

multideg(fg) = multideg
(∑

α

∑
β

aαbβx
α+β

)
= max
aαbβ 6=0

(α+ β) = max
aα 6=0
bβ 6=0

(α+ β)

= max
aα 6=0

(α+ max
bβ 6=0

(β)) = max
aα 6=0

(α) + max
bβ 6=0

(β)

= multideg(f) + multideg(g)

Point 2: We have that

multideg(f + g) = multideg
(∑

α

(aα + bα)xα
)

= max
aα+bα 6=0

(α).

Noting that {α | aα + bα 6= 0 } ⊆ {α | aα 6= 0 or bα 6= 0 }, we have

max
aα+bα 6=0

(α) ≤ max
aα 6=0
bα 6=0

(α) = max(max
aα 6=0

(α),max
bα 6=0

(α))

= max(multideg(f),multideg(g)).

If multideg(f) 6= multideg(g): take multideg(f) > multideg(g) without loss of
generality. Then we have amultideg(f) 6= 0 and bmultideg(f) = 0, so noting that
multideg(f) ∈ {α | aα + bα 6= 0 } we have

max
aα+bα 6=0

(α) ≥ multideg(f) = max(multideg(f),multideg(g)).

Which is the opposite inequality from point 2, so

multideg(f + g) = max(multideg(f),multideg(g)).

If multideg(f) = multideg(g) and LC(f)+LC(g) 6= 0: then we have amultideg(f)+
bmultideg(f) 6= 0 and the same argument as above applies.
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Theorem (§3.3). The Division Algorithm in k[x1, . . . , xn] works as stated.

Proof. Correctness: We show that

f = a1f1 + · · ·+ asfs + p+ r (1)

holds after every stage (by initialization it holds at the start). Notice that
exiting the inner loop can occur in only two ways: in a division step or in a
remainder step.

Division step: redefines p and some ai:

a′ifi + p′ = (ai + LT(p)/LT(fi))fi + p− fi LT(p)/LT(fi) = aifi + p

Remainder step: redefines p and r:

p′ + r′ = p− LT(p) + r + LT(p) = p+ r

Thus (1) continues to hold following both step types.
Termination: We will show that multideg(p) strictly decreases: in both step

types the leading term of p is removed.
Division step: p′ = p− fi LT(p)/LT(fi) and

LT(fi LT(p)/LT(fi)) = LT(fi) LT(p)/LT(fi) = LT(p)

by an extension of Lemma §2.8.
Remainder step: p′ = p − LT(p). Thus in both cases multideg(p) strictly

decreases and since > is a well-ordering it cannot strictly decrease indefinitely
by Lemma §2.2. Therefore the algorithm must terminate.

Lemma (§4.2). Let I = 〈xα | α ∈ A〉. Then a monomial xβ ∈ I if and only if
there is some α ∈ A such that xα divides xβ .

Proof. Given xβ ∈ I, we have xβ =
∑s
i=1 hix

α(i) for some hi ∈ k[x1, . . . , xn] and
α(i) ∈ A. Expand the right-hand side as a linear combination of monomials.
Since the left-hand side consists of a single monomial with exponent β, every
monomial on the right-hand side which does not have have an exponent of β
must cancel off. This leaves a sum of the form

∑s
i=1 h

′
ix
α(i), where h′ix

α(i) =
cix

β and some ci ∈ k must be nonzero. Then xα(i) divides xβ , since xβ =
(h′ic

−1
i )xα(i).
Conversely: If there is some α ∈ A such that xα divides xβ then we have

xβ = gxα for some g ∈ k[x1, . . . , xn], but hxα ∈ I for all h ∈ k[x1, . . . , xn].
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Lemma (§4.3). Let I be a monomial ideal, and let f ∈ k[x1, . . . , xn]. Then the
following are equivalent:

(i) f ∈ I

(ii) Every term of f lies in I

(iii) f is a k-linear combination of the monomials in I

Proof. (iii) =⇒ (ii) =⇒ (i): Since ideals are closed over addition.
(i) =⇒ (iii): Say I = 〈xα | α ∈ A〉, then any f ∈ I can be written in the form

f =
∑
α∈A hαx

α where hα ∈ k[x1, . . . , xn]. Write hα as a k-linear combination
of monomials and expand, writing f as a k-linear combination of monomials,
all of which must be multiples of monomials in {xα | α ∈ A } by construction.
By Lemma §4.2 this means that these monomials also lie in I and thus f is a
k-linear combination of monomials in I.

Corollary (§4.4). Two monomial ideals are the same if and only if they contain
the same monomials.

Proof. If two monomial ideals are the same, of course they contain the same
monomials.

Conversely: By Lemma §4.3 we know that every element in a monomial
ideal can be ‘built’ out of the monomials of the ideal, so if two monomials ideals
contain the same monomials then every other element they contain will also be
the same.

Theorem (§4.5). Let I = 〈xα | α ∈ A〉 ⊆ k[x1, . . . , xn]. Then there exists a
finite A′ ⊆ A such that I = 〈xα | α ∈ A′〉.

Proof. We already know this is true for A ⊆ Z≥0, but we want to show it for
A ⊆ Zn≥0. This can be done inductively, with the hypothesis that it is true for
all A ⊆ Zn−1

≥0 .
Without getting into the details, it requires ‘projecting’ the ideal I ⊆

k[x1, . . . , xn] onto k[x1, . . . , xn−1] to form ideals which by hypothesis have finite
bases. For example, they define the projected ideal J to consist of all monomials
in I with their final entry (xn) removed. The bases for the projected ideals can
then be ‘augmented’ to form a finite B ⊆ Zn≥0 such that I = 〈xβ | β ∈ B〉.

However, we want to find a finite A′ ⊆ A such that I = 〈xα | α ∈ A′〉. By
Lemma §4.2, since xβ ∈ I = 〈xα | α ∈ A〉, we have that there is some α′ ∈ A
such that xα

′
divides xβ . Finding such an α′ for each β ∈ B we construct a

finite subset A′ such that 〈xβ | β ∈ B〉 ⊆ 〈xα | α ∈ A′〉.
However, since A′ ⊆ A we also have

〈xα | α ∈ A′〉 ⊆ 〈xα | α ∈ A〉 = 〈xβ | β ∈ B〉,

and therefore I = 〈xβ | β ∈ B〉 = 〈xα | α ∈ A′〉.
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