
A SAT+CAS Method for Enumerating Williamson Matrices of Even Order
Curtis Bright Ilias Kotsireas Vijay Ganesh

University of Waterloo Wilfrid Laurier University University of Waterloo

Brute-brute force has no hope. But clever, inspired brute force is the future. –Doron Zeilberger

Motivation

Many mathematical conjectures concern the
existence or nonexistence of combinatorial objects
that are only feasibly constructed through a
search. To find large instances of these objects, it
is necessary to use a computer with a clever
search procedure.

Example: Williamson Conjecture

Symmetric sequences A, B , C , D of length n are
called Williamson if they have ±1 entries and
satisfy

PSDA(s) + PSDB(s) + PSDC(s) + PSDD(s) = 4n (∗)

for all integers s, where PSDX is the squared
absolute values of the discrete Fourier transform
of X . It had been conjectured that Williamson
sequences exist for all orders n but the
counterexample 35 was found in 1993.

Our Result

Williamson sequences were enumerated for odd
orders up to 59 in 2007. Our work extends this
enumeration to even orders up to 64. We do this
by combining tools from the fields of satisfiability
checking and symbolic computation.

SAT: Boolean Satisfiability Problem

Many problems that can be rewritten as a SAT
problem can be solved in practice using a modern
SAT solver. SAT solvers contain efficient
general-purpose search routines that perform a
kind of “clever, inspired” brute force search.

CAS: Computer Algebra System

CAS contain functions that can efficiently solve a
wide class of mathematical problems like
computing the Fourier transform of a sequence.

Combining SAT+CAS

CAS are designed to solve domain-specific
problems but do not generally use sophisticated
general-purpose search. Our system uses the
power of SAT solvers to perform an enumerative
search along with CAS functions to compute
intermediate quantities like PSD values.

Williamson
conjecture

Generator SAT Solver

CAS CAS

Williamson sequences Counterexample

Partial
assignment

Conflict
clause

Method Outline

A generator script splits the search space into
subspaces and generates a SAT instance for each
subspace. However, some constraints like (∗)
cannot easily be encoded in a SAT instance. To
work around this, we use a “programmatic” SAT
solver that uses external CAS functions to encode
such constraints.

Programmatic SAT

Periodically the SAT solver will make external
calls to compute quantities like PSDA(s). If this
value is so large that (∗) cannot possibly be
satisfied then a conflict clause is generated
encoding that fact. The SAT solver will ignore
assignments with sequence A in the future,
greatly speeding up the search.

Conclusion

A programmatic SAT solver combined with CAS
functionality is a powerful combination that can
be useful when searching for large combinatorial
objects. In our implementation a programmatic
SAT+CAS solver could perform the search
thousands of times more efficiently than an
off-the-shelf SAT solver.


