Vector Rational Number Reconstruction

Curtis Bright
Arne Storjohann

Abstract

We develop an efficient deterministic algorithm for performing rational number reconstruction on a vector of images modulo some modulus. When used with output sensitive p-adic lifting or Chinese remaindering for linear system solving, about half of the lifting steps can be saved.

Rational Number Reconstruction

- Given an integer residue $a(\bmod M)$, find a rational number n / d such that $a \equiv n / d(\bmod M)$.
- Would like the solution n / d to be unique, so we require the solution pair (n, d) be small:

$$
|n| \leq N, \quad 0<d \leq N
$$

for a given bound N.

- If $M>2 N^{2}$ then the solution (if any) is unique.

The Vector Version

- Given a vector $\boldsymbol{a} \in \mathbb{Z}^{n}$ of images modulo M and a target length N, find a vector $\boldsymbol{n} / d \in \mathbb{Q}^{n}$ such that

$$
\boldsymbol{a} \equiv \boldsymbol{n} / d \quad(\bmod M), \quad 0<\|[d \mid \boldsymbol{n}]\|_{2} \leq N .
$$

- In general $M>2 N^{2}$ is still required for uniqueness, but often we still have uniqueness for smaller M.
- The problem can be solved using scalar reconstruction n times, but this requires $M>2 N^{2}$ even if uniqueness holds for smaller M.
- Our algorithm finds the unique solution (if one exists) which only requires $M>2^{(c+1) / 2} N^{1+1 / c}$ for a small integer constant c, e.g., $c \in\{2,3,4,5\}$.

Rewriting as a Lattice Problem

- Find vectors with length shorter than N in the lattice \mathcal{L} generated by the rows of the matrix

$$
\boldsymbol{L}=\left[\begin{array}{llll}
& & & \\
& & & . \\
& & \cdot & \\
& M & & \\
1 & a_{1} & \cdots & a_{n}
\end{array}\right] \in \mathbb{Z}^{(n+1) \times(n+1)},
$$

because short vectors in such a lattice have the general form $[d \mid \boldsymbol{a} \bmod M]=[d \mid \boldsymbol{n}]$.

LLL Lattice Basis Reduction

- The famed LLL reduction algorithm can be used to find short vectors in lattices, but is too costly to run on lattices of dimension $n+1$ when n is large.
\triangle Instead, we gradually reduce \boldsymbol{L} by iteratively reducing truncated sublattices of \mathcal{L}, à la [1].
- By discarding vectors which cannot contribute to short vectors we can ensure we never have to reduce lattices of dimension more than $c+1$.

Example

- Find a vector of size at most $N=1000$ which gives a reconstruction of

$$
\left[\begin{array}{lll}
-11431 & 5719 & -16455
\end{array}\right] \bmod 40009 .
$$

- Scalar reconstruction would require $M>2 \cdot 10^{6}$, but our algorithm with $c=3$ succeeds.
- LLL-reduce the lower-left 2×2 submatrix of \boldsymbol{L} :

$$
\left[\begin{array}{cc}
0 & 40009 \\
1 & -11431
\end{array}\right] \stackrel{\text { LLL }}{\Longrightarrow}\left[\begin{array}{cc}
-7 & -1 \\
802 & -5601
\end{array}\right]
$$

Now, any vector which includes the last row must be longer than N, so the last row is discarded.

- Add a column and row and LLL-reduce:

Once again, the last row may be discarded.

- Add a column and row and LLL-reduce:
$\left[\begin{array}{cccc}0 & 0 & 0 & 40009 \\ -7 & -1 & -24 & 115185\end{array}\right] \stackrel{\text { LLL }}{\Longrightarrow}\left[\begin{array}{cccc}-231 & -33 & -792 & 250 \\ 175 & 25 & 600 & 1023\end{array}\right]$
Once again, the last row may be discarded. - We find the unique vector reconstruction is

$$
\left[\begin{array}{lll}
33 / 231 & 792 / 231 & -250 / 231
\end{array}\right] .
$$

Optimizations

- When $c \in O(1)$ the algorithm just demonstrated has cost $O\left(n^{2}(\log M)^{3}\right)$.
- Two primary optimizations:
- Only store the first basis column during computations and reconstruct the rest of the basis at the end.
- Apply the L^{2} algorithm [2], a variant of LLL which works with the Gramian matrix $\boldsymbol{L} \boldsymbol{L}^{\mathrm{T}}$.
- Taking these modifications into account, the algorithm has cost $O\left(n(\log M)^{2}\right)$.

References

[1] M. van Hoeij and A. Novocin. Gradual sub-lattice reduction and a new complexity for factoring polynomials. LATIN 2010: Theoretical Informatics.
2] P. Q. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM Journal on Computing, 2009.

