Abstract
We develop an efficient deterministic algorithm for performing rational number reconstruction on a vector of images modulo some modulus. When used with output sensitive p-adic lifting or Chinese remaindering for linear system solving, about half of the lifting steps can be saved.

Rational Number Reconstruction
- Given an integer residue $a \mod M$, find a rational number n/d such that $a \equiv n/d \mod M$.
- Would like the solution n/d to be unique, so we require the solution pair (n,d) be small: $|n| \leq N$, $0 < d \leq N$ for a given bound N.
- If $M > 2N^2$ then the solution (if any) is unique.

The Vector Version
- Given a vector $a \in \mathbb{Z}^n$ of images modulo M and a target length N, find a vector $n/d \in \mathbb{Q}^n$ such that $a \equiv n/d \mod M$, $0 < \|d \|_\infty \leq N$.
- In general $M > 2N^2$ is still required for uniqueness, but often we still have uniqueness for smaller M.
- The problem can be solved using scalar reconstruction n times, but this requires $M > 2N^2$ even if uniqueness holds for smaller M.
- Our algorithm finds the unique solution (if one exists) which only requires $M > 2^{(c+1)/2}N^{1+1/c}$ for a small integer constant c, e.g., $c \in \{2,3,4,5\}$.

Rewriting as a Lattice Problem
- Find vectors with length shorter than N in the lattice L generated by the rows of the matrix
$$L = \begin{bmatrix} M \\ \cdot \\ \cdot \\ M \end{bmatrix} \in \mathbb{Z}^{(n+1) \times (n+1)},$$

because short vectors in such a lattice have the general form $[d \mid da \mod M] = [d \mid n]$.

LLL Lattice Basis Reduction
- The famed LLL reduction algorithm can be used to find short vectors in lattices, but is too costly to run on lattices of dimension $n+1$ when n is large.
- Instead, we gradually reduce L by iteratively reducing truncated sublattices of L, à la [1].
- By discarding vectors which cannot contribute to short vectors we can ensure we never have to reduce lattices of dimension more than $c+1$.

Example
- Find a vector of size at most $N = 1000$ which gives a reconstruction of
$$\begin{bmatrix} -11431 & 5719 & -16455 \end{bmatrix} \mod 40009.$$ Scalar reconstruction would require $M > 2 \cdot 10^6$, but our algorithm with $c = 3$ succeeds.
- LLL-reduce the lower-left 2×2 submatrix of L:
$$\begin{bmatrix} 0 & 40009 \\ 1 & -11431 \end{bmatrix} \Rightarrow \begin{bmatrix} -7 & -1 \\ 802 & 5601 \end{bmatrix}.$$

Optimizations
- When $c \in O(1)$ the algorithm just demonstrated has cost $O(n^2(\log M)^3)$.
- Two primary optimizations:
 - Only store the first basis column during computations and reconstruct the rest of the basis at the end.
 - Apply the L^2 algorithm [2], a variant of LLL which works with the Gramian matrix LL^T.
- Taking these modifications into account, the algorithm has cost $O(n(\log M)^2)$.

References