
A Hybrid SAT and Lattice Reduction
Approach for Integer Factorization

By

Yameen Ajani

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2024

© 2024 Yameen Ajani

A Hybrid SAT and Lattice Reduction Approach for Integer Factorization

by

Yameen Ajani

APPROVED BY:

I. Shapiro

Department of Mathematics and Statistics

A. Biniaz

School of Computer Science

C. Bright, Advisor

School of Computer Science

June 11, 2024

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION

I. Co-Authorship

I hereby declare that this thesis incorporates material that is result of joint research,

as follows:

In Chapters 4 and 5 of this thesis, the findings are the result of collaborative work

with Dr. Curtis Bright as a co-author. The conceptual framework for the proposed

methodology originated from Dr. Bright’s initial idea. Additionally, all aspects of

the research, including implementation, were accomplished through joint efforts and

collaboration.

Chapter 5 integrates unpublished material co-authored with Dr. Bright, comple-

menting the published findings. These additional experiments were conducted col-

laboratively to augment the existing results and represent a joint effort between the

co-authors.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my thesis,

and have obtained written permission from each of the co-author(s) to include the

above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which

it refers, is the product of my own work.

II. Previous Publication

This thesis includes two original papers that have been previously published/submit-

ted to journals for publication, as follows:

III

Thesis Chapter Publication Title/Full Citation Publication Sta-
tus

Chapter 4, 5 Ajani, Y. and Bright, C. (2023).
A hybrid SAT and lattice re-
duction approach for integer fac-
torization. In Ábrahám, E.
and Sturm, T., editors, Proceed-
ings of the 8th SC-Square Work-
shop co-located with the 48th In-
ternational Symposium on Sym-
bolic and Algebraic Computation,
SC-Square@ISSAC 2023, Tromsø,
Norway, July 28, 2023, volume
3455 of CEUR Workshop Pro-
ceedings, pages 39–43. CEUR-
WS.org.

Published

Chapter 4, 5 Yameen Ajani and Curtis Bright.
2024. SAT and Lattice Reduction
for Integer Factorization. In Pro-
ceedings of International Sympo-
sium on Symbolic and Algebraic
Computation 2024 (ISSAC 2024).
ACM, New York, NY, USA, 9
pages.

Accepted

I certify that I have obtained a written permission from the copyright owner(s)

to include the above published material(s) in my thesis. I certify that the above

material describes work completed during my registration as a graduate student at

the University of Windsor.

III. General

I declare that, to the best of my knowledge, my thesis does not infringe upon any-

one’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my the-

sis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

IV

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis. I declare that this is a true copy

of my thesis, including any final revisions, as approved by my thesis committee and

the Graduate Studies office, and that this thesis has not been submitted for a higher

degree to any other University or Institution.

V

ABSTRACT

The difficulty of factoring large integers into primes is the basis for cryptosys-

tems such as RSA. Due to the widespread popularity of RSA, there have been many

proposed attacks on the factorization problem such as side-channel attacks where

some bits of the prime factors are available. When enough bits of the prime factors

are known, two methods that are effective at solving the factorization problem are

satisfiability (SAT) solvers and Coppersmith’s method. The SAT approach reduces

the factorization problem to a Boolean satisfiability problem, while Coppersmith’s

approach uses lattice basis reduction. Both methods have their advantages, but they

also have their limitations: Coppersmith’s method does not apply when the known

bit positions are randomized, while SAT-based methods can take advantage of known

bits in arbitrary locations but have no knowledge of the algebraic structure exploited

by Coppersmith’s method. In this thesis we describe a new hybrid SAT and com-

puter algebra approach to efficiently solve random leaked-bit factorization problems.

Specifically, Coppersmith’s method is invoked by a SAT solver to determine whether

a partial bit assignment can be extended to a complete assignment. Our hybrid im-

plementation solves random leaked-bit factorization problems orders of magnitude

faster than either a pure SAT or pure computer algebra approach.

VI

DEDICATION

This work is dedicated to my family, the unwavering pillars of my support.

To my mother, whose belief in me has been a guiding light through every twist

and turn. In good times and bad, her unwavering faith has been my anchor. I owe

everything I am today to her boundless love and encouragement.

To my father, whose steadfast financial support has enabled me to pursue my

dreams. His sacrifices and commitment have paved the way for my academic journey.

And to my little sister, the joyful spirit who has kept me grounded with her

infectious goofiness. In the midst of the academic challenges, her lightheartedness

has been a source of sanity and balance.

This achievement is as much theirs as it is mine. Thank you for being my constant

source of strength and inspiration.

VII

ACKNOWLEDGEMENTS

I extend my deepest appreciation to Dr. Curtis Bright, my supervisor, whose

invaluable guidance and insights played a pivotal role in shaping the trajectory of my

research. His mentorship not only provided clarity but also instilled in me a more

discerning and critical approach to my work.

I am also indebted to the members of my thesis committee for their constructive

advice and insightful suggestions, which significantly enriched the content and quality

of my thesis.

My heartfelt gratitude goes to my friends and family for their unwavering encour-

agement and steadfast support throughout this academic journey. Their belief in my

abilities has been a constant source of motivation.

Finally, I extend humble thanks to the School of Computer Science for provid-

ing an enriching academic environment and to all those who, in various capacities,

contributed to my growth and success.

VIII

TABLE OF CONTENTS

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICA-
TION III

ABSTRACT VI

DEDICATION VII

ACKNOWLEDGEMENTS VIII

LIST OF FIGURES XI

LIST OF ABBREVIATIONS XII

1 Introduction 1
1.1 The Factorization Problem . 2
1.2 RSA Cryptosystem . 4
1.3 Side-channel Attacks . 5
1.4 Lattices and the LLL Algorithm . 8
1.5 Coppersmith’s Method . 12
1.6 Our Contributions . 14

2 Boolean Satisfiability 17
2.1 Tseitin Transformation . 20
2.2 The Backbone of SAT - DPLL Algorithm 22
2.3 Conflict Driven Clause Learning . 24

3 Related Works 26
3.1 Integer Factorization & Algebraic Methods 26
3.2 RSA Key Reconstruction . 29
3.3 The Magic of SAT . 30

4 Methodology 33
4.1 The Hybrid Approach . 33

4.1.1 Factoring with Coppersmith 34
4.1.2 Blocking Clauses . 40

5 Experiments and Results 42
5.1 The Encoding . 42

5.1.1 Including Inferable Information 43
5.1.2 Incorporating the RSA Private Exponent 44

5.2 Solving Method . 46
5.2.1 Branching Heuristics . 47
5.2.2 System Requirements & Configuration 48

IX

5.3 Summary of Results . 48
5.3.1 Calling Coppersmith using High Bits 50
5.3.2 Incorporating the Private Exponent 52
5.3.3 Effect of Branching Heuristic 52
5.3.4 Effect of Different Encodings 55
5.3.5 Effect of Changing Lattice Size 57
5.3.6 Effect of Known Bits in One Prime Only 58
5.3.7 Comparison with Other Works 58

6 Conclusion and Future Work 64

REFERENCES 65

APPENDIX A Experimental Results 76

VITA AUCTORIS 87

X

LIST OF FIGURES

1.4.1 A two dimensional lattice generated by two vectors. 9

1.4.2 Visual representation of lattice basis vectors before and after LLL

reduction. 11

2.1.1 Example Boolean Circuit - Tseitin Transformation 21

4.1.1 Working - Coppersmith’s Method 35

4.1.2 SAT + CAS Approach . 41

5.1.1 A n-bit binary multiplier circuit . 42

5.3.1 Results . 49

5.3.2 Results - Calling Coppersmith with High Bits 51

5.3.3 Results - Incorporating the Private Exponent d 53

5.3.4 Results - Effect of Branching Heuristic 54

5.3.5 Results - Effect of Different Encodings 56

5.3.6 Results - Effect of Known Bits in One Prime Only 57

5.3.7 Results - Effect of Known Bits in One Prime Only 59

5.3.8 Results - Comparison with Heninger-Shacham’s (HS) method 60

5.3.8 Results - Comparison with Heninger–Shacham’s (HS) method 61

5.3.9 Effect of Branching Heuristic . 62

XI

LIST OF ABBREVIATIONS

SAT Boolean Satisfiability

CAS Computer Algebra System

GNFS General Number Field Sieve

RSA Rivest–Shamir–Adleman Cryptosystem

SSL Secure Sockets Layer

TLS Transport Layer Security

CRT Chinese Remainder Theorem

ECC Elliptic Curve Cryptography

SRAM Static Random-Access Memory

DRAM Dynamic Random-Access Memory

SVP Shortest Vector Problem

CVP Closest Vector Problem

LLL Lenstra–Lenstra–Lovász lattice basis reduction algorithm

CNF Conjunctive Normal Form

DPP Davis–Putnam Procedure

BCP Boolean Constraint Propagation

DPLL Davis–Putnam–Logemann–Loveland Procedure

CDCL Conflict Driven Clause Learning

MSB Most Significant Bit

LSB Least Significant Bit

XII

CHAPTER 1

Introduction

Integer factorization is a well-studied and important problem in the mathematics

and computer science community, both because of its theoretical elegance but also

because its difficulty forms the theoretical basis of popular cryptosystems such as

RSA. Given an integer N , the factorization problem is to decompose N as a product

N = p1 · · · pk where the pi are prime numbers. Up to ordering of the prime factors pi

(some of which may appear multiple times) the factorization is unique—a fact that

was essentially shown by Euclid around 300 BC but not stated in full completeness

until 1801 by Gauss [20].

It is unknown if there exists an algorithm that can factor integers in polynomial

time in the bitlength of N , at least on a classical computer. The fastest general algo-

rithm discovered to date is the number field sieve [57] which heuristically runs in sub-

exponential time. In addition, Shor’s algorithm [85] is a quantum-based method that

can factor composites in polynomial time subject to the availability of a fault-tolerant

quantum computer. The difficulty of factoring integers—especially semiprimes (num-

bers with exactly two prime factors)—forms the basis many cryptosystems currently

in wide usage such as RSA.

A lot of different approaches and methods have been proposed to solve the fac-

torization problem. The most successful methods exploit the algebraic structure

inherent in the problem. Another approach reduces the factorization problem to

a Boolean satisfiability (SAT) problem that when solved reveals a nontrivial factor

of N . In recent years, SAT solvers have achieved great success on many varied kinds

of search problems—there are numerous practical and theoretical problems for which

1

1. INTRODUCTION

SAT solvers are the most effective known way of solving the problem [12]. Some

difficult mathematical problems—such as the resolution of the Boolean Pythagorean

triples problem [46] or the computation of the fifth Schur number [44]—have only

been solved using SAT solvers. Unfortunately, for the factoring problem specifically,

the SAT approach is dramatically outperformed by algebraic algorithms [71]. This is

not surprising, since although SAT solvers are great general-purpose search tools, they

struggle with problems having a mathematical structure unknown to the solver [17].

Recently there have been SAT solvers augmented with a programmatic interface

supporting the injection of logical facts as the solver is running [36, 32]. Such an ap-

proach has successfully resolved mathematical problems that were beyond the reach

of SAT solvers or algebraic methods alone [15]. For example, progress was made

on certain mathematical conjectures by extracting mathematical facts from a com-

puter algebra system (CAS) and programmatically passing them to a SAT solver as

the solver is running [99]. Augmenting a SAT solver in this way can dramatically

improve its effectiveness—intuitively, it is no longer restricted to reasoning on the

level of Boolean logic. On the other hand, such a solver can also outperform pure

algebraic methods, especially on problems that benefit from efficient search routines.

Intuitively, this is because traditionally CASs have not exploited the effective search-

with-learning algorithms developed for SAT solvers [1].

In the past decade, the lines between SAT solving and computer algebra is starting

to change with the development of numerous hybrid methods exploiting SAT solvers in

conjunction with computer algebra. For example, the “SC-square” project combines

SAT and computer algebra and has been applied to fields as diverse as economics,

dynamic geometry, and knot theory [29].

1.1 The Factorization Problem

The factorization problem, a classical mathematical conundrum, plays a pivotal role

in various realms of mathematics and extends its influence into diverse applications,

with particular significance in the field of cryptography. At its core, the factorization

2

1. INTRODUCTION

problem involves decomposing a composite number into its prime factors. While

seemingly straightforward, the computational complexity of this task is not precisely

determined; however, it’s notable that the Number Field Sieve (NFS), the best-known

algebraic method for integer factorization, operates within subexponential time.

In mathematics, factorization has been a subject of intrigue for centuries, with

deep connections to number theory and algebra. Its significance is not confined to

pure mathematical exploration; rather, it permeates various practical domains. In

cryptography, the factorization problem serves as the foundation for widely used

security mechanisms, such as RSA encryption. The security of RSA relies on the

presumed difficulty of factoring the product of two large prime numbers—a task that

becomes prohibitively challenging as the size of the primes increases.

The applications of the factorization problem extend beyond cryptography. It

finds utility in coding theory, error correction, and optimization algorithms. Un-

derstanding the intricacies of factorization is essential for developing robust crypto-

graphic protocols, ensuring secure communication, and safeguarding sensitive infor-

mation in an increasingly interconnected digital landscape.

A compelling real-world example showcasing the importance of the factorization

problem is its application in securing online transactions. When you make a secure

online purchase, the underlying encryption protocols often involve the factorization of

large numbers. If the factorization problem were efficiently solvable, the foundation

of these cryptographic protocols would crumble, jeopardizing the confidentiality and

integrity of sensitive data in e-commerce, banking, and communication.

As of now, the factorization problem remains computationally challenging, and

state-of-the-art methods involve algorithms such as the General Number Field Sieve

(GNFS). The continued complexity of factorization is vital for the resilience of cryp-

tographic systems. However, the ongoing evolution of computational power prompts

a perpetual need for advancing cryptographic techniques to maintain their efficacy in

the face of potential future breakthroughs in factorization algorithms.

Understanding the intricacies of the factorization problem, its significance in cryp-

tography, and its broader applications is paramount for researchers and practitioners

3

1. INTRODUCTION

navigating the ever-evolving landscape of secure information exchange.

1.2 RSA Cryptosystem

Having established the fundamental role of the factorization problem in cryptog-

raphy, we delve into one of the most widely employed cryptographic systems that

leverages the inherent difficulty of factorization—the RSA (Rivest–Shamir–Adleman)

cryptosystem. RSA is a public-key cryptosystem, which means it uses a pair of keys:

a public key for encryption and a private key for decryption.

In the context of RSA, let N be the product of two large prime numbers, p

and q, i.e., N = p · q. The totient of N , denoted as ϕ(N), is crucial for RSA key

generation. The public key (e,N) consists of an exponent e (often chosen as 65537

for its efficiency) and N . The private key (d,N) involves the exponent d, calculated

as the modular multiplicative inverse of e modulo ϕ(N).

Mathematically, the public key operation involves encrypting a message M into

ciphertext C using the formula C ≡ M e (mod N), while the private key operation

decrypts C back to M with M ≡ Cd (mod N).

The RSA cryptosystem finds widespread use in securing digital communications,

digital signatures, and online transactions. For instance, when you securely transmit

sensitive information over the internet, protocols like SSL/TLS employ RSA for key

exchange and secure communication.

Chinese Remainder Theorem (CRT)-RSA is a variation that enhances the effi-

ciency of RSA decryption. In CRT-RSA, the private key d is broken into its com-

ponents using the primes p and q. This involves calculating dp ≡ d (mod p − 1)

and dq ≡ d (mod q − 1), allowing for parallelized computations during decryption.

The final result is obtained through the Chinese Remainder Theorem. This variation

significantly improves the speed of RSA decryption.

4

1. INTRODUCTION

Breaking RSA

The security of RSA relies on the difficulty of factoring the product of two large

primes. If an efficient algorithm for factoring large numbers were discovered, it would

compromise the security of RSA. Breaking RSA has far-reaching consequences, po-

tentially leading to the unauthorized access of sensitive information, financial fraud,

and the compromise of secure communication channels.

In conclusion, the RSA cryptosystem exemplifies the ingenious application of the

factorization problem in cryptography, providing a robust framework for secure com-

munication in the digital age. Understanding its mathematical foundations, varia-

tions, and potential vulnerabilities is essential for both cryptographic practitioners

and researchers aiming to strengthen the security of information exchange systems.

1.3 Side-channel Attacks

Side-channel attacks represent a class of sophisticated techniques aimed at extracting

sensitive information from a cryptographic system by exploiting unintentional leak-

age of information through various physical channels. These attacks leverage indirect

information, such as power consumption, electromagnetic emanations, or timing vari-

ations, rather than directly attacking the cryptographic algorithm itself. While some

side-channel attacks necessitate a deep understanding of a system’s internal work-

ings, others, like differential power analysis, can be executed as black-box attacks,

requiring minimal technical knowledge.

Several types of side-channel attacks exist, each targeting different aspects of a

cryptographic system:

1. Cache Attack:

Cache attacks exploit the shared cache in modern computer systems to infer

sensitive information [73]. By monitoring cache accesses made by a victim

process, an attacker can deduce patterns in memory access and potentially

5

1. INTRODUCTION

extract cryptographic keys or other sensitive data.

2. Timing Attack:

Timing attacks exploit variations in the time taken to execute cryptographic

operations [55]. By measuring the execution time of certain operations, attack-

ers can infer information about secret keys or plaintexts, especially in scenarios

where cryptographic algorithms exhibit different behaviors depending on input

values.

3. Power-Monitoring Attack:

Power-monitoring attacks leverage variations in power consumption by a device

during cryptographic operations. By monitoring power consumption patterns,

attackers can deduce information about the internal operations of the device,

potentially revealing sensitive data such as encryption keys. Simple power anal-

ysis and differential power analysis are the two types of power-monitoring at-

tacks [56].

4. Electromagnetic Attack:

Electromagnetic attacks exploit the electromagnetic radiation emitted by elec-

tronic devices during operation [67]. By capturing and analyzing these emis-

sions, attackers can extract information about the internal state of the device,

including cryptographic keys or data.

5. Acoustic Cryptanalysis:

Acoustic cryptanalysis exploits sound produced by a device during crypto-

graphic operations [37]. By analyzing the acoustic emanations, attackers can

infer information about the internal workings of the device and potentially re-

cover sensitive data. Researchers from the University of California performed

an experiment [92] that reinforced the viability of these attacks.

6. Differential Fault Analysis:

Differential fault analysis involves inducing faults or errors in a cryptographic

device during operation [5]. By observing how the device reacts to these faults,

6

1. INTRODUCTION

attackers can gain insights into its internal state and potentially extract sensitive

information such as encryption keys.

7. Data Remanence:

Data remanence exploits residual data that remains in memory even after it has

been supposedly erased or overwritten. Attackers can recover this residual data

through techniques such as the cold boot attack, potentially revealing sensitive

information [40].

8. Allowlist:

Allowlist-based side-channel attacks exploit differences in behavior between

allowlisted and non-allowlisted devices [97]. By observing how a device re-

sponds to allowlisted and non-allowlisted requests, attackers can infer informa-

tion about its internal state or cryptographic keys.

9. Optical:

Optical side-channel attacks involve capturing sensitive information using opti-

cal techniques such as visual recording with high-resolution cameras. By ana-

lyzing optical data, attackers can extract information about cryptographic keys

or sensitive data stored on a device [82].

In particular, the Data Remanence Attack is of special interest to us in this the-

sis. Data remanence phenomena have been documented in both static random-access

memory (SRAM) and dynamic random-access memory (DRAM), despite their con-

trasting volatility characteristics [18]. Traditionally, SRAM is deemed volatile, mean-

ing its contents degrade upon power loss. Surprisingly, studies have shown data

retention in SRAM even at ambient temperatures [86], challenging conventional as-

sumptions about its volatility. Similarly, DRAM, equipped with self-refresh mod-

ules, requires periodic refreshing to maintain data integrity. While typically volatile,

DRAM exhibits data remanence with retention times ranging from seconds to min-

utes at room temperature and up to a full week without refresh when subjected to

extreme cooling with liquid nitrogen [40].

7

1. INTRODUCTION

One specific type of data remanence attack that is well-known is the Cold boot

attack. This attack method capitalizes on the data remanence property inherent

in both DRAM and SRAM, enabling the retrieval of memory contents that remain

accessible for seconds to minutes following a power switch-off.

In the realm of computer security, side-channel attacks pose a significant threat

and thus, understanding side-channel attacks is crucial for assessing the security of

cryptographic implementations and designing robust countermeasures against such

threats.

1.4 Lattices and the LLL Algorithm

In the realm of number theory and cryptography, lattices play a fundamental role,

particularly in the context of lattice-based cryptography. Before delving into lattice-

based cryptography, let us first understand what a lattice is.

Definition 1. A lattice L in Rn is a discrete additive subgroup of Rn that spans the

entire space Rn.

In simpler terms, a lattice is a set of points in n-dimensional space that are

arranged in a periodic pattern with respect to each other. Formally, a lattice L

can be defined as L = {
∑n

i=1 aivi : ai ∈ Z} and each vi is a linearly independent

vector in Rn. It can be visualized as an infinite grid-like structure where each point

is an integer linear combination of a set of linearly independent basis vectors (see

Figure 1.4.1).

In a lattice L, the basis is a set of linearly independent vectors that span the

lattice. Each basis vector defines a direction in the lattice space. If L is defined as

before, then v1,v2, . . . ,vn are the basis vectors of the lattice.

Definition 2. Let L ∈ Zn be a lattice with basis B = {b1, . . . ,bn}. The determinant

of the lattice L, denoted by det(L), is the n-dimensional volume of the parallelepiped

spanned by the basis vectors.

8

1. INTRODUCTION

Fig. 1.4.1: A two dimensional lattice generated by two vectors.

In mathematical terms, it can be expressed as:

det(L) = |det(B)|

where det(B) is the determinant of the matrix formed by stacking the basis vectors of

L as rows. It is a well-defined notion, meaning that the determinant does not depend

on the specific choice of basis used to represent the lattice.

Uses of Lattices

Lattices have diverse applications across various fields, including mathematics, com-

puter science, and cryptography. Some common uses of lattices include:

• Error-correcting codes: Lattices are utilized in the design and analysis of error-

correcting codes, particularly in coding theory [34].

• Signal processing: Lattices play a crucial role in signal processing applications

such as digital communications and data compression [14].

9

1. INTRODUCTION

• Cryptography: Lattices are extensively used in cryptography for various cryp-

tographic primitives, including encryption, digital signatures, and key exchange

protocols [34].

Lattices offer several important functionalities and serve as a cornerstone of lattice-

based cryptography. In particular, lattices are an essential component of Copper-

smith’s method that we rely on in our hybrid SAT and computer algebra factorization

approach. Some notable broad use cases of lattices in cryptography include:

• Lattice Reduction: Lattice reduction algorithms are utilized to discover short

or “good” basis vectors within a lattice. It’s essential to note that a lattice can

have many possible bases, and the goal of basis reduction is to find vectors that

are both short and approximately orthogonal. These algorithms play a crucial

role in cryptographic protocols reliant on lattice problems.

• Shortest Vector Problem (SVP): The SVP involves finding the shortest nonzero

vector in a lattice. It is a fundamental problem in lattice-based cryptography

and serves as the basis for various cryptographic constructions.

• Closest Vector Problem (CVP): The CVP entails finding the lattice point closest

to a given target point in space. This problem has applications in lattice-based

cryptosystems, particularly in key exchange and digital signature schemes.

For comprehensive discussions on lattices and its use in cryptography, see [69]

and [24].

The LLL Algorithm

The LLL (Lenstra–Lenstra–Lovász) algorithm is a powerful tool for lattice basis

reduction, named after its inventors Arjen Lenstra, Hendrik Lenstra, and László

Lovász [58].

At its core, the LLL algorithm is primarily used to find a “nice” basis for a

given lattice, where “nice” refers to a basis that is both short and nearly orthogonal.

10

1. INTRODUCTION

Fig. 1.4.2: Visual representation of lattice basis vectors before and after LLL reduc-
tion.

These properties of the reduced lattice basis simplify lattice problems, such as finding

short vectors within the lattice, and enable efficient solutions for those problems. The

algorithm achieves this reduction through a series of basis transformations, iteratively

orthogonalizing vectors while simultaneously reducing their lengths. Figure 1.4.2 gives

a very high-level visualization of the effect of the LLL algorithm on the lattice basis

vectors.

In the LLL algorithm, one of the key components is the orthogonalization process,

which is often implemented using the Gram–Schmidt orthogonalization method (for

more details see [60]). This technique transforms a set of basis vectors into an orthog-

onal set while preserving the span of the original vectors. In the context of lattice

basis reduction, Gram–Schmidt orthogonalization plays a crucial role in iteratively

orthogonalizing the vectors of the lattice basis during the reduction process.

However, the direct application of Gram–Schmidt orthogonalization to lattice ba-

sis vectors may lead to vectors that are not necessarily contained within the lattice.

Additionally, it can result in vectors with significantly different lengths, which impacts

the quality of the lattice basis. To address this issue, the LLL algorithm introduces

modifications to the Gram–Schmidt orthogonalization process to ensure that the re-

sulting basis vectors are nearly orthogonal and of similar lengths.

We now introduce a lemma about LLL-reduced bases that plays a core part in

11

1. INTRODUCTION

Coppersmith’s method discussed in Section 1.5.

Lemma 3. Let L ⊂ Zn be a lattice spanned by b1, . . . ,bn. The first vector v in an

LLL-reduced basis of L satisfies

∥v∥ ≤ 2
n−1
4 det(L)

1
n .

Proof. See Lenstra et al.’s paper [58].

The LLL algorithm finds extensive application in various areas of cryptography,

particularly in Coppersmith’s algorithm for solving polynomial equations modulo a

number of unknown factorization. In this context, Coppersmith’s method leverages

the lattice basis reduction capabilities of LLL to efficiently find small roots of polyno-

mials modulo a composite integer. By transforming the integer factorization problem

into a lattice-based form and applying the LLL algorithm, Coppersmith’s method can

factorize semiprime integers efficiently when partial information about the factors is

known.

Overall, the LLL algorithm stands as a fundamental tool in lattice-based cryptog-

raphy, enabling the development of efficient algorithms for challenging computational

problems. Its applications extend beyond factorization, encompassing areas such as

cryptanalysis, digital signatures, and cryptographic protocols, where lattice-based

techniques offer robust security guarantees [14]. The LLL algorithm plays a major

role as part of Coppersmith’s method in our implementation.

1.5 Coppersmith’s Method

Coppersmith’s method is a powerful algorithm for finding small integer roots of a

polynomial modulo a given integer N [22]. It operates efficiently even when the

factorization of N is unknown, making it valuable for various cryptographic applica-

tions. The algorithm exploits a fundamental connection between short vectors and

polynomials with small coefficients.

12

1. INTRODUCTION

The basic idea of Coppersmith’s method, involves transforming a polynomial F (x)

with integer coefficients into a new polynomial G(x) that preserves its roots modulo N

while ensuring that its coefficients are small. This property implies the small roots of

F mod N will be small roots of G over the integers. Suppose there exists an integer

x0 such that F (x0) ≡ 0 (mod N), where N is the modulus, and |x0| < N1/d, where d

is the degree of the polynomial F (x). If the coefficients of F (x) are sufficiently small,

then F (x0) = 0 over the integers (see [22], Theorem 1).

The challenge arises when F (x) has a small solution x0 (mod N) but coefficients

that are not small. Coppersmith’s insight, as formulated by Howgrave-Graham, is to

construct a new polynomial G(x) from F (x) such that G(x0) = 0 over the integers,

not just mod N . This is achieved by ensuring that the coefficients of G(x) are small

enough and that F and G share the same roots mod N .

Coppersmith’s method can handle both modular univariate and multivariate poly-

nomials. For univariate polynomials, it constructs a lattice such that each lattice

vector corresponds to a polynomial with x0 as a root modulo N . By using lattice re-

duction techniques like the LLL algorithm, Coppersmith’s algorithm finds an integer

polynomial that has integer roots matching all “small” roots of the input polynomial

modulo N . Since the integer roots of a polynomial can be computed in polynomial

time [90] this reduces the problem of finding the root x0 (mod N) to the problem of

finding a short vector in Coppersmith’s lattice.

In the case of multivariate polynomials, Coppersmith’s method extends the lat-

tice construction to higher dimensions, where each lattice vector corresponds to a

multivariate polynomial. This approach enables the efficient detection of solutions to

systems of polynomial equations modulo N , making it invaluable for various crypto-

graphic tasks, including integer factorization and solving polynomial congruences.

Coppersmith’s method is instrumental in analyzing and potentially breaking fixed

padding schemes used in RSA encryption. By exploiting the algebraic structure of

RSA ciphertexts and employing Coppersmith’s algorithm, researchers can uncover

vulnerabilities in cryptographic systems that rely on fixed padding. In scenarios

where the top or bottom 50% of the bits of one prime factor p of the RSA modulus

13

1. INTRODUCTION

N is available, Coppersmith’s method can efficiently factorize N . It is unknown

if there is an efficient method that works with less than 50% of the bits, but in

general Coppersmith’s method won’t work with less than 50% known bits (see [22]

for additional details). This capability is crucial for cryptanalysts attempting to break

RSA-based encryption systems when partial information about the primes is leaked or

obtained through side-channel attacks. Moreover, Coppersmith’s algorithm extends

beyond the standard RSA modulus N = pq and can also be applied to factorize

numbers of the form prq, where p and q are distinct primes. This flexibility enables

the algorithm to address a broader range of factorization challenges encountered in

cryptographic protocols and security analyses. Coppersmith’s method also offers a

solution to the Chinese Remainder Theorem (CRT) list decoding problem, which

arises in various cryptographic contexts, including error correcting codes and lattice-

based cryptography. A detailed explaination of all these applications and more can

be found in [68] and [35].

Overall, Coppersmith’s method plays a crucial role in modern cryptography by

providing efficient algorithms for tackling complex computational tasks, ranging from

integer factorization to error correction and decoding in cryptographic protocols. Its

broad applicability and effectiveness make it a valuable tool for cryptanalysts and

researchers in the field.

1.6 Our Contributions

In this thesis, we introduce a new programmatic SAT method that dramatically

improves the performance of SAT solvers on leaked-bit integer factorization problems

by exploiting algebraic structure of the problem that would otherwise be hidden from

the solver. More precisely, we employ Coppersmith’s method [22] for finding small

roots of polynomials modulo a number N using lattice basis reduction.

Coppersmith’s method can factorize a semiprime N in polynomial time when ei-

ther the top half or the bottom half of the bits of one of its prime factors is known [70].

We exploit the algebraic structure revealed by Coppersmith’s method in program-

14

1. INTRODUCTION

matic SAT solvers MapleSAT [61] and CaDiCaL [11] by querying a computer algebra

system supporting the necessary lattice basis reduction routines. The information

provided by Coppersmith’s method is translated into logical facts that the solver

uses to backtrack much earlier than it otherwise would, dramatically improving the

performance of the solver.

It should be stressed that our approach is not directly competitive with the best

algebraic methods for the integer factorization problem. However, due to the practical

importance of the factoring problem it has long been of interest to study weakenings

of the factorization problem where some information about the prime factors are

assumed to be known in advance. In practice, such information may be leaked through

side-channel attacks (see Section 1.3). In our work, we consider random leaked-bit

factorization problems—i.e., where random bits of the prime factors of the number

to factor are known, but the attacker has no control over which bits are leaked.

Although Coppersmith’s method requires only half of the bits of the prime factors

to be known (see Section 1.5), the method requires the known bits to be consecutive—

ideally either the high bits or low bits of one of the prime factors. Coppersmith’s

method can be adapted to work with multiple chunks of known bits, but it scales

poorly as the number of chunks increases [70]. Thus, in general Coppersmith’s method

does not apply when the known bit positions are distributed uniformly at random.

Conversely, our method takes advantage of known bits from arbitrary positions

but also takes advantage of the algebraic relationships revealed by Coppersmith’s

method. Besides that, we also provide the option to use a custom branching heuristic

that uses the problem’s inherent algebraic structure (see Section 5.2.1 for details)

to branch on variables that help apply Coppersmith’s method earlier as compared

to the solver’s default branching heuristic. Our results, discussed in Section 5.3,

show that the augmented SAT solver is orders of magnitude faster than an off-the-

shelf SAT solver. It also outperforms a brute-force approach of trial division by all

factors consistent with the known bits, even if Coppersmith’s method is used to speed

up the brute-force guessing (see Section 5.3). With enough known bits our method

even outperforms the fastest general-purpose factoring algorithms such as the number

15

1. INTRODUCTION

field sieve, though we admit this is not really a fair comparison since the number field

sieve cannot exploit known bits and hence is at a disadvantage for the leaked-bit

factorization problem we consider in this paper.

In summary, the significance of our method is that when enough bits are known it

outperforms algebraic methods, pure SAT methods, and a brute-force + Coppersmith

method. All scripts and code used for the experiments performed in this thesis can

be found in a public GitHub repository at https://github.com/yameenajani/SAT-

Factoring.

Our research has yielded significant contributions, resulting in two publications.

The first publication (see [6]) was an extended abstract presented at the 8th SC-

Square Workshop co-located with the 48th International Symposium on Symbolic

and Algebraic Computation (ISSAC 2023). Additionally, our work titled “SAT and

Lattice Reduction for Integer Factorization” has been accepted for presentation at

the International Symposium on Symbolic and Algebraic Computation 2024 (ISSAC

2024).

16

https://github.com/yameenajani/SAT-Factoring
https://github.com/yameenajani/SAT-Factoring

CHAPTER 2

Boolean Satisfiability

Boolean Satisfiability (SAT) is a fundamental problem in computer science and math-

ematics, particularly within the field of computational complexity theory. At its core,

SAT involves determining whether a given Boolean formula can be satisfied by as-

signing Boolean values (true or false) to its variables in such a way that the entire

formula evaluates to true.

Significance

The significance of the SAT problem lies in its broad applicability and its status as

the first problem proven to be NP-complete. In computational complexity theory, NP

stands for “nondeterministic polynomial time”, which refers to the class of problems

for which a solution can be verified in polynomial time. A problem is NP-hard if

every problem in NP can be reduced to it in polynomial time, indicating that it is at

least as hard as the hardest problems in NP. A problem is NP-complete if it is both

NP-hard and NP. This classification means that SAT is among the hardest problems

in the class of NP problems because every problem in NP reduces to it. Therefore, if

we could solve the SAT problem efficiently, we could solve all NP problems efficiently.

This has profound implications across various fields, including factoring.

It’s important to note that while factoring is an NP problem, it is not expected

to be NP-hard. This means that although a solution to the factoring problem can

be verified in polynomial time, it is not believed that every problem in NP can be

reduced to factoring in polynomial time.

17

2. BOOLEAN SATISFIABILITY

Applications

• Hardware and Software Verification: SAT solvers are widely used in the

verification of digital circuits, software systems, and protocols, ensuring their

correctness and reliability [39].

• Automated Reasoning: Many automated reasoning tasks, such as theorem

proving and model checking, can be reduced to SAT, enabling efficient solutions

to complex logical problems [10].

• Planning and Scheduling: SAT solvers find applications in scheduling tasks,

resource allocation, and planning problems, optimizing processes in various do-

mains including manufacturing and logistics [52].

• Cryptography: SAT solvers are used in cryptanalysis for breaking crypto-

graphic primitives based on Boolean operations, aiding in the evaluation of

cryptographic security [80].

• Artificial Intelligence: SAT solvers are employed in various AI applica-

tions, including constraint satisfaction problems, optimization, and decision-

making [52].

Formal Definition

Formally, given a Boolean formula, the Boolean Satisfiability (SAT) problem asks

whether there exists an assignment of Boolean values to the variables such that the

entire formula evaluates to true.

Now that we have formally defined the SAT problem a natural question arises: why

can’t we simply resort to using something as simple as truth tables? After all, truth

tables are a concept familiar to many from their school days.

However, the simplicity of truth tables belies a significant limitation when it comes

to tackling complex Boolean formulas. Imagine a Boolean formula with just a handful

of variables. Even then, the truth table would need to enumerate every possible

18

2. BOOLEAN SATISFIABILITY

combination of true and false values for those variables. As the number of variables

increases, the truth table quickly balloons in size, growing exponentially with each

additional variable.

This exponential explosion in complexity makes truth tables impractical for larger

formulas. For instance, a formula with just 20 variables would require over a million

rows in its truth table. Imagine dealing with formulas involving hundreds or thou-

sands of variables – the truth table approach becomes entirely unfeasible due to the

sheer volume of possibilities to consider.

To address these challenges, SAT solvers offer a more efficient alternative. Rather

than exhaustively enumerating all possible assignments, SAT solvers employ sophis-

ticated algorithms to systematically explore the solution space, guided by efficient

data structures and search techniques.

By representing Boolean formulas in a compact form, typically as clauses in con-

junctive normal form (CNF), SAT solvers can leverage various optimization strategies

and heuristics to efficiently search for satisfying assignments. This approach, known

as a search-based algorithm, enables SAT solvers to navigate the solution space with

remarkable efficiency, even for formulas with thousands or millions of variables.

What is a Clause?

In Boolean logic, a clause is a fundamental building block used to construct Boolean

formulas. A clause is essentially a disjunction (logical OR) of literals, where each

literal represents either a variable or its negation.

Formally, a clause can be expressed as follows:

C = l1 ∨ l2 ∨ . . . ∨ ln

where l1, l2, . . . , ln are literals.

For example, consider the following clause:

C = x1 ∨ ¬x2 ∨ x3

19

2. BOOLEAN SATISFIABILITY

This clause consists of three literals: x1, ¬x2, and x3, where ¬ represents negation.

Clauses are often used in conjunction with each other to form Boolean formulas,

particularly in CNF.

Conjunctive Normal Form

In Conjunctive Normal Form (CNF), a Boolean formula is expressed as a conjunction

(logical AND) of clauses.

For instance, the CNF representation of a Boolean formula may look like this:

F = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ x3 ∨ x4)

Each term inside the parentheses is a clause, and the entire formula is a conjunction

of these clauses.

Clauses are fundamental to various applications of Boolean logic, including SAT

problems. Most modern SAT solvers require the input expression to be in CNF.

2.1 Tseitin Transformation

In Boolean Satisfiability, transforming an arbitrary logical expression into CNF in a

reasonable amount of time is of utmost importance. The Tseitin transformation [88]

offers a solution to this challenge by converting formulas into CNF in polynomial

time.

The Tseitin transformation, named after Grigoriy Tseitin who introduced it in

1968, is a method used to convert a given logical formula into an equisatisfiable CNF

form. While the transformed formula is not logically equivalent to the original one

due to the introduction of new variables, it preserves satisfiability. This property

makes it a valuable tool in automated theorem proving, SAT solving, and various

other applications.

The main idea behind the Tseitin transformation is to introduce auxiliary variables

to represent subexpressions of the original formula. By doing so, the formula can be

20

2. BOOLEAN SATISFIABILITY

rewritten as a conjunction of clauses, each of which corresponds to a gate in the

Boolean circuit representation of the formula.

How Tseitin Transformation Works

Consider the logical expression (p ∨ q) ∧ ¬(p ∧ q) represented as a Boolean circuit:

p

q

p

q

Fig. 2.1.1: Example Boolean Circuit - Tseitin Transformation

To apply the Tseitin transformation, new variables are introduced for the outputs

of each gate. Let x, y, and z represent the outputs of the OR gate, AND gate, and

NOT gate, respectively. These new variables are defined as follows:

x ↔ (p ∨ q)

y ↔ (p ∧ q)

z ↔ ¬y

Now, the transformed expression can be written as x ∧ z along with CNF repre-

sentations of the definitions of x, y, and z:

21

2. BOOLEAN SATISFIABILITY

(¬x ∨ p ∨ q) ∧ (¬p ∨ x) ∧ (¬q ∨ x)

(y ∨ ¬p ∨ ¬q) ∧ (¬y ∨ p) ∧ (¬y ∨ q)

(y ∨ z) ∧ (¬y ∨ ¬z)

This resulting CNF expression is equisatisfiable to the original logical expression.

The Tseitin transformation operates in polynomial time, making it efficient for

practical use. Suppose n is the number of operators in the input expression. For each

operator, the transformation introduces new variables and generates CNF clauses

in constant time. Thus, the overall time complexity of the transformation is O(n).

Due to this, the Tseitin transformation finds applications in various fields such as

formal verification, hardware design, and computer-aided reasoning. It is a funda-

mental technique in automated theorem proving and SAT solving, enabling efficient

manipulation and analysis of logical formulas.

For more in-depth discussions on the Tseitin transformation and its applications,

refer to [12, 66].

2.2 The Backbone of SAT - DPLL Algorithm

The DPLL algorithm [25] (Davis–Putnam–Logemann–Loveland) is a cornerstone tech-

nique in SAT solving, devised to efficiently determine the satisfiability of Boolean

formulas. It builds upon the principles of the Davis–Putnam procedure [26] while

incorporating additional strategies to enhance efficiency and scalability.

At its essence, the DPLL operates by exhaustively exploring the space of possible

truth assignments to the variables in a given formula. It begins by converting the

input formula into CNF. This conversion simplifies the structure of the formula and

facilitates the application of various reduction techniques.

One significant enhancement introduced by the DPLL algorithm is Boolean Con-

straint Propagation (BCP) [95]. BCP involves iteratively propagating the effects of

22

2. BOOLEAN SATISFIABILITY

variable assignments throughout the formula, updating the state of other variables

based on the implications of these assignments. This propagation process helps iden-

tify additional variable assignments that can be made with certainty, further reducing

the search space. Let’s consider a simple example using the following clause set:

{{a, b}, {c}, {¬c,¬b,¬a}, {a, c}, {b, c}}

The positive unit clause {c} appears in the clauses above. Thus we can assign c to

true and this allows us to simplify many other clauses—any clause that contains c

is now automatically satisfied and can be removed. Also, ¬c can be dropped from

any clause that contains it, since ¬c is now always false. After applying these BCP

simplifications, the original clause set becomes

{{a, b}, {¬b,¬a}}.

The DPLL algorithm operates recursively, employing a depth-first search strategy

to explore the solution space. At each step, it makes decisions regarding variable

assignments and then applies BCP to propagate these assignments and simplify the

formula. If a conflict arises during BCP, indicating that the current partial assignment

cannot lead to a satisfying solution, the algorithm backtracks to the most recent

decision point and explores alternative assignments.

Throughout the search process, the DPLL algorithm dynamically adjusts its strat-

egy, employing heuristics to guide decision-making and variable selection. These

heuristics aim to prioritize variables or assignments that are likely to lead to a so-

lution or quickly identify infeasible branches, thereby improving the efficiency of the

search process.

By iteratively applying decision-making, propagation, and backtracking, the DPLL

algorithm effectively navigates the solution space, gradually narrowing down the pos-

sibilities until a satisfying assignment is found or it is determined that no such as-

signment exists. Its versatility, combined with its ability to handle large and complex

problem instances, has established it as a fundamental component of modern SAT

23

2. BOOLEAN SATISFIABILITY

solvers, underpinning their effectiveness in solving a wide range of practical problems.

2.3 Conflict Driven Clause Learning

The introduction of conflict-driven clause learning (CDCL) in SAT solving, pioneered

by Marques-Silva and Sakallah in 1996 [65], marked a significant advancement in the

field. This technique, combined with non-chronological backtracking, revolutionized

SAT solvers and propelled them into a wide array of applications.

At the heart of CDCL lies the idea that when a conflict arises during the search

for a satisfying assignment, instead of simply backtracking and trying a different

assignment, the solver learns from the conflict. By analyzing the reason behind the

conflict, the solver derives a new clause that encodes this information, preventing

similar conflicts in the future. These learned clauses not only guide the solver away

from unproductive search paths but also contribute to the overall efficiency of the

solving process.

Non-chronological backtracking, another key feature of CDCL, provides flexibility

in exploring the search space. Unlike traditional chronological backtracking, which re-

visits decisions in a linear fashion, non-chronological backtracking allows the solver to

jump back multiple levels in the search tree, potentially bypassing unfruitful branches

and reaching more promising areas of the solution space.

When learning a conflict clause, the CDCL method focuses on identifying the

decision variables that led to the conflict, excluding those derived from BCP. By

prioritizing these decision variables, CDCL generates conflict clauses that are concise

yet effective, enhancing the solver’s ability to detect and resolve conflicts efficiently.

The implication graph serves as a foundational tool in CDCL, representing the

sequence of variable assignments and propagations made during BCP. This directed

acyclic graph captures the causal relationships between assignments, facilitating the

generation of optimized conflict clauses based on the structure of the search space.

Moreover, CDCL continually seeks to improve conflict clause generation, explor-

ing various strategies to derive clauses that are both informative and concise. By

24

2. BOOLEAN SATISFIABILITY

leveraging the information encoded in the implication graph, CDCL generates con-

flict clauses tailored to the specific characteristics of the problem instance, leading to

more effective conflict resolution and overall performance gains.

Determining the optimal backtracking strategy is crucial in CDCL, balancing the

need to backtrack sufficiently to avoid conflicts with the goal of minimizing unnec-

essary overhead. The solver aims to backtrack to the furthest possible point while

ensuring that the learned conflict clause remains a unit clause under the current

partial assignment, maximizing its utility in subsequent propagation steps.

Branching heuristics play a crucial role in the efficiency of SAT solvers, guiding the

selection of decision variables to explore the search space effectively. Two prominent

branching heuristics in the context of CDCL are the Learning Rate Based Branch-

ing Heuristic and the VSIDS (Variable State Independent Decaying Sum) Branching

Heuristic. The Learning Rate Based Branching Heuristic prioritizes variables that

frequently appear in learned clauses, leveraging the intuition that such variables are

critical in resolving conflicts and thus promising candidates for decision making [62].

This approach dynamically adjusts the importance of variables based on their involve-

ment in conflicts, aiming to accelerate the solver’s progress. On the other hand, the

VSIDS Heuristic assigns scores to variables based on their recent activity in conflicts,

with these scores decaying over time to emphasize more recent conflicts [72]. This

decay mechanism helps the solver adapt to changing problem characteristics, main-

taining a focus on variables that are currently most influential in the search process.

Both heuristics are instrumental in enhancing the performance of CDCL solvers by

efficiently navigating the search space and resolving conflicts swiftly.

25

CHAPTER 3

Related Works

This chapter explores various works done on topics related to this thesis. Some of these

works have helped lay the foundation for the work done in this thesis. The objective

of this chapter is to make the reader aware about the works done in different aspects

related to the project so as to develop a better understanding about the background

and history related to the topic of this thesis.

3.1 Integer Factorization & Algebraic Methods

The quest to develop efficient methods for integer factorization has been a focal point

in the realms of mathematics and cryptography for decades. At the heart of this en-

deavor lies the critical role of prime factorization in various cryptographic protocols

and security systems. Given the pivotal role of integer factorization in cryptography,

numerous researchers have dedicated their efforts to devising innovative algorithms

capable of efficiently decomposing large composite numbers into their prime factors.

These efforts have led to the exploration of diverse approaches ranging from classical

methods to more advanced algebraic techniques. Understanding and evaluating these

methods is crucial not only for enhancing our theoretical understanding of factor-

ization but also for developing practical solutions to ensure the security of modern

cryptographic systems. In this section, we delve into the realm of factoring and al-

gebraic methods, exploring a plethora of research endeavors aimed at advancing the

state-of-the-art in integer factorization.

As the pursuit of efficient factorization algorithms continued, the cryptographic

26

3. RELATED WORKS

community faced a compelling challenge that galvanized research efforts and spurred

innovation: the RSA Decomposition Challenge. Initiated in the 1990s by RSA Se-

curity, this challenge presented a formidable task: to factorize specific RSA modulus

values into their prime factors. The challenge served as a litmus test for the efficacy of

factorization methods and provided a real-world benchmark to assess the progress in

the field. The promise of substantial financial rewards for successfully factoring RSA

moduli fueled intense competition and inspired researchers to explore novel avenues

in factorization research.

We find a rich tapestry of methodologies and techniques that have evolved over

time to tackle the challenge of decomposing large integers into their prime factors.

These algorithms can be broadly categorized into three main categories:

Special Attribute Algorithms

These algorithms leverage specific properties or attributes of the numbers being fac-

tored to expedite the factorization process. For instance, Trial Division is one of the

simplest methods for factoring integers. It involves systematically dividing the target

number by smaller primes to check for divisibility. While straightforward, it becomes

increasingly inefficient for larger numbers due to the sheer number of potential divi-

sors that need to be tested. Pollard’s rho algorithm [77] is a probabilistic algorithm

used for integer factorization that also falls into this category. It is based on the

principle of cycle detection in randomly generated sequences. By iteratively applying

a function to generate values and detecting cycles in the sequence, the algorithm can

identify factors of composite numbers. Another contribution by Pollard, Pollard’s

p−1 algorithm [76] is particularly effective for factoring number N where there exists

a prime p which divides N such that p − 1 is ‘smooth’, meaning it has only small

prime factors. It exploits the properties of the multiplicative order of integers modulo

a prime to find factors. Another algorithm belonging to this category is the Lenstra

Elliptic Curve Decomposition algorithm [59] which leverages the properties of elliptic

curves over finite fields to factorize integers. It involves finding points on an elliptic

curve modulo the target integer and utilizing properties of group operations to deduce

27

3. RELATED WORKS

factors. We also have the Fermat Factorization Method [27] exploiting the difference

of squares to express composite integers as the difference between two squares. It is

particularly efficient when the factors of the target number are close to each other.

General Decomposition Algorithms

In contrast to the special attribute algorithms, general decomposition algorithms

aim to factorize large integers without relying on specific properties of the numbers.

Prominent examples in this category include the Dixon algorithm, Quadratic sieve,

Rational sieve, and General Number Field Sieve. Most of these methods rely heavily

on Sieve Theory and more information about it can be found in [19].

The Dixon algorithm [28] is a general-purpose integer factorization method that

seeks to express a composite number as the product of two relatively small numbers.

It relies on a combination of sieving techniques and linear algebra to identify pairs of

integers whose product yields the target number. The Quadratic Sieve [78] is a pow-

erful integer factorization algorithm that works by sieving for smooth numbers and

then combining them to find congruences modulo the target number. These congru-

ences are then used to solve linear equations, ultimately leading to the factorization

of the composite integer. The Rational Sieve is a variant of the Quadratic Sieve

that incorporates rational arithmetic to improve efficiency. It aims to find rational

approximations to square roots that facilitate the detection of congruences modulo

the target number. This method can be particularly effective for certain classes of

integers. The General Number Field Sieve (GNFS) [57] is the most efficient known

algorithm for factoring large integers. It is a sophisticated sieving algorithm that

operates in a number field, utilizing algebraic number theory and advanced mathe-

matical techniques. GNFS is capable of factoring numbers with hundreds of digits,

making it indispensable for cryptographic applications. These algorithms represent

some of the most advanced and efficient methods for integer factorization.

Beyond the conventional methods, there exist innovative approaches that push the

boundaries of factorization research. One notable example is Shor’s algorithm [85],

28

3. RELATED WORKS

which exploits the principles of quantum computation to achieve an exponential

speedup in factorizing large integers.

3.2 RSA Key Reconstruction

The motivation behind the research into RSA key reconstruction is two-fold. On one

hand, the surge in computational resources has led to intensified efforts to enhance

the efficiency of key factorization attacks. These efforts have driven researchers to

explore novel strategies, including utilizing partial information about RSA keys to

expedite the factorization process. On the other hand, the advent of side-channel

attacks—attacks that exploit unintended information leakage from the physical im-

plementation of a cryptographic system—has unveiled vulnerabilities that allow at-

tackers to gain insights into key components. This section aims to elucidate the

landscape of RSA key reconstruction, exploring seminal works that delve into the

vulnerabilities brought to light by partial key knowledge.

The paper by Heninger and Shacham [43] presents a groundbreaking algorithm

for reconstructing RSA private keys using a fraction of randomly known bits. This

work has been pivotal in the field of RSA cryptanalysis, serving as a foundation

for subsequent research and optimizations including this thesis. Motivated by the

threat of cold boot attacks, the authors address the practical implications of key

reconstruction. Leveraging the redundancy in key data and the public modulus N ,

they propose a method to reconstruct partially known factors p and q. Focusing on

CRT-RSA, the algorithm targets a special case where the public exponent e is small

(e = 3), a common scenario observed in real-world TLS data [93]. The key claim

of the paper is the efficient reconstruction of RSA keys in polynomial time, with

specified fractions of known bits of p, q, d, dp, and dq. For instance, the algorithm

can factor RSA modulus in an expected polynomial time if 42% bits of each of p, q

and d are known. The reconstruction algorithm used is defined as a “branching and

pruning” approach which is essentially just a “smart” brute-force approach.

As an extention of this work, a lattice-based approach to key reconstruction was

29

3. RELATED WORKS

introduced [64]. Unlike the previous work, which primarily focused on brute-force

methods, this paper delved into the combinatorial aspects of key reconstruction algo-

rithms. The authors scrutinized the search tree expansion of the method proposed in

the previous work. In contrast to the exhaustive search approach of the original algo-

rithm, the authors advocate for a more efficient strategy that employs Coppersmith’s

algorithm [22] to recover the remaining bits after assigning 50% of the low bits. Fur-

thermore, the paper introduces a novel reconstruction algorithm that operates from

the most significant bit (MSB) side, diverging from previous methods that start from

the least significant bit (LSB) side. This new algorithm exhibits polynomial time

complexity relative to logN .

Besides these works, a survey [70] published in 2024 is an exceptional source that

contains a compilation of all possible variations of RSA key reconstruction with partial

information. Not just that, the survey also explains each case with examples for better

understanding. It covers straightforward scenarios as well as scenarios involving more

complex implementations like lattice reductions. The survey highlights the cases in

which a particular method can be used and also points out any shortcomings of the

method.

3.3 The Magic of SAT

There have been various research endeavours aimed at leveraging SAT solvers for the

challenging task of factoring semi-prime numbers. Initially explored by Schoenmack-

ers and Cavender, early efforts focused on optimizing SAT formulations for prime

factorization, proposing constraints to narrow the search space and enhance solver

efficiency [84]. However, scalability issues prompted further investigation, leading to

Forsblom and Lundén’s exploration of parallel SAT solvers to improve performance

and efficiency [33]. Their study compared sequential and parallel approaches, assess-

ing effectiveness, speedup, and efficiency metrics, shedding light on the strengths and

limitations of each method. Building upon this foundation, Mosca and Verschoor

delved into quantum SAT solvers’ potential for factoring, analyzing classical and

30

3. RELATED WORKS

quantum algorithms’ runtime and efficiency [71]. Despite promising advancements,

scalability challenges and limitations of quantum computing were highlighted.

Patsakis’ work stands out for its innovative approach to cryptanalysis using SAT

solvers [75]. He focused on reconstructing RSA private keys from partial knowledge,

leveraging SAT solvers to model RSA problems efficiently. By formulating equations

relating known and unknown key bits and converting them into SAT instances, Pat-

sakis demonstrated the feasibility of breaking RSA keys with limited information. He

utilized the MiniSat solver to test various scenarios, showing that even with partial

knowledge of key bits, RSA keys could be recovered efficiently. While acknowledging

the study’s specialization within the broader context of RSA factorization, the work

showed the potential of SAT solvers in cryptanalysis and proved to be one of the

primary motivations for the work presented in this thesis.

The fusion of SAT solvers with computer algebra systems (CASs) marks a piv-

otal convergence between two traditionally distinct fields: satisfiability checking and

symbolic computation. This interdisciplinary synergy, spearheaded by Ábrahám [1]

and Zulkoski et al. [100], has led to transformative research endeavours, epitomized

by initiatives like the SC-Square project [4]. Prior to these groundbreaking devel-

opments, the domains of satisfiability checking and symbolic computation operated

largely in silos, each with its own set of methodologies and objectives.

The integration of SAT solvers into CAS environments has opened up a rich

tapestry of applications across a spectrum of disciplines. For instance, in the realm

of hardware verification, researchers have utilized SAT+CAS techniques to rigorously

verify the correctness of complex multiplier circuits [49]. In computational algebra,

novel algorithms for matrix multiplication have been devised, leveraging the combined

strengths of SAT solving and symbolic manipulation [45]. Moreover, in theoretical

mathematics, SAT+CAS approaches have contributed to the exploration of conjec-

tures in geometric group theory, shedding new light on fundamental mathematical

problems [83].

Beyond theoretical realms, the impact of SAT+CAS extends to practical domains

such as digital circuit design. By integrating SAT solving capabilities into CAS frame-

31

3. RELATED WORKS

works, researchers have developed sophisticated tools for debugging digital circuits,

streamlining the identification and resolution of design flaws [63]. Additionally, in

combinatorics, SAT+CAS methodologies have enabled the generation of combinato-

rial objects in an isomorph-free manner, facilitating efficient exploration of complex

combinatorial spaces [53].

The collaboration between the SAT and CAS communities not only enhances the

computational capabilities of symbolic computation but also fosters interdisciplinary

collaborations that transcend traditional boundaries. By harnessing the complemen-

tary strengths of SAT solvers and computer algebra systems, researchers are poised

to tackle increasingly complex challenges across a wide range of scientific and engi-

neering domains. This symbiotic relationship between SAT and CAS heralds a new

era of interdisciplinary research, driving innovation and advancing knowledge at the

intersection of computer science, mathematics, and beyond.

32

CHAPTER 4

Methodology

4.1 The Hybrid Approach

This section introduces the core concept of our thesis: the hybrid SAT + Computer

Algebra System (CAS) approach. We present a novel programmatic SAT method de-

signed to significantly enhance the performance of SAT solvers when tackling integer

factorization problems. Our approach capitalizes on the inherent algebraic structure

of these problems, which is often obscured from traditional solvers.

Specifically, we leverage Coppersmith’s method, a renowned technique for identi-

fying small roots of polynomials modulo a number N using lattice basis reduction.

This method demonstrates the ability to factorize a semiprime N in polynomial time

when partial knowledge about one of its prime factors is available [70].

By integrating Coppersmith’s method into programmatic SAT solvers such as

MapleSAT [61] and CaDiCaL [11], we harness the insights gleaned from algebraic

computations to inform the SAT solving process. This involves translating the in-

formation provided by Coppersmith’s method into logical constraints that guide the

solver’s decision-making, enabling it to backtrack more efficiently and thus drastically

improving overall performance.

It’s worth noting that our approach does not directly compete with the most ad-

vanced algebraic methods for integer factorization. However, the practical significance

of the factorization problem lies in its susceptibility to weakenings where partial infor-

mation about prime factors is assumed. Such information leakage can occur through

side-channel attacks.

33

4. METHODOLOGY

In our research, we focus on random leaked-bit factorization problems, where bits

of the prime factors are known to the attacker but are randomly leaked without the

attacker’s control. Our method shines particularly in scenarios where a sufficient

number of known bits are available, surpassing the performance of pure algebraic

methods, traditional SAT approaches, and even brute-force techniques combined with

Coppersmith’s method.

Through our hybrid approach, we aim to address the practical challenges asso-

ciated with integer factorization in real-world scenarios, demonstrating the efficacy

of combining algebraic insights with SAT solving techniques to tackle challenging

computational problems.

4.1.1 Factoring with Coppersmith

This section provides an overview of Coppersmith’s method as applied in the context

of factorization. For a general overview of this method, please refer to Chapter 1,

Section 1.5.

Assume we have a semiprime N = p · q, such as N = 16803551 = 2837 · 5923.

Coppersmith’s method proves effective when at least 50% of the most significant bits

(MSBs) of p are known. In such cases, p can be expressed as p = p̃ + x0, where p̃

shares at least 50% of its MSBs with p, and x0 represents the unknown low bits of p.

For example, if p = 2837 and p̃ = 2830, then x0 = 7.1

As detailed in Chapter 1, Section 1.5, Coppersmith’s method seeks small roots x0

of a polynomial f(x) modulo an integer. In the context of factorization, the modulus

is the prime p. Although p remains unknown, our knowledge of N (a multiple of p)

suffices. Coppersmith’s method identifies a small x0 such that f(x0) ≡ 0 (mod p),

thereby ensuring that f(x0) mod N is divisible by p. Thus, we extract p by computing

the greatest common divisor with N . We select f(x) = p̃+ x, ensuring that f(x0) =

p ≡ 0 (mod p).

Next, consider the polynomials f(x), xf(x), x2f(x), and the constant polynomial

N (note that x0 serves as a root for each of these polynomials modulo p). Lattice ba-

1This example uses demical numbers for ease of explanation.

34

4. METHODOLOGY

Fig. 4.1.1: Example demonstrating the working of Coppersmith’s method, where
N = 16803551 and f(x) = 2830 + x. After applying lattice basis reduction, the
short polynomial x3 + 8x2 − 120x + 105 is discovered, with the integer root x0 = 7.
Subsequently, f(x0) = 2837 is identified as a factor of N .

sis reduction is applied to the lattice basis generated by {N, f(x), xf(x), x2f(x)},

where a polynomial a0 + a1x + a2x
2 + a3x

3 is represented by the lattice vector

(a0, 10a1, 100a2, 1000a3) or, more generally, (a0, Xa1, X
2a2, X

3a3), with X serving

as an upper bound on the size of x0. Upon uncovering a short vector of the lattice,

integer root detection reveals the small root x0 < 10, from which p = p̃ + x0 is ob-

tained. Refer to Figure 4.1.1 for a diagram illustrating the working of Coppersmith’s

method.

Factoring with LSBs

Coppersmith’s method can also factorize N if at least 50% of the least significant bits

(LSBs) of one of the primes are known. Let p̃ represent the integer value corresponding

to the m least significant bits of p. We seek a small root x0 (mod p) of 2m · x+ p̃. If

N has 2k bits and p has k bits, the root x0 mod p should be an integer at most 2k−m.

To ensure that f(x) is monic (having a leading coefficient of 1), we multiply the

polynomial by 2−m mod N . Thus, we define

f(x) = x+ (2−m mod N) · p̃ (1)

35

4. METHODOLOGY

and apply Coppersmith’s method to find the small root x0 of f(x) (mod p). Finally,

we compute gcd(f(x0), N) which gives us the value of p.

Customizing Coppersmith

The intuition behind using Coppersmith’s method is that it can be used to test when

a partial assignment can be extended to a complete assignment without requiring

the SAT solver to actually search for the extension itself. We call Coppersmith’s

method from within the SAT solver whenever the solver’s current partial assignment

has assigned values to more than 60% of the high or low bits of the first prime factor.

Even though Coppersmith’s method can be used when 50%+ ϵ of the high or low bits

of p are known, as ϵ decreases the required lattice dimension increases which slows

down lattice reduction. Thus, we use Coppersmith’s method when more than 60%

bits are known in order to limit the overhead from the lattice reduction step.

In our implementation, the primary tests were conducted using a lattice with a di-

mension of 5. To evaluate the impact of lattice dimension on performance, additional

tests were performed on lattices of varying sizes. The results of these tests are detailed

in Section 5.3.5. Henceforth, unless explicitly stated otherwise, all explanations and

discussions will assume a lattice dimension of 5.

The polynomials used to form the lattice are

N2, Nf(x), f(x)2, xf(x)2 and x2f(x)2 (2)

where f(x) = x+ (2−m mod N) · p̃ as explained in (1). The coefficients of the above

polynomials form the lattice basis

B =



N2

Np1 NX

p21 2p1X X2

p21X 2p1X
2 X3

p21X
2 2p1X

3 X4



36

4. METHODOLOGY

where p1 = (2−m mod N) · p̃. Note it is easy to calculate the determinant of this

lattice, since the basis matrix is a lower triangular matrix.

Following [68, 70], a lattice of dimension 5 is sufficient to recover the unknown bits

when slightly more than 60% of the high or low bits are known of one of the factors.

Below we state the theorem for recovering unknown high bits from known low bits, as

that was the case we found most effective in our experiments. Before presenting the

theorem, we introduce some notation and a lemma of Howgrave-Graham. Let G(x) =∑d
i=0 aix

i be a univariate polynomial with coefficient vector (a0, a1, . . . , ad). When the

polynomial is evaluated at xX, its coefficient vector becomes v = (a0, a1X, . . . , adX
d),

and we denote the Euclidean norm of v as ∥G(xX)∥.

Lemma 4. Let X and M be positive integers. Suppose that:

1. G(x0) ≡ 0 (mod M) where |x0| ≤ X

2. ∥G(xX)∥ < M√
d

Then G(x0) = 0 holds over the integers.

Proof. Refer to the result by Howgrave-Graham [47].

Theorem 5. Let N = p · q where p and q are k bits each. Suppose p̃ ∈ N represents

the m low bits of p where m ≥ k− (1
5
log2N − 2). Then the lattice of dimension of 5

formed by the polynomials in (2) using X = N1/5/4 is sufficient to factor N in time

polynomial in (logN) given N and p̃.

Proof. We can write f(x) as defined in Equation 1 so that x0, the integer denoting

the k − m high bits of p, is a root of f modulo p. First, we need to show that x0

satisfies |x0| < X. Given that p̃ represents the m low bits of p, we have

p = p̃+ 2m · x0.

Since p− p̃ is a k-bit integer, it follows that

0 ≤ p− p̃ < 2k.

37

4. METHODOLOGY

Dividing by 2m, we get

x0 =
p− p̃

2m
< 2k−m.

Given m ≥ k −
(
1
5
log2N − 2

)
, it follows that

k −m ≤ 1

5
log2N − 2.

Exponentiating both sides, we get

2k−m ≤ 2
1
5
log2 N−2 =

N1/5

4
,

and thus

x0 =
p− p̃

2m
<

N1/5

4
= X.

Next, we form the lattice L using the polynomials defined in Equation 2 with

X = N1/5

4
. For a lattice of dimension 5, the determinant is

det(L) = N3 ·X10.

We perform lattice reduction using the LLL algorithm. From Lemma 3, if v is the

first vector in the LLL reduced basis, then

∥v∥ ≤ 2 det(L)1/5 = 2N3/5X2 =
N

8
.

We now apply Lemma 4 with M = p2. By construction, every vector in the lattice

(including v) corresponds to a polynomial G(x) with G(x0) ≡ 0 (mod p2), so to apply

Lemma 4, we need

∥v∥ <
p2√
5
.

Since p has k bits and N has at most 2k bits, we know N < 2p2, and it follows

that

∥v∥ ≤ 1

8
N <

p2

4
<

p2√
5
,

38

4. METHODOLOGY

and Lemma 4 implies that x0 is a root of the polynomial associated to v (over the

integers, not just modulo p2). Thus, x0 can be recovered by finding the integer roots

of the polynomial associated to v.

A more generalized version of this theorem that works for different lattices sizes

is given below. It implies that an RSA modulus N can be factored in polynomial

time when slightly more than 50% of the low bits of one of the prime factors of N

are known. As the lattice size grows towards infinity, the percentage of known bits

required to factor N asymptotically approaches 50%.

Theorem 6. Let N = p · q where p and q are k bits each. Suppose p̃ ∈ N represents

the m low bits of p where m ≥ k− (h
4h+2

log2N − 2) for some constant h ∈ N. Then

a lattice of dimension of 2h+1 and X = Nh/(4h+2)/4 is sufficient to factor N in time

polynomial in (logN) given N and p̃.

Proof. The proof follows the same line of thought as that of Theorem 5 with some

generalizations.

Similar to the previous proof, first we need to establish that x0, the integer denot-

ing the k −m high bits of p, satisfies |x0| < X. Following the same steps as before,

we get

2k−m ≤ 2
h

4h+2
log2 N−2 =

Nh/(4h+2)

4
,

and thus

x0 =
p− p̃

2m
<

Nh/(4h+2)

4
= X.

Next, we form the lattice L using the polynomials

Nh, Nh−1f(x), Nh−2f(x)2, . . . , Nf(x)h−1, f(x)h, xf(x)h, . . . , xhf(x)h.

For a lattice of dimension 2h+ 1, the determinant is

det(L) = Nh(h+1)/2 ·Xh(2h+1).

We perform lattice reduction using the LLL algorithm. From Lemma 3, if v is the

39

4. METHODOLOGY

first vector in the LLL reduced basis, then

∥v∥ ≤ 2h/2 det(L)1/(2h+1)

= 2h/2(N (h+1)/(4h+2)X)h

= 2h/2−2hNh/2

=
(N/2)h/2

2h
.

We now apply Lemma 4 with M = ph. By construction, every vector in the lattice

(including v) corresponds to a polynomial G(x) with G(x0) ≡ 0 (mod ph). To apply

Lemma 4, we need

∥v∥ <
ph√
2h+ 1

.

Since p has k bits and N has at most 2k bits, we know N/2 < p2, and it follows

that

∥v∥ ≤ (N/2)h/2

2h
<

ph

2h
<

ph√
2h+ 1

,

since 2h >
√
2h+ 1 for all h ≥ 1. Therefore, Lemma 4 implies that x0 is a root of the

polynomial associated with v over the integers, not just modulo ph. Thus, x0 can be

recovered by finding the integer roots of the polynomial associated with v.

For each small integer root x0 returned by Coppersmith’s method, a validation step

is executed. If gcd(f(x0), N) is nontrivial, then the procedure concludes successfully

with a factorization of N . However, in cases where no roots provide a factor of N , a

“blocking clause” is added to the SAT solver’s learned clause database.

4.1.2 Blocking Clauses

In our implementation, the blocking clause encodes that the combination of the low

bits passed to Coppersmith’s method was erroneous. This is done by stating that

at least one of the bits must change from its current assigned value. For example,

40

4. METHODOLOGY

SAT Solver Coppersmith

xx0x0x1100010111 Lattice Formation

Lattice Reduction

Polynomial generation from
first row of reduced lattice

Finding root

p̃ = 0000001100010111

Add root to p̃, Find both factors, Terminate
Solver

Learn incorrect assignment combination as
a blocking clause

Root is correct

Root is incorrect

Fig. 4.1.2: A diagram outlining our SAT+CAS method for the factorization problem.
Coppersmith’s method is invoked whenever at least 60% of the low bits of p are
assigned. If the low bits of p were set correctly, then Coppersmith’s method reveals
the high bits of p and the solver terminates. If the low bits were set incorrectly, then
Coppersmith’s method fails and a “blocking clause” is learned telling the solver to
backtrack and try a new bit assignment.

suppose Coppersmith’s method is applied to an 8-bit prime with the assignment

p = ???10011

and fails. Then the blocking clause passed to the solver will be

¬p4 ∨ p3 ∨ p2 ∨ ¬p1 ∨ ¬p0

where the bits of p (from low to high) are represented by the variables p0, . . . , p7. The

solver incorporates this knowledge as a learnt clause and immediately backtracks to

explore alternative bit combinations. Figure 4.1.2 visually depicts how the technique

works.

41

CHAPTER 5

Experiments and Results

5.1 The Encoding

Converting an instance of the factorization problem to a SAT instance is straight-

forward, as multiplication circuits can be converted to SAT formulae by operating

directly on the bit-representation of the integers. For example, say we are forming

the instance of encoding N = p · q where p and q are known to be two integers of

bitlength k. We represent p and q as bitvectors [p0, . . . , pk−1] and [q0, . . . , qk−1] and

generate a multiplier circuit (constructed from an array of full and half adders) to

compute the product of p and q. Each bit of the product can be obtained through

binary addition operations. The circuit is converted into CNF by using the Tseitin

Transformation described in Section 2.1.

To create our SAT instances, we employ the CNF Generator for Factoring Prob-

lems by Purdom and Sabry [79] using the “N -bit” adder type and the “Karatsuba”

multiplier type, as we found those to be the most effective. The code for this encoder

Fig. 5.1.1: A n-bit binary multiplier circuit

42

5. EXPERIMENTS AND RESULTS

is written in Haskell and originally represents p and q using 2k − 1 and k variables

respectively. However, since our implementation deals with only those cases where p

and q are of equal bitlength we modified the code such that p and q both have k bits.

This modified version is the “balanced” encoding whereas the original code generates

the “unbalanced” encoding. It is important to note that in the unbalanced encoding,

the extra high bits are set to 0 using unit clauses. We have used both encodings for

the purpose of comparing performance and analyzing the effect of this on the solver.

The output bits of the circuit are set to match the 2k bits of N using 2k unit clauses

(or in some cases N has 2k − 1 bits). Similarly, the random known bits of p and q

are also added to the SAT instance as unit clauses.

Some simple optimizations are also encoded. For example, p and q must be odd

or the problem is trivial, so we fix the low bits p0 and q0 to true with unit clauses.

Similarly, since both p and q are assumed to be of bitlength k, we fix also both high

bits pk−1 and qk−1 to true. In case of the unbalanced encoding, we assign the high

k − 1 bits of p to false since we only encoded factorization problems with p and q of

equal bitlength.

5.1.1 Including Inferable Information

Based on the way the problem is set up, there are some details that can be inferred

which decreases the number of unknown variables.

Apart from the simple modifications mentioned above, we can derive some extra

bits using some basic number theory [43]. However, some constraints need to be

satisfied in order to derive this extra information. The idea is that a bit i in one of

the primes, lets say p, can be derived if –

1. Bit i in the second prime (q in this case) is known.

2. Bits 0 to i− 1 are known in both primes p and q.

The idea is to derive pi from the congruence

pi + qi ≡ (N − p′q′)[i] (mod 2)

43

5. EXPERIMENTS AND RESULTS

where p′ = pi−1 . . . p0, q
′ = qi−1 . . . q0 and (N − p′q′)[i] denotes the ith bit of N − p′q′

as described in [43]. To get a clearer idea of how this would work, let’s consider an

example. Let

p = 1x0xxx011

q = xx1x01011

N = 100001110111000001

Now, we can derive p3 since q3 is known and bits p0 . . . p2 and q0 . . . q2 are known.

Following the method described above we get p′ = (011)2 = (3)10 and q′ = (011)2 =

(3)10 giving us p′q′ = (1001)2 = (9)10. Thus, N − p′q′ = (100001110110111000)2.

Since we are trying to find the bit at position i = 3 the congruence becomes

p3 + q3 ≡ (N − p′q′)[3] (mod 2)

p3 + 1 ≡ 1 (mod 2).

For the congruence to hold, p3 must be 0. Similarly, after setting p3 = 0, we can also

derive p4 as all the constraints for derivation of p4 are satisfied. Follow the same steps,

we can derive p4 = 0. No other bits in either p or q can derived as the constraints

will not be satisfied.

5.1.2 Incorporating the RSA Private Exponent

In addition to the encoding already described, we also considered a more constrained

case of the factorization problem, namely, the problem of factoring an RSA modulus

N with a public exponent of e = 3 (implying that both p − 1 and q − 1 are not

divisible by 3). The basics of RSA tells us that

ed ≡ 1 mod ϕ(N), or

ed = 1 + kϕ(N)

44

5. EXPERIMENTS AND RESULTS

where d is the decryption exponent. We try to extend the work in [75] to our new

method. This allows us to set the value of k = 2 and e = 3 in the above equation.

Thus, we get:

3d = 1 + 2ϕ(N)

Using the definitions ϕ(N) = (p− 1)(q − 1) and N = pq, the above equation can be

rewritten as:

3d+ 2(p+ q) = 2N + 3 (1)

Moreover, we can approximate d by d̃ = ⌊(2N + 3)/3⌋ because p + q is relatively

small compared to N . Indeed, if p ≥ q and both factors have k bits then q ≤
√
N

and p < 2
√
N , so p+ q < 3

√
N . In fact, as pointed out by Boneh et al. [13], one can

derive

0 ≤ d̃− d < 3
√
N, (2)

and they remark

“It follows that d̃ matches d on the n/2 most significant bits of d.”

Similarly, Heninger and Shacham [43] remark that d̃ “agrees with d on their ⌊n/2⌋−2

most significant bits”.1 Surprisingly, both claims are false as adding even a small

difference d̃ − d < 3
√
N to d can in rare cases cause a cascade of carries changing

some bits well into in the upper-half of d. For example, when N = 827 · 953, one has

d = 219 − 53 and d̃ = 219 +1133 which share no high bits (as bitstrings of length 20).

We noticed this oversight when we attempted to set the high bits of d to match the

high bits of d̃ (computed directly from N) and in some cases the resulting instances

were shown to be unsatisfiable by the SAT solver. We resolved this oversight using

Lemma 7 below. First, we give a slightly improved version of (2).

Lemma 7. Let N = pq be an n-bit RSA modulus where p and q have the same

bitlength, suppose d is the decryption exponent for encryption exponent e = 3, and

set d̃ = ⌊2N/3 + 1⌋. Then
1In both of these quotes n denotes the bitlength of N .

45

5. EXPERIMENTS AND RESULTS

(a) 0 ≤ d̃− d <
√
2N .

(b) Write d̃ and d̃− ⌊
√
2N⌋ as bitstrings of length n, and suppose the upper l bits

of the bitstrings match. Then the upper l bits of d’s bitstring of length n match

those of d̃.

Proof. Without loss of generality suppose q ≤ p < 2q, so that pq < 2q2 (i.e., q >√
N/2) and q2 ≤ pq (i.e., q ≤

√
N). Then p + q = N/q + q and f(q) := N/q + q is

monotonically decreasing over q ∈ (
√
N/2,

√
N], so p + q < f(

√
N/2) = 3

√
2N/2.

Using (1) we have

0 ≤ d̃− d ≤ 2(p+ q)/3 < 2f(
√

N/2)/3 =
√
2N

which is the inequality in (a).

The inequality in (a) is equivalent to d ∈
(
d̃ −

√
2N, d̃

]
. By assumption, the

bitstrings of the lowest and highest integers in this range have n bits and share the

same l high bits. The only way this can happen is if all bitstrings of integers in this

range all share the same l high bits, including d. Otherwise, if we want the high bit

(i.e., the bit of index n− 1) to match in the lowest and highest integers but not with

some integer in the range we would need the range to contain at least 2n integers

which it does not.

Equation (1) can be encoded in SAT using a binary adder on the terms of the left-

hand side, reusing the variables for the bits of p and q and introducing new variables

for the bits of d. The output bits of the binary adder are then set to the binary

representation of 2N + 3. The upper bits of d are fixed to those of d̃ using unit

clauses (with the number of bits fixed determined by Lemma 7).

5.2 Solving Method

Each experimental iteration commences with the generation of an appropriately sized

modulus N using a SageMath script. The modulus is then passed as input to the CNF

46

5. EXPERIMENTS AND RESULTS

Generator, which in turn generates the requisite CNF and delivers it in the DIMACS

SAT file format. To this file, we append the unit clauses that specify known bits of p

and q. The percentage of known bits is fixed and given as an argument to the script.

However, which specific bits of the primes are set is selected uniformly at random.

There is also an option to encode the information of d assuming N is a low public

exponent modulus (i.e., its prime factors are not congruent to 1 mod 3) using the

encoding described in Section 5.1.2. When this option is selected, random bits of d

are also leaked in the same proportion as that of p and q.

The instances were solved using a programmatic version of MapleSAT [61] avail-

able as a part of the MathCheck project [16]. We also used the very recent program-

matic version of CaDiCaL solver [11, 32]. The version of Coppersmith’s algorithm

used is a custom implementation in C++. The GMP library [38] was used to form

the lattice and it was reduced using the fplll library [87]. The formation of the poly-

nomial from the reduced basis and its factorization is done using FLINT [42]. The

modification process of the CNF instance is carried out by Python scripts.

We tested our method on random semiprime factorization problems where p − 1

and q − 1 are not divisible by 3 both with and without the inclusion of the private

exponent d described in Section 5.1.2. We generated 15 random keys of the appro-

priate size for each problem type and ran the solvers on the SAT instance produced

from each key.

5.2.1 Branching Heuristics

The implementation employs the default branching strategies integrated into Maple-

SAT and CaDiCaL. These strategies dictate the selection of variables upon which to

branch during the search for a satisfying assignment. MapleSAT and CaDiCaL utilize

sophisticated heuristics to guide the branching process efficiently.

Additionally, there is an option to use a custom branching heuristic where the

branching decisions are influenced by constraints proposed by Heninger and Shacham [43],

as elucidated in the Section 5.1.1. These constraints play a crucial role in shaping

the search space and directing the solver towards potential solutions by branching on

47

5. EXPERIMENTS AND RESULTS

variables such that sufficient number of consecutive variables have been assigned for

Coppersmith’s method to be employed. By integrating default branching heuristics

with Heninger and Shacham’s constraints, the custom branching heuristic implemen-

tation aims to strike a balance between exploration and exploitation, facilitating the

efficient recovery of RSA keys from partial information. Again, it is important to note

that this is merely an option that can be selected by the user and not all experiments

have been run using the custom branching heuristic.

Besides that, when using the MapleSAT solver, we also have an option to en-

able the “variable activity” heuristic. Essentially, the solver by default assigns some

activity value to each of the variables before solving starts. The solver uses these

activity values to determine which variable to branch on. When this heuristic is en-

abled, we assign high activity values to the variables corresponding to low bits of the

first prime. This makes sure that the solver prioritizes branching on these variables

eventually helping us apply Coppersmith’s method sooner.

5.2.2 System Requirements & Configuration

All experimentation took place on Compute Canada’s Cedar and Graham clusters

with each instance solved on a single CPU core allocated 4 GiB of RAM. The CPUs

used are Intel Xeon E5-2683 v4 Broadwell processors.

5.3 Summary of Results

The first set of experiments fixes the number of known bits of p and q, and increases

the bitlength of N until the instances become too hard to solve. The tests use the

balanced encoding and have branching heuristics enabled. In case of the MapleSAT

solver, the variable activity heuristic is also enabled. As indicated in Figure 5.3.1(a), a

112-bit N with 25% leaked bits takes a pure SAT approach a median of 17,969 seconds

to factor (for both MapleSAT and CaDiCaL), while the SAT+CAS approach factors

it in a median of 243 and 90 seconds using MapleSAT and CaDiCaL respectively. In

these instances, Coppersmith was called a median of 185k times in MapleSAT and 89k

48

5. EXPERIMENTS AND RESULTS

32 48 64 80 96 112 128 144 160
RSA Key Size (N)

2 5

2 2

21

24

27

210

213

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

SAT+CAS vs SAT - Varying N
25% Known Bits of p,q

SAT+CAS - MapleSAT
SAT+CAS - CaDiCaL
SAT - MapleSAT
SAT - CaDiCaL

(a)

90 85 80 75 70 65 60 55 50 45 40 35
% Known Bits

2 3

20

23

26

29

212

215

218

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

SAT+CAS vs SAT - Varying % Known Bits of p,q
256-bit N

SAT+CAS - MapleSAT
SAT+CAS - CaDiCaL
SAT - MapleSAT
SAT - CaDiCaL

(b)

Fig. 5.3.1: The two plots shown above compare the median running time across
instances with random known bits of p and q. In plot (a) the size of N varies, while
the percentage of known bits varies in plot (b). All instances were run with a timeout
of 2 days, so the lack of a point on the graph indicates the median time was over 2
days. All plots are given on a logarithmic scale with base 2.

49

5. EXPERIMENTS AND RESULTS

times in CaDiCaL. Each call to the CAS interface took around 0.003 seconds. While

the SAT method alone timed out for all bitsizes greater than 112, the SAT+CAS

method could factor up to 160-bit N in the allotted time using the CaDiCaL solver.

The next set of experiments fixes the size ofN to 256 bits and varies the percentage

of known bits of p and q. Similar to the previous set of test, the branching heuristics

(and variable activity heuristic in case of MapleSAT) are used along with the balanced

encoding. When a large number of bits are known (at least 50%) both the SAT

and SAT+CAS approaches perform relatively well. In fact, when the percentage of

known bits is higher than 60%, the simpler pure SAT approach can even outperform

the more involved SAT+CAS approach. However, the SAT+CAS approach clearly

scales better. For example, in Figure 5.3.1(b), with 45% leaked bits, the pure SAT

solver MapleSAT finds the factors in a median of 1126 seconds, while the SAT+CAS

method using the MapleSAT solver factors N in a median of 26 seconds.

For a detailed breakdown of the experimental results, please refer to the Ap-

pendix A, which includes comprehensive tables summarizing the solver performance

for all testing conditions considered in this section.

5.3.1 Calling Coppersmith using High Bits

In this section, we examine the performance of our proposed method when Copper-

smith’s method is invoked with a sufficient number of high bits of one of the primes,

in contrast to our primary approach which relies on the low bits. The experimental

setup involves fixing the bit size of N to 256 bits and varying the percentage of known

bits of p and q. We compare the performance of the SAT method, SAT+CAS (Low),

and SAT+CAS (High) methods using the CaDiCaL solver, with a timeout set to 2

days. The results are shown in Figure 5.3.2.

The results indicate that the SAT+CAS (High) method performs significantly

worse compared to both the SAT and SAT+CAS (Low) methods. This poor per-

formance was consistently observed across various tests, leading us to favor the

SAT+CAS (Low) method in our experiments. The plots illustrate the differences

in performance, highlighting the inefficiency of calling Coppersmith’s method with

50

5. EXPERIMENTS AND RESULTS

90 85 80 75 70 65 60 55 50 45 40
% Known Bits

21

24

27

210

213

216

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

SAT+CAS vs SAT - Varying % Known Bits
256-bit N

SAT+CAS (Low)
SAT+CAS (High)
SAT

Fig. 5.3.2: The plot compares the median running time for a 256-bit N using a
varying percentage of known bits of p and q. The methods compared are the pure
SAT approach, SAT+CAS (Low), and SAT+CAS (High). All instances were run
with a timeout of 2 days. The plots are on a logarithmic scale with base 2.

51

5. EXPERIMENTS AND RESULTS

high bits of the prime.

Upon further investigation, we found that the SAT+CAS (Low) method outper-

forms the SAT+CAS (High) method because of the solver’s ability to exploit the

mathematical structure inherent in the problem. Specifically, we performed exper-

iments to observe the variable assignments by the solver and discovered that the

solver consistently adhered to the constraints corresponding to the method proposed

by Heninger and Shacham [43] (see Section 5.1.1 for details). This observation sug-

gests that the solver effectively internalizes these number theory-based constraints,

which significantly enhances its performance. We suspect that this ability to leverage

the inherent mathematical structure of the low bits is a major factor contributing

to the performance difference between the SAT+CAS (Low) and SAT+CAS (High)

methods.

5.3.2 Incorporating the Private Exponent

The encoding with partial information about d performed significantly better than

the standard encoding. The results are indicated in Figure 5.3.3. Again, it uses the

balanced encoding and the branching heuristics. For example, in Figure 5.3.3(a),

a 192-bit N with 25% leaked bits takes a pure SAT approach a median of 40,897

seconds to factor (both MapleSAT and CaDiCaL had similar performance), while the

fastest SAT+CAS approach (using CaDiCaL) factors it in a median of 51 seconds.

This shows a 99.8% reduction in the running time using our SAT+CAS method.

If we include information about d for the case with 256-bit N and varying the

percentage of known bits, the best-performing SAT and SAT+CAS methods take

2493 seconds and 20 seconds, respectively, with 30% known bits of p, q and d shown

in Figure 5.3.3(b).

5.3.3 Effect of Branching Heuristic

In this subsection, we analyze the impact of the branching heuristic on the perfor-

mance of the SAT and SAT+CAS approaches using the MapleSAT solver, as shown

52

5. EXPERIMENTS AND RESULTS

32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
RSA Key Size (N)

2 6

2 3

20

23

26

29

212

215

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

SAT+CAS vs SAT - Varying N
25% Known Bits of p,q,d

SAT+CAS - MapleSAT
SAT+CAS - CaDiCaL
SAT - MapleSAT
SAT - CaDiCaL

(a)

90 85 80 75 70 65 60 55 50 45 40 35 30 25
% Known Bits

2 2

21

24

27

210

213

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

SAT+CAS vs SAT - Varying % Known Bits of p,q,d
256-bit N

SAT+CAS - MapleSAT
SAT+CAS - CaDiCaL
SAT - MapleSAT
SAT - CaDiCaL

(b)

Fig. 5.3.3: These plots correspond to the low exponent encoding with e = 3 and also
incorporate randomly known bits of d. Plot (a) compares the median running time
for varying bitsizes of N using 25% of known bits of p, q and d. Plot (b), however,
varies the percentage of known bits. All instances were run with a timeout of 2 days,
so the lack of a point on the graph indicates the median time was over 2 days. All
plots are given on a logarithmic scale with base 2.

53

5. EXPERIMENTS AND RESULTS

32 48 64 80 96 112 128
RSA Key Size (N)

2 5

2 2

21

24

27

210

213

216

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

Branching Heuristic (BH) vs No Branching Heuristic - Varying N
25% Known Bits of p,q

MapleSat Solver
SAT+CAS - without BH
SAT+CAS - with BH
SAT - without BH
SAT - with BH

Fig. 5.3.4: This plot compares the median running time for factoring RSA keys of
varying sizes using the MapleSAT solver with 25% of the bits of p and q known. The
comparison is made between the SAT and SAT+CAS approaches with and without
the use of a branching heuristic. The timings are presented on a logarithmic scale
with base 2. The timeout was set to 2 days.

54

5. EXPERIMENTS AND RESULTS

in Figure 5.3.4. The balanced encoding was used and variable activity heuristic was

turned on. The experiments were conducted with 25% of the bits of p and q known,

and the RSA key size N varied to observe the performance trends.

The results indicate that the inclusion of a branching heuristic significantly im-

proves the median time to factorize RSA keys across various key sizes. For the

SAT-only approach, using the branching heuristic reduces the median solving time by

orders of magnitude, especially noticeable for larger key sizes. Without the branching

heuristic, the SAT method alone times out for key sizes greater than 96 bits, whereas

with the heuristic, it manages to solve up to 128-bit keys within the allotted time.

Similarly, the SAT+CAS approach also benefits from the branching heuristic. For

example, the median time for factoring a 112-bit key is reduced from approximately

214 seconds without the heuristic to 28 seconds with it. For larger key sizes, the heuris-

tic allows the SAT+CAS method to remain effective, solving 128-bit keys significantly

faster than without the heuristic.

The improvements are evident not only in the reduced solving times but also in

the extended range of key sizes that can be feasibly factorized within practical time

limits.

5.3.4 Effect of Different Encodings

The experiment investigates the effect of different encodings (balanced vs unbalanced)

on the performance of the SAT+CAS and SAT methods. The MapleSAT solver was

used for the comparison with the branching heuristics and variable activity heuristic

turned on. Figure 5.3.5 shows the median time (seconds) to factor an RSA key with

25% known bits of p and q for varying key sizes using the MapleSAT solver.

As can be seen from the plot, the SAT+CAS solver with a balanced encoding

outperforms the SAT+CAS solver with an unbalanced encoding for all key sizes. For

example, with a balanced encoding the solver could factor up to a 128-bit N , whereas

it was only able to go up to 112-bit N with an unbalanced encoding. The SAT solver

also performs better with a balanced encoding compared to an unbalanced encoding

following a trend similar to that of SAT+CAS.

55

5. EXPERIMENTS AND RESULTS

32 48 64 80 96 112 128
RSA Key Size (N)

2 5

2 2

21

24

27

210

213

216

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

Balanced vs Unbalanced Encodings - Varying N
25% Known Bits of p,q

MapleSat Solver
SAT+CAS - Unbalanced Encoding
SAT+CAS - Balanced Encoding
SAT - Unbalanced Encoding
SAT - Balanced Encoding

Fig. 5.3.5: This plot compares the median time (seconds) to factor an RSA key with
25% known bits of p and q for varying key sizes using the MapleSAT solver. It
investigates the impact of encoding (balanced vs unbalanced) on the performance of
both the SAT and SAT+CAS solvers. The timings are presented on a logarithmic
scale (base 2). The timeout was set to 2 days.

56

5. EXPERIMENTS AND RESULTS

32 48 64 80 96 112 128 144 160
RSA Key Size (N)

2 4

2 1

22

25

28

211

214

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

Different Lattice Sizes - Varying N
25% Known Bits of p,q

CaDiCaL Solver

SAT
SAT+CAS - Lattice Size 5
SAT+CAS - Lattice Size 7
SAT+CAS - Lattice Size 9
SAT+CAS - Lattice Size 21

Fig. 5.3.6: This plot compares the median time (seconds) to factor an RSA key
with 25% known bits of p and q for varying key sizes using the CaDiCaL solver.
It investigates the impact of different lattice sizes on the performance of the SAT
and SAT+CAS approaches. The timings are presented on a logarithmic scale. The
timeout was set to 1 day.

These results suggest that using a balanced encoding can improve the performance

of both the SAT+CAS and SAT solvers for factoring RSA keys with known bits.

5.3.5 Effect of Changing Lattice Size

This section explores the impact of varying the lattice size used within the SAT+CAS

solver. We experimented with four different lattice sizes: 5, 7, 9, and 21. The CaD-

iCaL solver was used with the balanced encoding and branching heuristic turned on

for all lattice sizes. The timings are shown in Figure 5.3.6. The results reveal an in-

teresting interplay between lattice size, the number of known bits, and Coppersmith’s

method calls.

Our findings indicate that as the lattice size grows, the SAT+CAS solver utilizes

Coppersmith’s method more frequently. This is because the solver can leverage the

additional lattice structure to find solutions with fewer known bits. However, it’s

57

5. EXPERIMENTS AND RESULTS

important to note that LLL-reduction, a crucial step within Coppersmith’s method,

becomes computationally more expensive with larger lattices. This translates to each

call to Coppersmith’s method taking more time as the lattice size increases. Despite

the increased complexity of LLL, there’s a possibility that larger lattice sizes might

offer better scalability for factoring larger RSA keys (N). This warrants further

investigation, but intuitively, a larger lattice might provide more efficient ways to

exploit the structure of the problem as the key size grows.

In conclusion, the choice of lattice size involves a trade-off. While larger sizes

enable the solver to utilize Coppersmith’s method more often with fewer known bits,

they also introduce computational overhead due to the complexity of LLL-reduction.

The optimal size may depend on the specific key size (N) and the desired balance

between the number of known bits and overall runtime.

5.3.6 Effect of Known Bits in One Prime Only

The experiment investigates the effect of having known bits in only one prime factor

(p) on the difficulty of factoring an RSA key. The plot shown in Figure 5.3.7 compares

the median time to factor an RSA key with 25% known bits in only one prime factor

for varying key sizes (N) using the CaDiCaL solver. The balanced encoding was used

along with the branching heuristic.

It is evident that the SAT+CAS method performs orders of magnitude better

than the SAT approach. However, it seems that having randomly known bits in both

primes rather than one makes it easier for the solver to find a solution. This can be

seen by the fact that the SAT+CAS approach with partial information about both

primes was able to factor up to 160-bit N whereas it was only able to factor up to

112-bit N when given partial information about only one prime.

5.3.7 Comparison with Other Works

We compared the memory usage of our approach with the method of Heninger–

Shacham [43]. We ran their publicly available code and compared the results with

58

5. EXPERIMENTS AND RESULTS

32 48 64 80 96 112 128 144 160
RSA Key Size (N)

2 4

2 1

22

25

28

211

214

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

All Known Bits in Single Prime vs Both Primes - Varying N
25% Known Bits of p,q

CaDiCaL Solver

SAT+CAS - Single Prime
SAT+CAS - Both Primes
SAT - Single Prime
SAT - Both Primes

Fig. 5.3.7: This plot compares the median time (seconds) to factor an RSA key with
25% known bits of only p vs 25% known bits of p and q for varying key sizes using the
CaDiCaL solver. It investigates the impact of having known bits only in one prime
compared to both. The timings are presented on a logarithmic scale. The timeout
was set to 1 day.

59

5. EXPERIMENTS AND RESULTS

32 48 64 80 96 112
RSA Key Size (N)

2 6

2 3

20

23

26

29

212

215

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

Comparison with HS - Varying N
25% Known Bits of p

SAT+CAS
SAT
HS

(a)

32 48 64 80 96 112 128 144 160
RSA Key Size (N)

2 7

2 4

2 1

22

25

28

211

214

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

Comparison with HS - Varying N
25% Known Bits of p,q

SAT+CAS
SAT
HS

(b)

Fig. 5.3.8: This figure compares the median running time (seconds, logarithmic scale)
of our method with Heninger-Shacham’s (HS) method for factoring RSA keys with
25% known bits. Each subplot shows the results for a specific scenario: (a) Known
bits only in p, (b) Known bits in p and q, and (c) Known bits in p, q, and d. Both
methods were allocated the same resources (1 day timeout and 4GB memory). Note
that a missing data point on the HS line means “Out of Memory”.

60

5. EXPERIMENTS AND RESULTS

32 48 64 80 96 112 128 144 160 176 192 208 224 240
RSA Key Size (N)

2 8

2 5

2 2

21

24

27

210

213

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

Comparison with HS - Varying N
25% Known Bits of p,q,d

SAT+CAS
SAT
HS

(c)

Fig. 5.3.8: This figure compares the median running time (seconds, logarithmic scale)
of our method with Heninger-Shacham’s (HS) method for factoring RSA keys with
25% known bits. Each subplot shows the results for a specific scenario: (a) Known
bits only in p, (b) Known bits in p and q, and (c) Known bits in p, q, and d. Both
methods were allocated the same resources (1 day timeout and 4GB memory). Note
that a missing data point on the HS line means “Out of Memory”.

61

5. EXPERIMENTS AND RESULTS

128 256 384 512 640 768 896 1024 1152 1280 1408 1536
Bitlength of N

21

24

27

210

213

216

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

SAT+CAS vs SAT - Varying N
50% Known Bits

SAT+CAS
SAT

Fig. 5.3.9: This plot compares the median time (seconds) to factor an RSA key
with 50% known bits of p and q for varying key sizes using the MapleSAT solver.
All instances were run with a timeout of 3 days, so the lack of a point on the graph
indicates the median time was over 3 days. These tests used the unbalanced encoding.
The timings are presented on a logarithmic scale.

our approach on three scenarios:

• Randomly known bits only in p (see Figure 5.3.8 (a))

• Randomly known bits in both p and q (see Figure 5.3.8 (b))

• Randomly known bits in p, q, and d (see Figure 5.3.8 (c))

In all cases, we fixed the percentage of known bits at 25% and allocated the same

resources (1 day timeout and 4GB memory) for both our method and the HS code.

Our experiments revealed that the HS method suffers from scalability issues in

terms of memory consumption. Except for instances with smaller key sizes (N), the

HS code ran out of memory for most test cases. This suggests that our approach offers

a more memory-efficient solution for factoring RSA keys with known bit information.

Note that all the results in this section show that the SAT+CAS method outper-

forms not only a pure SAT approach, but also is also much better than using Cop-

62

5. EXPERIMENTS AND RESULTS

persmith with a brute-force guessing approach. For example, with 50% leaked bits a

512-bit N can be factored by the SAT+CAS solver in a median of 237 seconds (see

Figure 5.3.9), but a brute-force approach would need to determine values for around

64 unknown bits in the lower half of p before Coppersmith could be applied—much

more expensive given the speed of Coppersmith. Additionally, the SAT+CAS solver

will also be much more efficient than the number field sieve on the specific problem of

factoring a 512-bit N with 50% leaked bits, given that factoring a 512-bit N with the

number field sieve takes around 2770 CPU hours on Amazon’s Elastic Compute Cloud

(EC2) service [89]. Importantly, these results suggest that the SAT+CAS method has

the potential to factor even larger keys, such as 1024-bit RSA keys which are com-

monly used in practice [8]. This makes the SAT+CAS method a highly practical tool

for cryptanalysis when some key information is leaked.

These results show that the performance of off-the-shelf SAT solvers can be dra-

matically improved by incorporating algebraic information that—at least prior to this

work—has typically only been exploited by computer algebra systems and not SAT

solvers.

63

CHAPTER 6

Conclusion and Future Work

In this work we have demonstrated the performance of SAT solvers on integer factor-

ization problems can be dramatically improved by calling a computer algebra system

(CAS) during the solving process in order to reveal algebraic structure that is un-

known to the solver. Specifically, our programmatic SAT+CAS solver calls Copper-

smith’s method when a significant portion of the bits of the prime factors have been

assigned. Coppersmith’s method is then able to efficiently (a) uncover the remain-

ing unknown bits; or (b) tell the solver that the current bit assignment is incorrect

and have the solver backtrack immediately. The latter is the typical case and our

results clearly demonstrate that even with the overhead of querying a CAS the abil-

ity to backtrack early causes the solver to factor integers orders of magnitude more

efficiently.

An intriguing avenue for future exploration revolves around the potential impact

of parallelization on runtime efficiency. By parallelizing the algorithm, it can be

possible to ascertain whether simultaneous processing can yield notable reductions

in factorization time, contributing to the scalability and performance optimization of

our approach.

Although there has been much recent work on adding algebraic reasoning into a

SAT solver, to our knowledge this is the first work applying a SAT+CAS solver to

integer factorization problems.

64

REFERENCES

[1] Ábrahám, E. (2015). Building Bridges between Symbolic Computation and Sat-

isfiability Checking. In Proceedings of the 2015 ACM on International Symposium

on Symbolic and Algebraic Computation. ACM.

[2] Ábrahám, E. (2015). Building Bridges between Symbolic Computation and Sat-

isfiability Checking. In Yokoyama, K., Linton, S., and Robertz, D., editors, Pro-

ceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic

Computation, ISSAC 2015, Bath, United Kingdom, July 6–9, 2015, pages 1–6.

ACM.

[3] Ábrahám, E. (2016). Symbolic Computation Techniques in Satisfiability Checking.

In 2016 18th International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing (SYNASC), pages 3–10. IEEE.

[4] Ábrahám, E., Abbott, J., Becker, B., Bigatti, A. M., Brain, M., Buchberger, B.,

Cimatti, A., Davenport, J. H., England, M., Fontaine, P., Forrest, S., Griggio, A.,

Kroening, D., Seiler, W. M., and Sturm, T. (2017). Satisfiability checking and

symbolic computation. ACM Communications in Computer Algebra, 50(4):145–

147.

[5] Abuelyaman, E. S. and Devadoss, B. (2005). Differential Fault Analysis. In

International Conference on Internet Computing.

[6] Ajani, Y. and Bright, C. (2023). A hybrid SAT and lattice reduction approach

for integer factorization. In Ábrahám, E. and Sturm, T., editors, Proceedings of

the 8th SC-Square Workshop co-located with the 48th International Symposium on

65

REFERENCES

Symbolic and Algebraic Computation, SC-Square@ISSAC 2023, Tromsø, Norway,

July 28, 2023, volume 3455 of CEUR Workshop Proceedings, pages 39–43. CEUR-

WS.org.

[7] Bacchus, F. and Winter, J. (2004). Effective Preprocessing with Hyper-Resolution

and Equality Reduction. In Giunchiglia, E. and Tacchella, A., editors, Theory and

Applications of Satisfiability Testing, pages 341–355, Berlin, Heidelberg. Springer

Berlin Heidelberg.

[8] Barker, E. (2020). Recommendation for key management: Part 1 - general.

[9] Bebel, J. and Yuen, H. (2013). Hard SAT instances based on factoring. Proceedings

of SAT Competition 2013: Solver and Benchmark Description, page 102.

[10] Biere, A., Clarke, E. M., and Strichman, O. (2003). Bounded Model Checking.

In Bounded Model Checking.

[11] Biere, A., Fazekas, K., Fleury, M., and Heisinger, M. (2020). CaDiCaL, Kissat,

Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In

Balyo, T., Froleyks, N., Heule, M., Iser, M., Järvisalo, M., and Suda, M., editors,

Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-

2020-1 ofDepartment of Computer Science Report Series B, pages 51–53. University

of Helsinki.

[12] Biere, A., Heule, M., van Maaren, H., and Walsh, T., editors (2021). Handbook

of Satisfiability. IOS Press.

[13] Boneh, D., Durfee, G., and Frankel, Y. (1998). An attack on RSA given a small

fraction of the private key bits. In Advances in Cryptology — ASIACRYPT’98,

page 25–34. Springer Berlin Heidelberg.

[14] Boutros, J. J., di Pietro, N., Georghiades, C. N., and Kumar, K. P. (2016).

Lattices are Good for Communication, Security, and Almost Everything.

66

REFERENCES

[15] Bright, C., Djokovic, D. Z., Kotsireas, I., and Ganesh, V. (2019). A SAT+CAS

approach to finding good matrices: New examples and counterexamples. Proceed-

ings of the AAAI Conference on Artificial Intelligence, 33(01):1435–1442.

[16] Bright, C., Ganesh, V., Heinle, A., Kotsireas, I., Nejati, S., and Czarnecki, K.

(2016). MathCheck2: A SAT+CAS verifier for combinatorial conjectures. In

Computer Algebra in Scientific Computing, pages 117–133. Springer International

Publishing.

[17] Bright, C., Kotsireas, I., and Ganesh, V. (2022). When satisfiability solving

meets symbolic computation. Communications of the ACM, 65(7):64–72.

[18] Cakir, C., Bhargava, M., and Mai, K. (2012). 6T SRAM and 3T DRAM data

retention and remanence characterization in 65nm bulk CMOS. In Proceedings of

the IEEE 2012 Custom Integrated Circuits Conference, pages 1–4.

[19] Cojocaru, A. C. and Murty, M. R. (2005). An Introduction to Sieve Methods

and Their Applications. London Mathematical Society Student Texts. Cambridge

University Press.

[20] Collison, M. J. (1980). The Unique Factorization Theorem: From Euclid to

Gauss. Mathematics Magazine, 53(2):96–100.

[21] Cook, S. and Mitchell, D. (1997). Finding hard instances of the satisfiability

problem: A survey, page 1–17. American Mathematical Society.

[22] Coppersmith, D. (1997). Small solutions to polynomial equations, and low ex-

ponent RSA vulnerabilities. J. Cryptology, 10:233–260.

[23] Davenport, J. H., England, M., Griggio, A., Sturm, T., and Tinelli, C. (2020).

Symbolic computation and satisfiability checking. Journal of Symbolic Computa-

tion, 100:1–10.

[24] Davey, B. A. and Priestley, H. A. (2002). Introduction to Lattices and Order.

Cambridge University Press, 2 edition.

67

REFERENCES

[25] Davis, M., Logemann, G., and Loveland, D. (1962). A Machine Program for

Theorem-Proving. Commun. ACM, 5(7):394–397.

[26] Davis, M. and Putnam, H. (1960). A Computing Procedure for Quantification

Theory. J. ACM, 7(3):201–215.

[27] de Fermat, P., Henry, C., and Tannery, P. (1894). Oeuvres de Fermat. Number

v. 2 in Oeuvres de Fermat. Gauthier-Villars.

[28] Dixon, J. D. (1981). Asymptotically fast factorization of integers. Mathematics

of Computation, 36:255–260.

[29] England, M. (2022). SC-Square: Overview to 2021. In Bright, C. and Daven-

port, J., editors, Proceedings of the Sixth International Workshop on Satisfiability

Checking and Symbolic Computation, pages 1–6.

[30] Eriksson, J. and Höglund, J. (2014). A comparison of reductions from FACT to

CNF-SAT.

[31] Eén, N. and Sörensson, N. (2004). An Extensible SAT-solver. In Giunchiglia, E.

and Tacchella, A., editors, Theory and Applications of Satisfiability Testing, page

502–518, Berlin, Heidelberg. Springer Berlin Heidelberg.

[32] Fazekas, K., Niemetz, A., Preiner, M., Kirchweger, M., Szeider, S., and Biere, A.

(2023). IPASIR-UP: User Propagators for CDCL. In 26th International Conference

on Theory and Applications of Satisfiability Testing. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik.

[33] Forsblom, E. and Lundén, D. (2015). Factoring integers with parallel SAT solvers.

[34] Fukshansky, L. and Hollanti, C. (2023). Euclidean lattices: theory and applica-

tions. Communications in Mathematics, Volume 31 (2023), Issue 2...

[35] Galbraith, S. D. (2012). Mathematics of Public Key Cryptography. Cambridge

University Press, USA, 1st edition.

68

REFERENCES

[36] Ganesh, V., O’Donnell, C. W., Soos, M., Devadas, S., Rinard, M. C., and Solar-

Lezama, A. (2012). Lynx: A programmatic SAT solver for the RNA-folding prob-

lem. In Theory and Applications of Satisfiability Testing – SAT 2012, pages 143–

156. Springer Berlin Heidelberg.

[37] Genkin, D., Shamir, A., and Tromer, E. (2013). RSA Key Extraction via Low-

Bandwidth Acoustic Cryptanalysis. Cryptology ePrint Archive, Paper 2013/857.

https://eprint.iacr.org/2013/857.

[38] Granlund, T. and the GMP development team (2012). GNU MP: The GNU

Multiple Precision Arithmetic Library, 5.0.5 edition. http://gmplib.org/.

[39] Gupta, A., Ganai, M. K., and Wang, C. (2006). SAT-Based Verification Methods

and Applications in Hardware Verification. In Bernardo, M. and Cimatti, A., edi-

tors, Formal Methods for Hardware Verification, pages 108–143, Berlin, Heidelberg.

Springer Berlin Heidelberg.

[40] Halderman, J. A., Schoen, S. D., Heninger, N., Clarkson, W., Paul, W., Calan-

drino, J. A., Feldman, A. J., Appelbaum, J., and Felten, E. W. (2009). Lest We

Remember: Cold-Boot Attacks on Encryption Keys. Commun. ACM, 52(5):91–98.

[41] Hamadi, Y. and Wintersteiger, C. M. (2013). Seven challenges in parallel SAT

solving. AI Magazine, 34(2):99–106.

[42] Hart, W., Johansson, F., and Pancratz, S. (2013). FLINT: Fast Library for

Number Theory. Version 2.9.0, https://flintlib.org.

[43] Heninger, N. and Shacham, H. (2009). Reconstructing RSA Private Keys from

Random Key Bits. In Halevi, S., editor, Advances in Cryptology - CRYPTO 2009,

pages 1–17, Berlin, Heidelberg. Springer Berlin Heidelberg.

[44] Heule, M. (2018). Schur Number Five. Proceedings of the AAAI Conference on

Artificial Intelligence, 32(1).

69

https://eprint.iacr.org/2013/857
http://gmplib.org/
https://flintlib.org

REFERENCES

[45] Heule, M. J. H., Kauers, M., and Seidl, M. (2021). New ways to multiply 3× 3-

matrices. Journal of Symbolic Computation, 104:899–916.

[46] Heule, M. J. H., Kullmann, O., and Marek, V. W. (2016). Solving and Verifying

the Boolean Pythagorean Triples Problem via Cube-and-Conquer. In Theory and

Applications of Satisfiability Testing – SAT 2016, pages 228–245. Springer Inter-

national Publishing.

[47] Howgrave-Graham, N. (1997). Finding Small Roots of Univariate Modular Equa-

tions Revisited. In IMA Conference on Cryptography and Coding, pages 131–142.

[48] Johnson, S. (1966). Tricks for improving Kronecker’s method. Bell Laboratories

Report.

[49] Kaufmann, D. and Biere, A. (2023). Improving AMulet2 for verifying multiplier

circuits using SAT solving and computer algebra. International Journal on Software

Tools for Technology Transfer, 25(2):133–144.

[50] Kautz, H. and Neph, S. (2004). FactoringAsSat.

[51] Kautz, H. and Selman, B. (2004). Walksat version 45.

[52] Kautz, H. A. and Selman, B. (1992). Planning as Satisfiability. In European

Conference on Artificial Intelligence.

[53] Kirchweger, M., Scheucher, M., and Szeider, S. (2023). SAT-Based Generation

of Planar Graphs. In 26th International Conference on Theory and Applications of

Satisfiability Testing. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[54] Knuth, D. E. (2022). The Art of Computer Programming, Volume 4B, Combi-

natorial Algorithms, Part 2. Addison-Wesley Professional.

[55] Kocher, P. C. (1996). Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems. In Annual International Cryptology Conference.

70

REFERENCES

[56] Kocher, P. C., Jaffe, J., and Jun, B. (1999). Differential Power Analysis. In

Proceedings of the 19th Annual International Cryptology Conference on Advances

in Cryptology, CRYPTO ’99, page 388–397, Berlin, Heidelberg. Springer-Verlag.

[57] Lenstra, A. K. and Lenstra, H. W., editors (1993). The development of the

number field sieve. Springer Berlin Heidelberg.

[58] Lenstra, A. K., Lenstra, H. W., and Lovász, L. (1982). Factoring polynomials

with rational coefficients. Mathematische Annalen, 261(4):515–534.

[59] Lenstra, H. W. (1987). Factoring integers with elliptic curves. Annals of Math-

ematics, 126:649–673.

[60] Leon, S. J., Björck, A., and Gander, W. (2013). Gram-Schmidt orthogonaliza-

tion: 100 years and more. Numerical Linear Algebra with Applications, 20(3):492–

532.

[61] Liang, J. H., Ganesh, V., Poupart, P., and Czarnecki, K. (2016a). Learning rate

based branching heuristic for SAT solvers. In Theory and Applications of Satisfia-

bility Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July

5–8, 2016, Proceedings, pages 123–140.

[62] Liang, J. H., Ganesh, V., Poupart, P., and Czarnecki, K. (2016b). Learning rate

based branching heuristic for SAT solvers. In Proceedings of the 19th International

Conference on Theory and Applications of Satisfiability Testing (SAT 2016), pages

123–140. Springer.

[63] Mahzoon, A., Große, D., and Drechsler, R. (2018). Combining symbolic com-

puter algebra and boolean satisfiability for automatic debugging and fixing of com-

plex multipliers. In 2018 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI). IEEE.

[64] Maitra, S., Sarkar, S., and Sen Gupta, S. (2010). Factoring RSA Modulus Using

Prime Reconstruction from Random Known Bits. In Bernstein, D. J. and Lange,

71

REFERENCES

T., editors, Progress in Cryptology – AFRICACRYPT 2010, page 82–99, Berlin,

Heidelberg. Springer Berlin Heidelberg.

[65] Marques Silva, J. and Sakallah, K. (1996). GRASP-A new search algorithm

for satisfiability. In Proceedings of International Conference on Computer Aided

Design, pages 220–227.

[66] Marques-Silva, J. P. and Sakallah, K. A., editors (2014). Bounded variable logics

and counting: A collection of papers presented at the International Workshop on

Bounded Variable Logics and Counting. IOS Press.

[67] Martinasek, Z., Zeman, V., and Trasy, K. (2012). Simple Electromagnetic Anal-

ysis in Cryptography. International Journal of Advances in Telecommunications,

Electrotechnics, Signals and Systems, 1.

[68] May, A. (2021). Lattice-Based Integer Factorisation: An Introduction to Copper-

smith’s Method, page 78–105. London Mathematical Society Lecture Note Series.

Cambridge University Press.

[69] Micciancio, D. (2011). Lattice-Based Cryptography, pages 713–715. Springer US,

Boston, MA.

[70] Micheli, G. D. and Heninger, N. (2024). Survey: Recovering cryptographic keys

from partial information, by example. IACR Communications in Cryptology, 1(1).

[71] Mosca, M. and Verschoor, S. R. (2022). Factoring semi-primes with (quantum)

SAT-solvers. Scientific Reports, 12(1).

[72] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. (2001).

Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Annual

Design Automation Conference (DAC 2001), pages 530–535. ACM.

[73] Mushtaq, M., Mukhtar, M. A., Lapotre, V., Bhatti, M. K., and Gogniat, G.

(2020). Winter is here! a decade of cache-based side-channel attacks, detection &

mitigation for RSA. Information Systems, 92:101524.

72

REFERENCES

[74] Nguyen, P. Q. and Vallée, B., editors (2010). The LLL Algorithm. Springer

Berlin Heidelberg.

[75] Patsakis, C. (2013). RSA private key reconstruction from random bits using SAT

solvers. IACR Cryptol. ePrint Arch., 2013:26.

[76] Pollard, J. M. (1974). Theorems on factorization and primality testing. Mathe-

matical Proceedings of the Cambridge Philosophical Society, 76(3):521–528.

[77] Pollard, J. M. (1975). A monte carlo method for factorization. Bit Numerical

Mathematics, 15(3):331–334.

[78] Pomerance, C. (1985). The Quadratic Sieve Factoring Algorithm. In Beth,

T., Cot, N., and Ingemarsson, I., editors, Advances in Cryptology, pages 169–182,

Berlin, Heidelberg. Springer Berlin Heidelberg.

[79] Purdom, P. and Sabry, A. (2003). CNF Generator for Factoring Problems.

https://cgi.luddy.indiana.edu/ sabry/cnf.html.

[80] Ramamoorthy, A. and Jayagowri, P. (2023). The state-of-the-art Boolean Sat-

isfiability based cryptanalysis. Materials Today: Proceedings, 80:2539–2545. SI:5

NANO 2021.

[81] Rivest, R. L., Shamir, A., and Adleman, L. (1978). A method for obtaining

digital signatures and public-key cryptosystems. Communications of the ACM,

21(2):120–126.

[82] Roy, S., Farheen, T., Tajik, S., and Forte, D. (2022). Self-timed Sensors for De-

tecting Static Optical Side Channel Attacks. In 2022 23rd International Symposium

on Quality Electronic Design (ISQED), pages 1–6.

[83] Savela, J., Oikarinen, E., and Järvisalo, M. (2020). Finding Periodic Apartments

via Boolean Satisfiability and Orderly Generation. In EPiC Series in Computing.

EasyChair.

73

REFERENCES

[84] Schoenmackers, S. and Cavender, A. (2004). Satisfy This: An Attempt at Solving

Prime Factorization using Satisfiability Solvers.

[85] Shor, P. W. (1999). Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer. SIAM Review, 41(2):303–332.

[86] Skorobogatov, S. P. (2002). Low temperature data remanence in static RAM.

[87] The fplll development team (2023). fplll, a lattice reduction library, Version:

5.4.4. Available at https://github.com/fplll/fplll.

[88] Tseytin, G. S. (1968). On the Complexity of Derivation in Propositional Calculus,

pages 115–125. Springer. Reprinted in https://doi.org/10.1007/978-3-642-

81955-1 28.

[89] Valenta, L., Cohney, S., Liao, A., Fried, J., Bodduluri, S., and Heninger, N.

(2017). Factoring as a Service. In Financial Cryptography and Data Security,

pages 321–338. Springer Berlin Heidelberg.

[90] von zur Gathen, J. and Gerhard, J. (2013). Modern Computer Algebra. Cam-

bridge University Press.

[91] Wikipedia contributors (2024). Euler’s theorem — Wikipedia, the free encyclo-

pedia. [Online; accessed 18-April-2024].

[92] Yang, S. (2005). Researchers recover typed text using audio recording of

keystrokes.

[93] Yilek, S., Rescorla, E., Shacham, H., Enright, B., and Savage, S. (2009). When

private keys are public: Results from the 2008 Debian OpenSSL vulnerability. In

Feldmann, A. and Mathy, L., editors, Proceedings of IMC 2009, pages 15–27. ACM

Press.

[94] Yuen, H. and Bebel, J. (2011). ToughSAT Generation. https://

toughsat.appspot.com/.

74

https://github.com/fplll/fplll
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://toughsat.appspot.com/
https://toughsat.appspot.com/

REFERENCES

[95] Zabih, R. and McAllester, D. A. (1988). A rearrangement search strategy for

determining propositional satisfiability. In AAAI Conference on Artificial Intelli-

gence.

[96] Zassenhaus, H. (1981). Polynomial time factoring of integral polynomials. ACM

SIGSAM Bulletin, 15:6–7.

[97] Zhang, Y. and Lin, Z. (2022). When Good Becomes Evil: Tracking Bluetooth

Low Energy Devices via Allowlist-based Side Channel and Its Countermeasure. In

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS ’22, page 3181–3194, New York, NY, USA. Association for

Computing Machinery.

[98] Zhaohui, F. (2004). zChaff version 2004.5.13.

[99] Zulkoski, E., Bright, C., Heinle, A., Kotsireas, I., Czarnecki, K., and Ganesh, V.

(2016). Combining SAT solvers with computer algebra systems to verify combina-

torial conjectures. Journal of Automated Reasoning, 58(3):313–339.

[100] Zulkoski, E., Ganesh, V., and Czarnecki, K. (2015). MathCheck: A Math

Assistant via a Combination of Computer Algebra Systems and SAT Solvers. In

Automated Deduction - CADE-25, pages 607–622. Springer International Publish-

ing.

75

APPENDIX A

Experimental Results

The appendix provides detailed information on the experimental results for the vari-

ous cases considered in Section 5.3. It includes tables that summarize the performance

of the MapleSAT and CaDiCaL solvers under different configurations and also provide

some extra statistics not shown in the plots.

Bit
Length

Median
SAT
Time
(s)

Median
SAT

Memory
(MB)

Median
SAT+CAS

Time
(s)

Median
SAT+CAS
Memory
(MB)

Median
Coppersmith

Time
(s)

Median
Coppersmith

Count

32 0.018 42 0.012 42 0.002 12
48 0.555 42 0.037 42 0.015 94
64 5.629 43 0.228 43 0.084 488
80 42.738 48 0.789 45 0.236 1011
96 2669.540 90 19.315 46 3.704 13991
112 17969.700 185 242.630 54 54.458 185308
128 T T 808.971 68 178.066 532152

Table A.0.1: Performance of the MapleSAT solver on factoring RSA keys with 25%
known bits in both primes (p and q) and varying key sizes (N). Balanced encoding
with branching and variable activity heuristics were enabled. “T” denotes a timeout
after 2 days of runtime.

76

A. EXPERIMENTAL RESULTS

Bit
Length

Median
SAT
Time
(s)

Median
SAT

Memory
(MB)

Median
SAT+CAS

Time
(s)

Median
SAT+CAS
Memory
(MB)

Median
Coppersmith

Time
(s)

Median
Coppersmith

Count

32 0.030 8.550 0.030 9.320 0.002 9
48 0.510 11.160 0.080 10.620 0.011 69
64 3.310 15.080 0.320 13.250 0.122 721
80 16.350 21.170 2.130 17.340 0.522 2200
96 763.850 90.630 11.670 21.170 4.327 15518
112 16897.230 248.720 90.460 31.450 27.236 89487
128 T T 86.280 38.090 30.324 91591
144 T T 2938.870 432.580 855.027 2353774
160 T T 7821.400 493.640 3331.140 7195157

Table A.0.2: Performance of the CaDiCaL solver on factoring RSA keys with 25%
known bits in both primes (p and q) and varying key sizes (N). Balanced encoding
with branching heuristics was used. “T” denotes a timeout after 2 days of runtime.

Bit
Length

Median
SAT
Time
(s)

Median
SAT

Memory
(MB)

Median
SAT+CAS

Time
(s)

Median
SAT+CAS
Memory
(MB)

Median
Coppersmith

Time
(s)

Median
Coppersmith

Count

32 0.010 42 0.009 42 0.001 6
48 0.041 42 0.016 42 0.003 17
64 0.200 43 0.029 43 0.007 44
80 1.806 45 0.068 44 0.011 60
96 16.750 48 0.287 45 0.047 211
112 32.825 52 3.553 47 0.401 1778
128 135.839 59 1.125 49 0.073 205
144 812.712 78 16.909 53 1.284 3293
160 6542.250 172 73.714 59 7.816 17274
176 22963.300 281 146.969 68 9.905 23743
192 40897.500 311 132.508 68 4.516 10752
208 T T 911.934 99 47.605 101196
224 T T 1653.890 100 137.817 268593
240 T T 13033.200 179 669.299 1130936

Table A.0.3: Performance of the MapleSAT solver on factoring RSA keys with varying
key sizes (N). The experiment uses balanced encoding with branching and variable
activity heuristics enabled. “T” denotes a timeout after 2 days of runtime. Here, 25%
of the bits are known in both primes (p and q) as well as the decryption exponent d.

77

A. EXPERIMENTAL RESULTS

Bit
Length

Median
SAT
Time
(s)

Median
SAT

Memory
(MB)

Median
SAT+CAS

Time
(s)

Median
SAT+CAS
Memory
(MB)

Median
Coppersmith

Time
(s)

Median
Coppersmith

Count

32 0.030 8.650 0.030 9.580 0.001 3
48 0.120 10.740 0.060 10.930 0.003 20
64 0.560 13.470 0.110 12.910 0.009 52
80 1.070 16.570 0.170 15.370 0.025 125
96 3.950 20.920 0.440 19.070 0.058 281
112 10.210 27.100 2.590 24.950 0.406 1816
128 106.260 51.020 3.560 28.590 0.487 1474
144 144.660 53.930 7.400 33.270 1.528 4071
160 3833.700 199.500 50.560 44.380 1.810 4651
176 7785.640 278.420 53.740 55.150 5.756 13747
192 35952.590 508.680 50.610 53.910 6.472 14785
208 74295.680 669.850 104.810 62.610 13.464 27670
224 T T 670.900 96.110 79.500 159851
240 T T 1849.900 235.630 133.222 256135
256 T T 26084.470 472.380 2953.360 4869580

Table A.0.4: Performance of the CaDiCaL solver on factoring RSA keys with vary-
ing key sizes (N). The experiment uses balanced encoding with branching heuristic
enabled. “T” denotes a timeout after 2 days of runtime. Here, 25% of the bits are
known in both primes (p and q) as well as the decryption exponent d.

78

A. EXPERIMENTAL RESULTS

Bit
Length

Median
SAT
Time
(s)

Median
SAT

Memory
(MB)

Median
SAT+CAS

Time
(s)

Median
SAT+CAS
Memory
(MB)

Median
Coppersmith

Time
(s)

Median
Coppersmith

Count

90 0.064 61 0.056 61 0.001 1
85 0.160 61 0.109 61 0.002 1
80 0.166 61 0.098 60 0.001 1
75 0.212 61 0.147 60 0.002 1
70 0.237 61 0.163 59 0.001 1
65 0.382 61 0.234 60 0.001 1
60 0.566 61 0.270 60 0.002 1
55 1.452 62 0.357 60 0.002 2
50 87.213 74 0.939 60 0.007 11
45 1126.820 128 26.482 72 0.123 215
40 T T 343.552 90 9.033 16362
35 T T 143099.000 320 8991.890 15228850

Table A.0.5: Performance of the MapleSAT solver on factoring 256-bit RSA keys with
varying percentages of known bits in both primes (p and q). Balanced encoding with
branching and variable activity heuristics were enabled. “T” denotes a timeout after
2 days of runtime.

Bit
Length

Median
SAT
Time
(s)

Median
SAT

Memory
(MB)

Median
SAT+CAS

Time
(s)

Median
SAT+CAS
Memory
(MB)

Median
Coppersmith

Time
(s)

Median
Coppersmith

Count

90 0.350 49.300 0.250 44.920 0.002 1
85 0.360 47.240 0.400 43.120 0.002 1
80 0.360 47.240 0.410 42.860 0.002 1
75 0.360 47.240 0.400 42.860 0.001 1
70 0.400 47.760 0.400 42.600 0.002 1
65 0.570 55.310 0.400 42.700 0.002 1
60 0.530 55.690 0.470 43.170 0.002 2
55 2.480 68.410 0.490 43.380 0.002 1
50 10.550 71.910 16.300 70.720 8.739 16538
45 829.670 166.300 341.300 72.540 237.596 440711
40 60731.150 740.600 3507.440 99.020 2784.730 5212033
35 T T 74213.950 1540.860 5878.160 9655885

Table A.0.6: Performance of the CaDiCaL solver on factoring 256-bit RSA keys with
varying percentages of known bits in both primes (p and q). Balanced encoding with
branching heuristic was used. “T” denotes a timeout after 2 days of runtime.

79

A. EXPERIMENTAL RESULTS

Bit
Length

Median
SAT
Time
(s)

Median
SAT

Memory
(MB)

Median
SAT+CAS

Time
(s)

Median
SAT+CAS
Memory
(MB)

Median
Coppersmith

Time
(s)

Median
Coppersmith

Count

90 0.081 62 0.085 62 0.002 1
85 0.091 63 0.086 63 0.001 1
80 0.105 62 0.086 62 0.002 1
75 0.146 62 0.091 61 0.001 1
70 0.147 62 0.087 61 0.002 1
65 0.263 62 0.108 61 0.002 1
60 0.395 62 0.140 61 0.002 1
55 0.391 62 0.230 61 0.002 1
50 0.805 62 0.399 61 0.002 1
45 0.929 62 0.388 61 0.002 1
40 1.499 63 0.751 61 0.002 1
35 27.158 73 0.971 62 0.003 4
30 6517.400 195 42.796 74 0.204 330

Table A.0.7: Performance of the MapleSAT solver on factoring 256-bit RSA keys with
varying percentages of known bits in both primes (p and q) as well as the decryption
exponent d. Balanced encoding with branching and variable activity heuristics were
enabled. “T” denotes a timeout after 2 days of runtime.

80

A. EXPERIMENTAL RESULTS

Bit
Length

Median
SAT
Time
(s)

Median
SAT

Memory
(MB)

Median
SAT+CAS

Time
(s)

Median
SAT+CAS
Memory
(MB)

Median
Coppersmith

Time
(s)

Median
Coppersmith

Count

90 0.360 48.530 0.370 48.640 0.002 1
85 0.510 48.020 0.550 45.960 0.002 1
80 0.530 45.700 0.590 45.180 0.002 1
75 0.580 45.690 0.600 45.180 0.002 1
70 0.570 45.440 0.630 44.920 0.002 1
65 0.580 45.880 0.580 44.670 0.002 1
60 0.560 46.710 0.590 44.660 0.002 1
55 0.720 53.820 0.580 44.660 0.002 1
50 0.770 53.930 0.620 44.410 0.002 2
45 0.690 55.050 0.700 44.930 0.002 1
40 0.860 56.750 0.850 53.800 0.003 3
35 5.420 69.900 5.020 71.090 0.005 6
30 2493.880 193.370 19.930 73.750 1.461 2690
25 T T 26084.470 472.380 2953.360 4869580

Table A.0.8: Performance of the CaDiCaL solver on factoring 256-bit RSA keys with
varying percentages of known bits in both primes (p and q) as well as the decryption
exponent d. Balanced encoding was used with branching heuristic enabled. “T”
denotes a timeout after 2 days of runtime.

Bit
Length

Median
SAT
Time
(s)

Median
SAT

Memory
(MB)

Median
SAT+CAS

Time
(s)

Median
SAT+CAS
Memory
(MB)

Median
Coppersmith

Time
(s)

Median
Coppersmith

Count

32 0.025 42 0.014 42 0.002 9
48 1.684 42 0.542 43 0.030 170
64 28.837 47 35.180 47 0.139 800
80 1947.140 106 1351.350 91 0.314 1283
96 59767.900 273 53513.000 254 3.965 13137

Table A.0.9: As part of an experiment to evaluate the effect of the branching heuristic
on solver performance, this table shows the performance of the MapleSAT solver on
factoring RSA keys with varying key sizes (N) and 25% known bits in both primes
(p and q). Balanced encoding is used with the variable activity heuristic enabled,
but the branching heuristic is disabled. “T” denotes a timeout after 2 days of
runtime. This table allows comparison with the scenario with the branching heuristic
(see Table A.0.1) and explores its influence on the solver’s performance.

81

A. EXPERIMENTAL RESULTS

Bit
Length

Median
SAT
Time
(s)

Median
SAT

Memory
(MB)

Median
SAT+CAS

Time
(s)

Median
SAT+CAS
Memory
(MB)

Median
Coppersmith

Time
(s)

Median
Coppersmith

Count

32 0.023 42 0.013 42 0.002 13
48 1.901 44 0.048 43 0.013 95
64 38.965 48 0.263 45 0.070 355
80 426.490 63 4.318 48 0.577 2226
96 135852.000 404 42.042 52 4.514 16277
112 T T 1328.510 76 251.594 820389

Table A.0.10: This table explores MapleSAT solver’s performance on factoring RSA
keys with varying key sizes (N). The experiment uses unbalanced encoding,
branching heuristic, and the variable activity heuristic. All keys have 25% of the
bits known in both primes (p and q). “T” indicates a timeout after 2 days of runtime.
Examining this table alongside Table A.0.1’s results reveals the influence of encoding
on the solver’s performance.

Bit
Length

Median
SAT
Time
(s)

Median
SAT

Memory
(MB)

Median
SAT+CAS

Time
(s)

Median
SAT+CAS
Memory
(MB)

Median
Coppersmith

Time
(s)

Median
Coppersmith

Count

32 0.090 8.810 0.060 9.580 0.009 59
48 4.580 14.250 0.690 11.830 0.391 2179
64 174.930 40.080 4.210 14.410 2.627 12395
80 47773.950 387.830 86.690 18.090 61.770 221350
96 T T 1379.530 21.610 1138.820 3735111
112 T T 5195.330 36.170 4301.560 13039904

Table A.0.11: Performance of the CaDiCaL solver on factoring RSA keys with varying
key sizes (N) and 25% percentage of known bits in only the first prime factor (p).
Balanced encoding with branching heuristic were enabled. “T” denotes a timeout
after 1 day of runtime. This table explores the difficulty of factoring when only
partial information about one prime factor is available.

82

A. EXPERIMENTAL RESULTS

Bit Length 32 48 64 80 96
Median SAT Time (s) 0.030 0.510 3.310 16.350 763.850

Median SAT Memory (MB) 8.550 11.160 15.080 21.170 90.630
Median SAT+CAS Time (s)

Lattice Size = 5
0.030 0.080 0.320 2.130 11.670

Median SAT+CAS Memory (MB)
Lattice Size = 5

9.320 10.620 13.250 17.340 21.170

Median Coppersmith Time (s)
Lattice Size = 5

0.002 0.011 0.122 0.522 4.327

Median Coppersmith Count
Lattice Size = 5

9 69 721 2200 15518

Median SAT+CAS Time (s)
Lattice Size = 7

0.030 0.070 0.330 1.350 9.710

Median SAT+CAS Memory (MB)
Lattice Size = 7

9.570 10.870 12.490 16.040 20.650

Median Coppersmith Time (s)
Lattice Size = 7

0.003 0.014 0.221 0.544 5.499

Median Coppersmith Count
Lattice Size = 7

9 40 514 1002 7380

Median SAT+CAS Time (s)
Lattice Size = 9

0.030 0.090 0.600 1.140 13.930

Median SAT+CAS Memory (MB)
Lattice Size = 9

9.580 10.860 12.480 14.900 20.660

Median Coppersmith Time (s)
Lattice Size = 9

0.006 0.035 0.474 0.600 11.638

Median Coppersmith Count
Lattice Size = 9

8 40 459 510 6732

Median SAT+CAS Time (s)
Lattice Size = 21

0.440 3.920 13.820 64.180 264.490

Median SAT+CAS Memory (MB)
Lattice Size = 21

9.840 10.950 12.710 15.040 20.650

Median Coppersmith Time (s)
Lattice Size = 21

0.418 3.839 13.715 61.868 263.248

Median Coppersmith Count
Lattice Size = 21

8 62 220 411 2163

Table A.0.12: Effect of Lattice Size (Part A) - Performance of the CaDiCaL solver on
factoring RSA keys with balanced encoding and branching heuristic. The experiment
investigates the effect of varying lattice size (5, 7, 9, and 21) on solver performance.
RSA keys with varying key sizes (N) and 25% percentage of known bits of p and q
were considered. “T” denotes a timeout after 1 day of runtime.

83

A. EXPERIMENTAL RESULTS

Bit Length 112 128 144 160
Median SAT Time (s) 16897.230 T T T

Median SAT Memory (MB) 248.720 T T T
Median SAT+CAS Time (s)

Lattice Size = 5
90.460 86.280 2938.870 7821.400

Median SAT+CAS Memory (MB)
Lattice Size = 5

31.450 38.090 432.580 493.640

Median Coppersmith Time (s)
Lattice Size = 5

27.236 30.324 855.027 3331.140

Median Coppersmith Count
Lattice Size = 5

89487 91591 2353774 7195157

Median SAT+CAS Time (s)
Lattice Size = 7

97.160 71.040 14813.470 4105.720

Median SAT+CAS Memory (MB)
Lattice Size = 7

28.520 42.750 746.570 389.990

Median Coppersmith Time (s)
Lattice Size = 7

57.306 50.553 3454.150 2197.670

Median Coppersmith Count
Lattice Size = 7

67588 54158 3243504 2039868

Median SAT+CAS Time (s)
Lattice Size = 9

100.450 141.470 6914.550 8187.760

Median SAT+CAS Memory (MB)
Lattice Size = 9

25.330 37.060 428.700 192.180

Median Coppersmith Time (s)
Lattice Size = 9

89.222 105.194 4837.710 6881.380

Median Coppersmith Count
Lattice Size = 9

44629 49011 1926530 2546440

Median SAT+CAS Time (s)
Lattice Size = 21

3137.380 7173.130 T T

Median SAT+CAS Memory (MB)
Lattice Size = 21

25.710 30.110 T T

Median Coppersmith Time (s)
Lattice Size = 21

3120.610 7143.230 T T

Median Coppersmith Count
Lattice Size = 21

24887 55089 T T

Table A.0.13: Effect of Lattice Size (Part B) - Performance of the CaDiCaL solver on
factoring RSA keys with balanced encoding and branching heuristic. The experiment
investigates the effect of varying lattice size (5, 7, 9, and 21) on solver performance.
RSA keys with varying key sizes (N) and 25% of known bits of p and q were considered.
“T” denotes a timeout after 1 day of runtime.

84

A. EXPERIMENTAL RESULTS

Bit
Length

Median
SAT
Time
(s)

Median
SAT+CAS

Time
(s)

Median
HS
Time
(s)

32 0.090 0.060 0.007
48 4.580 0.690 0.487
64 174.930 4.210 20.345
80 47773.950 86.690 OoM
96 T 1379.530 OoM
112 T 5195.330 OoM

Table A.0.14: Comparison of CaDiCaL solver’s performance on factoring RSA keys
with varying key sizes (N) and 25% known bits of p against results from Heninger–
Shacham’s (HS) work. Balanced encoding and branching heuristic were used. “T”
denotes a timeout after 1 day of runtime. “OoM” denotes that the instance ran out
of memory (4GB).

Bit
Length

Median
SAT
Time
(s)

Median
SAT+CAS

Time
(s)

Median
HS
Time
(s)

32 0.030 0.030 0.003
48 0.510 0.080 0.027
64 3.310 0.320 0.258
80 16.350 2.130 3.893
96 763.850 11.670 OoM
112 16897.230 90.460 OoM
128 T 86.280 OoM
144 T 2938.870 OoM
160 T 7821.400 OoM

Table A.0.15: Comparison of CaDiCaL solver’s performance on factoring RSA keys
with varying key sizes (N) and 25% known bits of p and q against results from
Heninger–Shacham’s (HS) work. Balanced encoding and branching heuristic were
used. “T” denotes a timeout after 1 day of runtime. “OoM” denotes that the instance
ran out of memory (4GB).

85

A. EXPERIMENTAL RESULTS

Bit
Length

Median
SAT
Time
(s)

Median
SAT+CAS

Time
(s)

Median
HS
Time
(s)

32 0.030 0.030 0.002
48 0.120 0.060 0.007
64 0.560 0.110 0.009
80 1.070 0.170 0.033
96 3.950 0.440 0.197
112 10.210 2.590 0.590
128 106.260 3.560 1.820
144 144.660 7.400 16.507
160 5532.390 50.560 37.631
176 7785.640 53.740 OoM
192 T 50.610 OoM
208 T 104.810 OoM
224 T 670.900 OoM
240 T 1849.900 OoM

Table A.0.16: Comparison of CaDiCaL solver’s performance on factoring RSA keys
with varying key sizes (N) and 25% known bits of p, q and d against results from
Heninger–Shacham’s (HS) work. Balanced encoding and branching heuristic were
used. “T” denotes a timeout after 1 day of runtime. “OoM” denotes that the instance
ran out of memory (4GB).

86

VITA AUCTORIS

NAME: Yameen Ajani

PLACE OF BIRTH: Hyderabad, India

YEAR OF BIRTH: 2000

EDUCATION: Fr. Conceicao Rodrigues College of Engineering, B.E.
in Computer Engineering, Mumbai, 2022

University of Windsor, M.Sc. in Computer Science,
Windsor, Ontario, 2024

87

	DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	The Factorization Problem
	RSA Cryptosystem
	Side-channel Attacks
	Lattices and the LLL Algorithm
	Coppersmith's Method
	Our Contributions

	Boolean Satisfiability
	Tseitin Transformation
	The Backbone of SAT - DPLL Algorithm
	Conflict Driven Clause Learning

	Related Works
	Integer Factorization & Algebraic Methods
	RSA Key Reconstruction
	The Magic of SAT

	Methodology
	The Hybrid Approach
	Factoring with Coppersmith
	Blocking Clauses

	Experiments and Results
	The Encoding
	Including Inferable Information
	Incorporating the RSA Private Exponent

	Solving Method
	Branching Heuristics
	System Requirements & Configuration

	Summary of Results
	Calling Coppersmith using High Bits
	Incorporating the Private Exponent
	Effect of Branching Heuristic
	Effect of Different Encodings
	Effect of Changing Lattice Size
	Effect of Known Bits in One Prime Only
	Comparison with Other Works

	Conclusion and Future Work
	REFERENCES
	APPENDIX Experimental Results
	VITA AUCTORIS

