Unsatisfiability Proofs for Weight 16 Codewords in Lam's Problem Kevin Cheung² Brett Stevens² Ilias Kotsireas³ Curtis Bright¹ Vijay Ganesh⁴ ²Carleton University ³Wilfrid Laurier University ¹University of Windsor ⁴University of Waterloo

Motivation

Many mathematical problems concern the existence of combinatorial objects that are only feasibly constructed through a search. For example, Lam's problem—determining if a projective plane of order ten exists—was studied since the 1800s and only resolved via a supercomputer search in the 1980s.

A satisfiability (SAT) solver finds partial projective planes...

SAT solver

Finite Projective Planes

order 2

Every pair of lines meet at a unique point. There is a unique line through any two points. Every line contains n + 1 points (in order n).

The MATHCHECK SAT+CAS System

uwaterloo.ca/mathcheck

resolved by our system in 30 hours.

... and a computer algebra system (CAS) finds nontrival isomorphisms and blocks them.

Results

We reduce Lam's problem to Boolean logic and use SAT solvers and computer algebra systems to generate the first collection of nonexistence certificates for the problem. A subcase of Lam's problem that was previously solved in 16,000 computing hours was