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Abstract
We use integer programming (IP) and constraint
programming (CP) to search for sets of mutually
orthogonal Latin squares (MOLS). We build upon
the work of Appa et al. in their paper Searching
for Mutually Orthogonal Latin Squares via Integer
and Constraint Programming [1] by formulating an
extended symmetry breaking method and providing
an alternative CP encoding which performs much
better in practice.

Orthogonal Latin Squares
A Latin square of order n is an n × n array, L, of
symbols {0, 1, . . . , n− 1} in which each symbol ap-
pears exactly once in each row and column. The
entry in row i and column j of a square L is de-
noted Lij . Two Latin squares of the same order,
L and M , are said to be orthogonal if there is a
unique solution Lij = a, Mij = b for every pair
of a, b ∈ {0, 1, . . . , n − 1}. A set of k latin squares
of order n, is called a set of mutually orthogonal
Latin squares (MOLS) if all squares are pairwise
orthogonal—in which case we label the system as
kMOLS(n).
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Figure 1: An example of 3MOLS(4).

Symmetry Breaking
We reduce the number of symmetries present in our
search space by an exponential factor. Solutions
to the kMOLS(n) problem have a large number of
isomorphisms, so constraining the domains of the
cells in any square will help to reduce the size of the
search space. Let X, Y be a set of 2MOLS(n) and
an be entry A002865 of the Online Encyclopedia
of Integer Sequences [2], which is eO(

√
n). We im-

pose the following constraints on the first rows and
columns of X and Y to eliminate a large number of
symmetries:

1. Fix first row of X and Y in lex order.

2. Fix first column of X in lex order.

3. Fix first column of Y to be one of an tuples
with distinct cycle types.

Theorem 1 in our supplementary submission material
shows that every pair of orthogonal Latin squares
has a representative with these properties. We call
this the “Cycle Type” symmetry breaking method.
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IP Model
Our IP model for 2MOLS(n) uses n4 binary variables

xijkl :=
{

1 if Xij = k and Yij = l

0 otherwise

for all i, j, k, l ∈ {0, 1, . . . , n − 1}. The Latin and
orthogonality constraints are expressed as∑

0≤k,l<n

xijkl = 1 ∀i, j 1 value per cell

∑
0≤j,l<n

xijkl = 1 ∀i, k Latin rows of X

∑
0≤j,k<n

xijkl = 1 ∀i, l Latin rows of Y

∑
0≤i,l<n

xijkl = 1 ∀j, k Latin columns of X

∑
0≤i,k<n

xijkl = 1 ∀j, l Latin columns of Y

∑
0≤i,j<n

xijkl = 1 ∀k, l X, Y orthogonal

CP Model
Viewing the rows of X and Y as permutations on
{0, 1, . . . , n− 1} we define XY as the square whose
ith row is row i of Y applied to row i of X. We
also define X−1 as the square whose ith row is the
inverse permutation of row i of X. Our CP model
for 2MOLS(n) uses 2n2 integer variables

Xij := value of cell (i, j) in square X,

Yij := value of cell (i, j) in square Y ,

Zij := value of cell (i, j) in square Z = X−1Y

Where i, j, Xij , Yij , Zij ∈ {0, 1, . . . , n − 1} and the
ith row of Z is the permutation composition of the
inverse of row i of X with row i of Y . X, Y are
orthogonal if and only if Z is Latin [3, Theorem 6.6],
so we impose orthogonality by ensuring X, Y and Z
are Latin squares. This is accomplished with the
sets of constraints

AllDifferent(Xij ∀j),AllDifferent(Xij ∀i),
AllDifferent(Yij ∀j),AllDifferent(Yij ∀i),
AllDifferent(Zij ∀j),AllDifferent(Zij ∀i)

To make Y = XZ the (i, j)th entry of Y is set to
the (i, Xij)th entry of Z using “element indexing”
constraints Zi[Xij ] = Yij where Zi is the vector
of variables corresponding to row i of Z. This is
an improvement over Appa et al.’s model, which
encoded the orthogonality between X and Y using
linear constraints—and it allows the solver to reduce
the problem to an instance of SAT.

Results
We ran trials on a computer with an Intel i9 9900k processor and 32GB of memory. Trials were allocated 1
core each and timeout was set at 60,000s. The implementations of our programs were done in Microsoft
Visual C++ and later modified to run in Linux. We used Gurobi [5] as our IP solver and Google OR-Tools [4]
as our CP solver. Each are highly competitive in their class, and are free to use for students. The “CP-linear”
model given by Appa et al. [1] was originally used, which imposed orthogonality by defining Zij := Xij +nYij

and AllDifferent(Zij)∀i, j. We later revised this to our “CP-index” model, which outperformed all other
models even with no symmetry breaking.

Model 5 6 7 8 9 10
IP 0.1 Timeout 3.2 6.4 344.5 3,046.4

CP-linear 0.0 Timeout 8.0 1,967.1 58,637.8 Timeout
CP-index 0.0 Timeout 7.8 36.3 378.7 214.8

Table 1: Timings in seconds for orders 5 ≤ n ≤ 10 with no symmetry breaking.

Imposing all of the symmetry breaking strategies gave us significant improvements in the running time of all
models. The Cycle Type method is an extension of the strategy used by Appa et al. [1], who show that
any solution to kMOLS(n) is isomorphic to one where Y10 = 2, Yi0 6= i and Yi0 ≤ i + 1 for 1 ≤ i < n, with
the total number of fixings given by the (n − 2)th Fibonacci number. This is refered to as the “Domain
Reduction” symmetry breaking method. Using the Cycle Type method exponentially reduces the number
of column fixings to an. Figure 2 shows a comparison of the running times across our various models and
symmetry breaking strategies. More detailed timings, proofs and complete implementations of our programs
can be found at https://github.com/noahrubin333/CP-IP.
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Figure 2: Running times of our models and symmetry
breaking methods for 5 ≤ n ≤ 11.
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