
Toward Better Dependency Management
in Python Projects

By

Sadman Jashim Sakib

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Computer Science
at the University of Windsor

Windsor, Ontario, Canada

2025

© 2025 Sadman Jashim Sakib

Toward Better Dependency Management in Python Projects

By

Sadman Jashim Sakib

Date of final oral defence: May 09, 2025

The document has received final approval by the Master’s Committee:

Co-Supervisor: Curtis Bright

Co-Supervisor: Muhammad Asaduzzaman

Program Reader: Jessica Chen

Outside Program Reader: Mohammad Hassanzadeh

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

III

ABSTRACT

Modern software development heavily relies on third-party packages to accelerate

progress, yet two critical challenges persist: managing dependency conflicts during

package installation and addressing the frequent absence or incompleteness of con-

figuration files in Python projects. These issues disrupt workflow efficiency, degrade

system stability, and hinder reproducibility. This research aims to solve both problems

by introducing two separate tools. First, we introduce SMTpip, a tool leveraging Sat-

isfiability Modulo Theories (SMT) solvers to resolve third-party package dependency

conflicts and Python version incompatibilities during package installation, ensuring a

reproducible and conflict-free environment for Python projects. SMTpip constructs a

comprehensive dependency knowledge graph by analyzing metadata from the Python

Package Index (PyPI) and translates client project requirements—such as Python

version constraints and library dependency constraints—into SMT expressions to

find an optimal, conflict-free installation process. Evaluations using four different

datasets from open-source software repositories show that SMTpip achieves significant

speedups: 39× faster than pip, 37× faster than Conda, 3.2× faster than smartPip,

and 4× faster than PyEGo. Additionally, SMTpip is able to determine when a set

of dependency constraints is inconsistent, meaning that the constraints are mutually

contradictory and there is no way of meeting them all simultaneously. Second, we

introduce an automated approach to generating requirements.txt files for Python

projects lacking dependency specifications. Our approach addresses the challenges

of identifying packages and their compatible versions through code parsing. When

tested on 3,081 notebooks, our proposed generator tool successfully generated require-

ments.txt files and enabled the execution of 1,230 notebooks, achieving a 39.92%

success rate—nearly twice that of pipreqs (20.84%, or 642 notebooks). Failures were

primarily due to non-dependency issues, highlighting challenges beyond dependency

resolution. By ensuring consistent software environments and automating dependency

specification, these tools enhance project reproducibility. The implementation of

SMTpip and the generator tool are publicly available to facilitate reproducibility.

IV

DEDICATION

I dedicate this thesis to my father Md Jashim Uddin Bhuiyan, who raised me with

care and granted me the freedom to pursue my dreams. His guidance has been a

cornerstone of my journey, shaping my path with wisdom and trust.

To my mother Salma Begum, whose boundless love and dedication have always

been the backbone of our family. Her selfless support and constant encouragement

have been a source of strength that words can scarcely capture.

To my wife Rafia, whose unwavering support and patience have carried me through

the many challenges of this work. Her belief in me has been my greatest motivation,

and her strength has been the foundation upon which this achievement rests.

Finally, to my entire family, whose unconditional love and encouragement have

illuminated my path. Their presence has been a guiding light, inspiring me through

every step of this journey.

With heartfelt thanks to them all.

V

ACKNOWLEDGEMENTS

I am profoundly grateful to my supervisors, Dr. Curtis Bright and Dr. Muhammad

Asaduzzaman, for their exceptional guidance, mentorship, and unwavering support

throughout my research journey. Their deep expertise, insightful feedback, and

encouragement have not only shaped this thesis but also enriched my academic growth

in countless ways.

My sincere thanks go to my thesis committee members, Dr. Mohammad Hassan-

zadeh and Dr. Jessica Chen, for their insightful feedback and dedication to ensuring

the quality of this thesis.

I am deeply grateful to my friends and family for their unwavering encouragement

and belief in me. Their support has been a constant source of strength during this

process.

Finally, I would like to acknowledge the School of Computer Science and all those

who have assisted me throughout my research. Your help and support have been

crucial, and I am truly grateful for it.

VI

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

DEDICATION V

ACKNOWLEDGEMENTS VI

LIST OF TABLES IX

LIST OF FIGURES X

LIST OF ABBREVIATIONS XII

1 Introduction 1
1.1 Motivation . 1
1.2 Research Problems . 3

1.2.1 Dependency Conflicts . 4
1.2.1.1 Package Dependency Conflicts 4
1.2.1.2 Python Version Incompatibilities 5

1.2.2 Missing or Incomplete Configuration Files 6
1.3 Addressing the Research Problems 8

1.3.1 Capabilities and Limitations of Pip 9
1.3.2 Alternative Package Managers 9
1.3.3 Existing Techniques in the Literature 10
1.3.4 Proposed Solutions: SMTpip and Our Automatic Configuration

Generator . 11
1.4 Contributions of the Thesis . 12
1.5 Outline of the Thesis . 12

2 Background and Related Work 14
2.1 Package Management . 14
2.2 Configuration Files . 16
2.3 Python Package Installation . 17
2.4 Dependency Constraints . 18
2.5 Satisfiability Solving . 19

2.5.1 Satisfiability Solvers . 20
2.6 Related Work . 22

2.6.1 Dependency Conflict Resolution 23
2.6.2 Environment Reproducibility and Build-Failure Repair 24
2.6.3 SAT and SMT Solvers in Software Engineering 24

VII

3 Dependency Conflict Resolution 26
3.1 Introduction . 26
3.2 SMTpip: SMT-driven approach . 29

3.2.1 Knowledge Graph Construction 30
3.2.2 SMT Encoding of Dependency Resolution 33
3.2.3 Example of Dependency Constraints 36

3.3 Comparison With Baseline . 39
3.3.1 Comparison with smartPip . 39
3.3.2 Comparison with PyEGo . 40

3.4 Evaluation . 42
3.4.1 Datasets . 42
3.4.2 RQ1: How effective is SMTpip in resolving library dependency

conflicts and Python version incompatibilities during installation
compared to pip, Conda, smartPip, and PyEGo? 45

3.4.3 RQ2: Is the Technique Efficient Enough for Practical Use? . . 52
3.5 Threats to Validity . 54

3.5.1 External Validity . 54
3.5.2 Internal Validity . 55

3.6 Conclusion . 55

4 Generating Missing Requirements.txt Files 57
4.1 Introduction . 57
4.2 The Problem of Missing Dependency Specifications 58
4.3 Proposed Solution and Methodology 60
4.4 Evaluation and Results . 62

4.4.1 Evaluation Procedure . 62
4.4.2 Results . 63
4.4.3 Failure Analysis . 64

4.5 Related Work . 65
4.6 Threats to Validity . 67
4.7 Conclusion and Future Work . 67

5 Conclusion 69
5.1 Summary of Research Findings and Contributions 69
5.2 Future Research Directions . 70

REFERENCES 72

A Sample SMT Instances 79
A.1 SMTpip: Boolean Variables . 79
A.2 smartPip: Integer Variables with Nested Logical Constraints 80
A.3 PyEGo: Nested Logical Constraints 81

VITA AUCTORIS 82

VIII

LIST OF TABLES

3.3.1 Comparison of dependency resolution tools. 41

3.4.1 Datasets used for evaluation and information about the instances in

each dataset. 43

3.4.2 Results of SMTpip, pip, Conda and PyEGo in resolving dependencies

for consistent cases using the latest dependency knowledge graph. . . 45

3.4.3 Results of SMTpip and smartPip in resolving dependencies for consis-

tent cases using downgraded dependency knowledge graph. 46

3.4.4 Results of SMTpip, pip, Conda and PyEGo in identifying inconsistency

among the inconsistent cases using the latest dependency knowledge

graph. 48

3.4.5 Comparison of smartPip and SMTpip in Identifying Inconsistencies

Across Datasets using downgraded Kgraph. 48

3.4.6 Comprehensive time cost comparison across tools (pip, Conda, smart-

Pip, PyEGo vs. SMTpip). SC (Success Count) is the number of

projects where both the tool and SMTpip successfully resolved depen-

dency conflicts. TC (Time Cost) is the time taken for dependency

resolution, shown as “Tool TC — SMTpip TC” with Speedup in

parentheses (Tool TC / SMTpip TC). Speedup indicates how much

faster SMTpip resolves dependencies compared to the respective tool. 53

4.4.1 Success Rate Comparison: SMTpip vs. pipreqs 64

IX

LIST OF FIGURES

1.2.1 An example of a third-party library dependency conflict between direct

and transitive dependencies in the ltiauthenticator project, where

jupyterhub 5.3.0 requires oauthlib ≥ 3.0, conflicting with the project’s

requirement of oauthlib = 2.*. 5

1.2.2 An example of installation failure due to Python version incompatibil-

ities. The project requires dagit = 1.1.5, which indirectly depends on

universal-pathlib, requiring Python ≥ 3.7, while the local environment

uses Python 3.6.5. 6

1.2.3 Examples of configuration files used to specify dependencies in Python

projects, illustrating different formats for documenting version require-

ments for packages. 7

2.4.1 An example of the declaration of two types of constraints in library

the seaborn. 19

3.1.1 An example of a third party library dependency conflict between direct

and transitive dependencies. 27

3.1.2 Backtracking in pip’s dependency resolution by evaluating multiple

versions of pip-tools to find compatibility with click == 6.6. It initially

downloads pip-tools 7.4.1 but backtracks through versions 7.4.0, 7.3.0,

and 7.2.0, finally selecting pip-tools 4.4.0 as the compatible version.

The downloads for each attempted version are shown during this process. 27

3.1.3 An example of installation failure due to Python version incompatibili-

ties. The project requires TensorFlow 2.10.0, which depends on NumPy

≥ 1.20.0. However, NumPy ≥ 1.20.0 is incompatible with Python

3.6.5, as it requires Python ≥ 3.7.0. This results in an installation

failure, as indicated by the error messages in the box. 28

3.2.1 SMTpip architecture . 30

X

3.2.2 Data collection process. 31

3.2.3 The knowledge graph illustrates the version-specific dependencies be-

tween libraries A and B. Library A has two versions, v1 and v2, while

library B has three versions, v1, v2, and v3. Directed edges represent

dependency relationships: A v1 depends on B v1, and A v2 depends

on B v3. Each version node is annotated with two properties: its

release date and Python version constraints. 31

3.2.4 The full process of updating the dependency knowledge graph. . . . 33

3.4.1 Comparison of time taken to generate SMT expression by SMTpip &

smartPip for the Watchman dataset. 50

3.4.2 Comparison of Time Taken To Solve SMT Expression by SMTpip &

smartPip for the Watchman dataset. 51

4.1.1 An example of a requirements.txt file from the jupyterhub project. . 58

4.2.1 The PyPI package of PySnooper is missing the “requirements.txt” file,

causing installation to fail. 59

4.2.2 The PyPI package of NCBImeta is missing the “requirements.txt” file,

causing installation to fail. 59

4.3.1 Requirements.txt generator workflow. 62

XI

LIST OF ABBREVIATIONS

SMT Satisfiability Modulo Theories

SAT Boolean Satisfiability

CNF Conjunctive Normal Form

PyPI Python Package Index

CCS Computing Classification System

ACM Association for Computing Machinery

PEP Python Enhancement Proposal

API Application Programming Interface

AMO At-Most-One

CRAN Comprehensive R Archive Network

SC Success Count

TC Time Cost

RQ Research Question

XII

CHAPTER 1

Introduction

This chapter provides an overview of the thesis, setting the foundation for the research

presented in the subsequent chapters. Section 1.1 outlines the motivation behind this

work, emphasizing the critical role of package management in the Python ecosystem

and the challenges that arise therein. Section 1.2 elaborates on the two primary

research problems addressed in this thesis: dependency conflicts and the absence of

complete configuration files in Python projects. Section 1.3 discusses the limitations

of existing approaches and introduces the proposed solutions to these problems. The

contributions of this thesis are detailed in Section 1.4, highlighting the novel tools,

datasets, and methods developed. Finally, Section 1.5 provides an outline of the

remaining chapters, guiding the reader through the structure of the thesis.

1.1 Motivation

In modern software development, package management is a cornerstone of efficient

and scalable code reuse, enabling developers to leverage existing libraries to accelerate

project timelines and enhance functionality. Effective package management streamlines

the integration of third-party code, ensures compatibility across dependencies, and

maintains reproducible environments. This is critical across diverse programming

ecosystems. For instance, in R, the Comprehensive R Archive Network (CRAN)1 hosts

packages like ggplot22 for data visualization; in Java, Maven3 manages libraries like

1https://cran.r-project.org/
2https://ggplot2.tidyverse.org/
3https://maven.apache.org/

1

https://cran.r-project.org/
https://ggplot2.tidyverse.org/
https://maven.apache.org/

1. INTRODUCTION

Apache Commons4 for utility functions; and in JavaScript, npm5 distributes packages

like React6 for building user interfaces. These ecosystems highlight the universal

need for robust package management to support diverse application domains, from

statistical analysis to web development.

Python, with its versatile ecosystem, exemplifies this paradigm, supported by the

Python Package Index (PyPI),7 which hosts over six million package releases [43].8

Python’s prominence in fields like data science, machine learning, and web development

amplifies the need for tools that simplify package installation and dependency manage-

ment [20, 29]. For example, scientific computing relies on NumPy9 and SciPy;10 web

development leverages frameworks like Django11 and Flask;12 and machine learning is

driven by libraries like TensorFlow13 and PyTorch.14

Package managers, such as pip15 for Python, Maven16 for Java, or npm17 for

JavaScript, and package management platforms like PyPI, CRAN, or npm registries,

automate the process of discovering, installing, and updating packages. These tools

resolve dependency chains, fetch compatible versions, and integrate packages into

projects with minimal manual intervention. For instance, a Python developer can

install requests18 with a single command (i.e., pip install requests), and pip ensures

that all required dependencies are installed in compatible versions. Similarly, npm

automates the installation of express19 for Node.js applications. This automation

reduces errors, saves time, and enhances project reliability. However, challenges persist

4https://commons.apache.org/
5https://www.npmjs.com/
6https://react.dev/
7https://pypi.org/
8In this thesis, the terms “package” and “library” are used interchangeably.
9https://numpy.org/

10https://scipy.org/.
11https://www.djangoproject.com/
12https://flask.palletsprojects.com/
13https://www.tensorflow.org/
14https://pytorch.org/
15https://pypi.org/project/pip/
16https://maven.apache.org/
17https://nodejs.org/en/learn/getting-started/an-introduction-to-the-npm-package-

manager#introduction-to-npm
18https://requests.readthedocs.io/
19https://expressjs.com/

2

https://commons.apache.org/
https://www.npmjs.com/
https://react.dev/
https://pypi.org/
https://numpy.org/
https://scipy.org/
https://www.djangoproject.com/
https://flask.palletsprojects.com/
https://www.tensorflow.org/
https://pytorch.org/
https://pypi.org/project/pip/
https://maven.apache.org/
https://nodejs.org/en/learn/getting-started/an-introduction-to-the-npm-package-manager#introduction-to-npm
https://nodejs.org/en/learn/getting-started/an-introduction-to-the-npm-package-manager#introduction-to-npm
https://requests.readthedocs.io/
https://expressjs.com/

1. INTRODUCTION

in managing a large number of interdependent packages, particularly when packages

specify conflicting version requirements or demand specific runtime environments,

disrupting workflows and undermining reproducibility.

In Python, documenting dependencies is a critical practice to ensure consistent

environments across development, testing, and production. The requirements.txt

file is a common method, listing packages and their versions (e.g., numpy==1.21.0).

However, other approaches exist, such as setup.py, which defines package metadata

and dependencies for distribution, and pyproject.toml, a modern standard introduced

by PEP 51820 that supports flexible configuration for build tools like poetry21 or

flit.22 While requirements.txt is simple and widely used, it lacks metadata for build

processes, unlike setup.py or pyproject.toml, which offer greater extensibility for

package authors. Despite these options, many projects—particularly legacy or under-

documented ones—lack comprehensive dependency documentation, forcing developers

to manually reconstruct environments, a process prone to errors and inefficiencies.

The interplay of dependency conflicts, version incompatibilities, and inconsistent

documentation across programming ecosystems, including Python, highlights the

need for innovative package management solutions. These challenges motivate the

research in this thesis, which aims to develop tools that simplify dependency resolution,

automate environment setup, and ensure reproducible Python environments, ultimately

enhancing developer productivity and project reliability.

1.2 Research Problems

The Python ecosystem presents several installation-related challenges, primarily stem-

ming from two key issues: (1) third-party package dependency conflicts and Python

version incompatibilities, and (2) the frequent absence or incompleteness of config-

uration files in Python projects. These problems are deeply interconnected, as the

ability to resolve dependency conflicts depends heavily on the availability and accuracy

20https://peps.python.org/pep-0518/
21https://python-poetry.org/
22https://flit.pypa.io/

3

https://peps.python.org/pep-0518/
https://python-poetry.org/
https://flit.pypa.io/

1. INTRODUCTION

of dependency information, typically provided in configuration files. When these

files are missing, incomplete, or outdated, managing and resolving conflicts becomes

significantly more difficult, undermining the reproducibility and reliability of soft-

ware environments. Below, we delve into each of these research problems, providing

detailed explanations and illustrative examples to underscore their significance and

interdependence.

1.2.1 Dependency Conflicts

Package dependency conflicts and Python version incompatibilities are pervasive

issues in the Python ecosystem, often leading to installation failures and significant

disruptions in development workflows [50, 47, 26, 52]. These problems arise due to the

intricate web of dependencies that modern Python projects rely on, where even a single

incompatible version can cascade into a series of conflicts [32, 21, 45]. The effectiveness

of resolving these conflicts hinges on having complete and accurate configuration files,

as their absence or incompleteness makes identifying the root causes of conflicts a

manual and error-prone process, linking this issue to the challenges of missing or

incomplete dependency specifications.

1.2.1.1 Package Dependency Conflicts

A common issue in Python projects is the conflict between package dependencies,

particularly when multiple versions of a package are acceptable, with each version

imposing different dependencies, making it difficult to determine which versions of

packages to install in order to meet all dependencies simultaneously. For example,

consider the open-source project ltiauthenticator,23 which declares direct dependencies

on jupyterhub24 and oauthlib,25 requiring jupyterhub ≥ 0.8 and oauthlib = 2.*. During

installation, pip selects the latest versions that satisfy these constraints, resulting in

jupyterhub 5.3.0 and oauthlib 2.1.0. However, jupyterhub 5.3.0 requires oauthlib ≥ 3.0,

23https://github.com/jupyterhub/ltiauthenticator/issues/21
24https://pypi.org/project/jupyterhub/
25https://pypi.org/project/oauthlib/

4

https://github.com/jupyterhub/ltiauthenticator/issues/21
https://pypi.org/project/jupyterhub/
https://pypi.org/project/oauthlib/

1. INTRODUCTION

jupyterhub

== 2.*

>= 3.0

oauthlib

oauthlib

ltiauthenticator

>= 0.8

Direct Dependencies Transitive Dependencies

Fig. 1.2.1: An example of a third-party library dependency conflict between direct
and transitive dependencies in the ltiauthenticator project, where jupyterhub 5.3.0
requires oauthlib ≥ 3.0, conflicting with the project’s requirement of oauthlib = 2.*.

which conflicts with the installed oauthlib 2.1.0. This transitive dependency conflict,

as illustrated in Figure 1.2.1, exemplifies how such issues can derail the installation

process, leading to errors or runtime failures if not carefully managed.

1.2.1.2 Python Version Incompatibilities

Beyond inter-package conflicts, incompatibilities with specific Python versions further

complicate the installation process. Figure 1.2.2 illustrates an installation failure

under Python 3.6.5 for the dagit26 package. The user specifies dagit = 1.1.5, which

depends on dagster,27 which in turn requires universal-pathlib.28 Available versions of

universal-pathlib (e.g., 0.0.20, 0.0.21) require Python ≥ 3.7, but the local environment

runs Python 3.6.5. This mismatch occurs because package dependencies often specify

minimum Python version requirements in their metadata, and pip cannot find a

compatible version of universal-pathlib for Python 3.6.5, resulting in an installation

error. One solution is to create a virtual environment with a compatible Python version,

such as Python 3.7, which aligns the local environment with the package’s requirements,

enabling successful installation. However, this approach requires knowing the exact

Python version compatible with all direct and transitive dependencies, which can be

26https://pypi.org/project/dagit/
27https://pypi.org/project/dagster/
28https://pypi.org/project/universal-pathlib/

5

https://pypi.org/project/dagit/
https://pypi.org/project/dagster/
https://pypi.org/project/universal-pathlib/

1. INTRODUCTION

dagit

dagstar
universal-

pathlib

universal-pathlib(0.0.21)
universal-pathlib(0.0.20)

............................
Python 3.6.5

incompatibleProject

==1.1.5

Direct Dependency Transitive Dependency

==1.1.5 == *

>=3.7

Fig. 1.2.2: An example of installation failure due to Python version incompatibilities.
The project requires dagit = 1.1.5, which indirectly depends on universal-pathlib,
requiring Python ≥ 3.7, while the local environment uses Python 3.6.5.

challenging for large numbers of interdependent packages. This example underscores

how the local environment’s Python version can conflict with transitive dependency

requirements, preventing successful installations even when direct dependencies appear

satisfied, and highlights the role of virtual environments in achieving reproducible

setups when dependency constraints are well-understood.

Recent studies indicate that resolving these conflicts, whether library-related or

Python version-related, requires substantial time and collaboration between upstream

and downstream developers, underscoring the severity of the issue [50, 30]. The reliance

on configuration files to specify dependencies means that incomplete or missing files

exacerbate these challenges, as developers cannot accurately determine the required

versions, further complicating conflict resolution.

1.2.2 Missing or Incomplete Configuration Files

The second research problem centers on the frequent absence or incompleteness of

configuration files in Python projects. Configuration files, such as requirements.txt,

setup.py, or pyproject.toml, are critical artifacts that specify the exact versions of

third-party libraries a project depends on, ensuring consistent installations across

different environments. However, in many cases—particularly with legacy systems,

open-source contributions, or poorly documented projects—these files are either

missing, incomplete, or outdated, leading to significant challenges in reproducing

the development environment. This issue exacerbates the first research problem, as

6

1. INTRODUCTION

setup.py

1 import setuptools
2
3 setuptools.setup(
4 name="ramanujan",
5 version="0.0.1",
6 description="Ramanujan Machine",
7 packages=['ramanujan'],
8 install_requires=[
9 'cycler>=0.10.0',
10 'kiwisolver>=1.1.0',
11 'matplotlib>=3.2.0',
12 'mpmath>=1.1.0',
13 'numpy>=1.18.1',
14 'ordered-set>=3.1.1',
15 'pandas>=1.0.1',
16 'protobuf>=3.11.3',
17 'PyLaTeX>=1.3.1'
18]
19)

pyproject.toml

1 [project]
2 # https://peps.python.org/pep-0621/#readme
3 requires-python = ">=3.8"
4 dynamic = ["version"]
5 name = "pip-tools"
6 description = " keeps your pinned dependencies fresh."
7 readme = "README.md"
8 authors = [{ "name" = "Driessen", "email" = "me@nvie.com" }]
9 license = { text = "BSD" }
10 keywords = ["pip", "requirements", "packaging"]
11 dependencies = [
12 # direct dependencies
13 "build >= 1.0.0",
14 "click >= 8",
15 "pip >= 22.2",
16]
17 [build-system]
18 requires = ["setuptools>=63", "setuptools_scm[toml]>=7"]
19 build-backend = "setuptools.build_meta"

requirements.txt

1 alembic>=1.4
2 async_generator>=1.9; python_version < '3.10'
3 certipy>=0.1.2
4 idna
5 importlib_metadata>=3.6; python_version < '3.10'
6 jinja2>=2.11.0
7 jupyter_events
8 oauthlib>=3.0
9 packaging
10 pamela>=1.1.0; sys_platform != 'win32'
11 prometheus_client>=0.5.0
12 psutil>=5.6.5; sys_platform == 'win32'
13 pydantic>=2
14 python-dateutil
15 requests
16 SQLAlchemy>=1.4.1
17 tornado>=5.1
18 traitlets>=4.3.2

Fig. 1.2.3: Examples of configuration files used to specify dependencies in Python
projects, illustrating different formats for documenting version requirements for pack-
ages.

dependency conflict resolution tools rely on accurate dependency specifications to

function effectively.

Configuration files serve as a blueprint for the project’s dependencies, allowing

developers to recreate the exact environment in which the software was developed.

This is essential for ensuring that the project functions as intended across various

platforms, avoiding discrepancies caused by differing library versions. Without these

files, developers must manually deduce the necessary libraries and their versions, a

process that is both time-consuming and error-prone. This manual effort often involves

trial and error, leading to potential incompatibilities and installation failures when

the software is shared or deployed. Examples of such configuration files, including

pyproject.toml,29 setup.py,30 and requirements.txt,31 are shown in Figure 1.2.3.

The absence of complete configuration files undermines the reproducibility of

Python projects, a cornerstone of reliable software development. For instance, consider

a machine learning project that relies on specific versions of libraries like TensorFlow32

and NumPy.33 If configuration files are missing, a developer attempting to run the

project on a different machine may inadvertently install incompatible versions, leading

to runtime errors or divergent behavior. This not only hampers collaboration but also

29https://github.com/RamanujanMachine/RamanujanMachine/blob/master/setup.py
30https://github.com/jazzband/pip-tools/blob/main/pyproject.toml
31https://github.com/jupyterhub/jupyterhub/blob/main/requirements.txt
32https://pypi.org/project/tensorflow/
33https://pypi.org/project/numpy/

7

https://github.com/RamanujanMachine/RamanujanMachine/blob/master/setup.py
https://github.com/jazzband/pip-tools/blob/main/pyproject.toml
https://github.com/jupyterhub/jupyterhub/blob/main/requirements.txt
https://pypi.org/project/tensorflow/
https://pypi.org/project/numpy/

1. INTRODUCTION

complicates debugging and maintenance, as the root cause of issues becomes harder

to trace.

Moreover, the lack of reliable configuration files directly impacts the resolution

of dependency conflicts. For example, if a project’s configuration files are outdated

(e.g., not reflecting a recent library upgrade), the specified versions may no longer be

compatible with the project’s code, introducing conflicts or installation failures. In the

ltiauthenticator example above, incomplete configuration files might omit the transitive

dependency on oauthlib ≥ 3.0 required by jupyterhub 5.3.0, leaving developers unaware

of the conflict until runtime. This interdependence underscores how the absence or

inaccuracy of configuration files amplifies the challenges of managing dependency

conflicts.

In large-scale projects or those with extensive dependency trees, manually re-

constructing configuration files is impractical. Developers may overlook transitive

dependencies or fail to account for version constraints, resulting in incomplete or

incorrect specifications. This gap in current practice highlights the need for automated

solutions that can infer and generate accurate dependency lists, thereby enhancing

the reliability and portability of Python software.

These two research problems—resolving dependency conflicts and generating miss-

ing configuration files—are deeply interconnected, as both stem from the complexities

of managing dependencies in Python projects. Addressing them requires a holistic ap-

proach that not only resolves conflicts but also ensures that dependency specifications

are complete and accurate. In the following sections, we present innovative solutions

that leverage advanced computational techniques to tackle these challenges, offering a

unified framework for efficient and reliable package management.

1.3 Addressing the Research Problems

In the Python ecosystem, package management tools like pip are fundamental for

developers seeking to install third-party libraries efficiently. Pip, the standard package

installer for Python, simplifies the process by downloading and installing packages

8

1. INTRODUCTION

from the Python Package Index (PyPI).34 It resolves dependency chains, ensuring that

required libraries are installed in compatible versions, which reduces the manual effort

needed for managing project dependencies. However, pip has notable limitations,

particularly when it comes to resolving dependency conflicts efficiently. It is also not

able to generate configuration files.

1.3.1 Capabilities and Limitations of Pip

Historically, pip’s legacy dependency resolution algorithm35 frequently failed in such

cases, resulting in installation errors. Since version 20.3, pip has adopted a backtracking-

based resolver36 to improve conflict handling. This strategy downloads multiple

versions of a package, beginning with the latest version and retrieving its dependency

list. It then checks for conflicts and backtracks to previous versions until a compatible

version is found. However, pip does not know in advance how many versions it must

try or the computational effort required, which can significantly increase resolution

times, especially for deeply nested dependencies. Additionally, if a package depends on

a specific Python version which is not present in the environment, pip halts without

offering a solution, forcing developers to intervene manually.

Another key limitation is that pip cannot generate or update configuration files like

requirements.txt, setup.py, or pyproject.toml. These files are vital for documenting

dependencies and ensuring reproducible environments, yet developers must create and

maintain them manually—a process prone to errors, especially in large or dynamic

projects.

1.3.2 Alternative Package Managers

Other tools, such as Conda,37 provide alternative approaches by managing both

Python packages and their dependencies within isolated environments. Conda employs

a satisfiability (SAT) solver for dependency resolution, offering more robust conflict

34https://pypi.org/
35https://debuglab.net/2024/01/04/python-pip-error-legacy-install-failure/
36https://pip.pypa.io/en/stable/topics/dependency-resolution/
37https://docs.conda.io/projects/conda/en/stable/

9

https://pypi.org/
https://debuglab.net/2024/01/04/python-pip-error-legacy-install-failure/
https://pip.pypa.io/en/stable/topics/dependency-resolution/
https://docs.conda.io/projects/conda/en/stable/

1. INTRODUCTION

handling than pip’s earlier methods. However, its reliance on multiple solver calls can

hinder scalability. The dependency resolution in Conda is powered by a SAT solver,

this process involves multiple invocations of a SAT solver to satisfy several optimization

criteria:38 minimizing removals of already-installed packages, maximizing versions of

explicitly requested packages, minimizing optional package installs, respecting channel

priorities, prioritizing packages with fewer “track features,” and using timestamps as

a tiebreaker when priorities are otherwise equal. Each iteration, or refinement, adjusts

constraints to better align with these goals or resolve conflicts, requiring the solver to

restart. Like pip, Conda also does not generate configuration files, leaving this aspect

of package management unresolved.

1.3.3 Existing Techniques in the Literature

Existing tools for resolving Python package dependency conflicts and version in-

compatibilities can be categorized into three distinct approaches: analyzing source

code, examining configuration files, and reviewing runtime error logs. While prior

studies [12, 46] have explored installation incompatibilities, these techniques often

lack the comprehensiveness needed for the Python ecosystem.

1. Source Code Analysis: Tools like PyEGo [52] and SnifferDog [49] analyze source

code to infer dependencies by parsing import statements and project metadata.

This method identifies direct dependencies and Python version dependencies.

2. Configuration File Examination: Approaches such as pip [41], smartPip [47]

and DockerizeMe [26] parse configuration files (e.g., requirements.txt, setup.py)

to extract dependency details. However, their effectiveness depends on the

availability of accurate and complete configuration files, which are frequently

absent or outdated in practice.

3. Runtime Error Log Review: Tools like PyDFix [37] and ReadPyE [10] examine

runtime error logs to diagnose installation failures and propose fixes. While this

38https://www.anaconda.com/blog/understanding-and-improving-condas-performance

10

https://www.anaconda.com/blog/understanding-and-improving-condas-performance

1. INTRODUCTION

can aid debugging, it is a reactive strategy that requires errors to occur first,

rather than preventing conflicts proactively.

These tools typically rely on heuristics or rule-based methods, which are inade-

quate for handling intricate conflicts involving nested dependencies or Python version

incompatibilities. Moreover, they do not address the generation of configuration files,

leaving a significant gap in ensuring reproducibility.

1.3.4 Proposed Solutions: SMTpip and Our Automatic Con-

figuration Generator

To tackle the first research problem—package dependency conflicts and Python version

incompatibilities—this thesis introduces SMTpip, a package installation program

based on a “Satisfiability Modulo Theories” (SMT) encoding. SMTpip constructs a

dependency knowledge graph from PyPI metadata, source code, and configuration files,

integrating it with a constraint-solving engine. This engine translates dependencies,

version constraints, and user requirements into SMT expressions, which an SMT solver

resolves to create a conflict-free installation environment. Unlike heuristic-based tools,

SMTpip efficiently manages complex dependency graphs and ensures compatibility

across all constraints.

For the second problem—generating missing requirements.txt files—we propose a

generator tool that automates this process. Leveraging the same dependency knowledge

graph as SMTpip, the tool parses import statements from source code, collects project

metadata (e.g., release dates), and queries the graph to determine compatible library

versions. It produces a candidate requirements.txt file with version ranges, which

SMTpip refines to guarantee compatibility and resolve potential conflicts.

Together, SMTpip and our automatic configuration generation tool form a unified

framework addressing both research problems. By resolving dependency conflicts and

automating configuration file generation, this approach enhances the reliability, repro-

ducibility, and efficiency of Python package management, overcoming the limitations

of existing tools and package managers like pip and Conda.

11

1. INTRODUCTION

1.4 Contributions of the Thesis

This thesis advances the field of Python package management through the following

contributions:

• A public dataset of 1,359 dependency conflicts collected from open-source Jupyter

Notebook projects on GitHub,39 addressing the lack of real-world benchmarks.

• A novel SMT-driven approach for resolving dependency conflicts, combining a

dependency knowledge graph with logical constraint solving to ensure conflict-

free installations.

• A tool, called SMTpip, implementing the proposed approach to provide an

efficient, automated solution for package management.

• An extensive empirical evaluation of SMTpip against state-of-the-art techniques

for dependency conflict resolution using four different datasets.

• An automated approach for generating missing configuration files leveraging the

dependency knowledge graph and SMTpip to produce conflict-free dependency

specifications.

• An evaluation of the proposed approach for generating missing configuration

files against state-of-the-art techniques using diverse projects.

1.5 Outline of the Thesis

This chapter (Chapter 1, Introduction) introduces the research problems associated

with Python package installation, specifically third-party package dependency con-

flicts, Python version incompatibilities, and the challenges of missing or incomplete

configuration files. It also provides a brief overview of our research contributions,

including the development of SMTpip, a novel tool for dependency resolution, and an

automated approach for generating missing requirements.txt files.

39https://github.com/

12

https://github.com/

1. INTRODUCTION

Chapter 2 reviews package management in Python and other ecosystems, focus-

ing on requirements.txt and tools like pip and Conda. It discusses dependency

constraints, satisfiability solving, and prior work on dependency resolution using

SAT/SMT solvers.

Chapter 3 presents SMTpip, which resolves dependency conflicts in Python projects

using an SMT-driven approach with a dependency knowledge graph. It leverages a

dataset of 1,359 Jupyter Notebook projects and demonstrates superior performance

over pip, Conda, smartPip, and PyEGo across four datasets.

Chapter 4 focuses on an automated approach for generating requirements.txt files

for Python projects lacking dependency specifications. It addresses the challenge of

identifying libraries and their compatible versions by parsing project code, offering a

solution to enhance environment reproducibility and streamline package management.

Chapter 5 summarizes the key findings and contributions of the thesis. It includes

a comprehensive summary of the research in Section 5.1 and discusses potential

future research directions in Section 5.2, outlining opportunities to further advance

dependency management in the Python ecosystem.

Appendix A concludes the thesis as the final part, presenting sample SMT instances

generated by different tools. Titled Sample SMT Instances, this appendix provides

concrete examples of the SMT encodings used for dependency resolution, illustrating

the practical application of the techniques discussed in Chapter 3.

13

CHAPTER 2

Background and Related Work

This chapter provides the foundational knowledge and related work pertinent to this

thesis, focusing on Python package installation, its associated constraints, and the

broader context of package management across software ecosystems. Section 2.1 intro-

duces package management, detailing package managers and repositories for various

ecosystems. Section 2.2 describes configuration files used to specify dependencies

across different ecosystems, with a real-world example of a Python requirements.txt

file. Section 2.3 discusses the Python package installation process, specifically through

tools like pip and Conda. Section 2.4 outlines dependency constraints commonly

used in Python package configuration files. Finally, Section 2.5 explains satisfiability

solving, a key technique underpinning the solutions proposed in this thesis. Following

that, we discuss related works in Section 2.6.

2.1 Package Management

Package management is a critical process in software development involving the ac-

quisition, installation, and maintenance of software libraries and their dependencies.

A package is a bundled collection of code, typically including libraries, modules, or

frameworks, designed to provide specific functionalities that developers can integrate

into their projects. Package management systems streamline this process by automat-

ing the retrieval, installation, and updating of packages, ensuring compatibility and

resolving dependencies—other packages required for a given package to function cor-

rectly. These systems rely on package managers and package repositories, which vary

14

2. BACKGROUND AND RELATED WORK

across programming ecosystems. Below, we outline the primary package managers

and repositories for several major ecosystems: Python, Java, JavaScript, and R.

Python: The Python ecosystem uses pip as its default package manager, which

retrieves packages from the Python Package Index (PyPI), a repository hosting over 6

million package releases as of 2025 [43]. PyPI contains libraries like numpy, pandas,

and tensorflow, catering to diverse applications such as data science and machine

learning. An alternative manager, Conda, supports Python and other languages,

sourcing packages from the Anaconda repository, which includes over 7,500 packages

but is smaller than PyPI [13]. Conda is particularly popular for managing scientific

computing environments.

Java: Java developers rely on Maven and Gradle as their primary package managers.

Maven uses the Maven Central Repository,1 a vast collection of Java libraries and

frameworks, such as Spring and Hibernate, with standardized metadata for dependency

resolution. Gradle, often used for its flexibility in Android development, also accesses

Maven Central but supports additional repositories like JCenter. Both managers

handle dependencies defined in configuration files (e.g., pom.xml for Maven).

JavaScript: The JavaScript ecosystem employs npm (Node Package Manager) and

yarn as package managers, with npm being the default. The npm registry,2 the largest

package repository globally, hosts millions of packages, including frameworks like React

and Angular. Yarn, an alternative, offers faster installations and deterministic depen-

dency resolution, accessing the same npm registry. These tools manage dependencies

specified in package.json files.

R: In the R ecosystem, CRAN (Comprehensive R Archive Network) serves as both

the primary package repository and the default package manager through R’s built-in

functions like install.packages(). CRAN3 hosts over 20,000 packages, such as ggplot2

for data visualization and dplyr for data manipulation. The Bioconductor repository

complements CRAN for bioinformatics packages, managed similarly via R commands.

Each ecosystem’s package manager and repository are tailored to its language’s

1https://central.sonatype.com/
2https://docs.npmjs.com/cli/v8/using-npm/package-spec
3https://cran.r-project.org/

15

https://central.sonatype.com/
https://docs.npmjs.com/cli/v8/using-npm/package-spec
https://cran.r-project.org/

2. BACKGROUND AND RELATED WORK

conventions and its community’s needs, but all share the goal of simplifying dependency

management and ensuring reproducible builds. However, challenges like dependency

conflicts and version incompatibilities persist across ecosystems, motivating the need

for advanced solutions like those proposed in this thesis.

2.2 Configuration Files

Configuration files are essential artifacts in software projects, used to specify depen-

dencies, their versions, and other metadata required for package installation and

project execution. These files provide a structured way to declare the libraries a

project relies on, ensuring consistency across different environments. The format

and purpose of configuration files vary across programming ecosystems, reflecting the

unique requirements of each language and its package management system. Below,

we describe the primary configuration files used in Python, Java, JavaScript, and R,

followed by a real-world example of a Python requirements.txt file.

Python: Python projects commonly use two configuration files: requirements.txt

and setup.py. The requirements.txt file lists dependencies with version constraints,

enabling reproducible installations via pip. For example, a line like numpy ≥ 1.20.0

indicates that the project requires numpy version 1.20.0 or higher. The setup.py file,

used for packaging and distribution, defines metadata (e.g., package name, version)

and dependencies, often for projects published to PyPI. Modern Python projects may

also use pyproject.toml for build configuration, as seen in libraries like seaborn.4

Java: In Java, Maven projects use pom.xml (Project Object Model) to de-

clare dependencies, repositories, and build settings. This XML file specifies li-

braries using coordinates, such as org.springframework:spring-core:5.3.9, where

org.springframework is the group ID (identifying the organization or project),

spring-core is the artifact ID (naming the library), and 5.3.9 is the version. Gra-

dle projects use build.gradle, a Groovy- or Kotlin-based file, to define similar

information with a more concise syntax.

4https://github.com/mwaskom/seaborn/blob/master/pyproject.toml

16

https://github.com/mwaskom/seaborn/blob/master/pyproject.toml

2. BACKGROUND AND RELATED WORK

JavaScript: JavaScript projects rely on package.json, a JSON file that lists de-

pendencies, scripts, and metadata. Dependencies are specified under dependencies

(for production) or devDependencies (for development), with version ranges like

"react": "^16.8.0" indicating compatibility with React versions starting from 16.8.0.

R: R projects typically use DESCRIPTION files for package metadata and de-

pendencies, specifying required R packages and their versions (e.g., Imports: ggplot2

(≥ 3.3.0)). For non-package projects, scripts may use renv.lock files with the renv

package to capture a snapshot of dependencies, similar to Python’s requirements.txt.

Configuration files like these are pivotal for dependency management, but their

absence or incorrect specification can lead to installation failures, underscoring the

need for automated solutions as explored in this thesis.

2.3 Python Package Installation

The installation of Python packages is facilitated by tools like pip and Conda, each

offering distinct approaches to managing dependencies and resolving conflicts. The tool

pip, the default package installer for Python, fetches packages and their dependencies

directly from the Python Package Index (PyPI). Its installation process follows four

main stages: identifying dependencies, resolving them, building wheels,5 and installing

the packages.6 Prior to version 20.3,7 pip employed a legacy top-down resolution

strategy, which installed dependencies level by level and followed a “latest version”

principle. However, this often led to conflicts and installation failures. Since version

20.3, pip has adopted a backtracking-based resolution strategy, iteratively verifying

all dependencies and backtracking to alternative versions if conflicts arise. This shift

has significantly improved its ability to handle version mismatches.

In contrast, Conda, developed by Anaconda, Inc., is both a package and environ-

ment management tool supporting not only Python but also other languages like C,

5https://wheel.readthedocs.io/en/stable/
6https://pip.pypa.io/en/latest/cli/pip install/
7https://pip.pypa.io/en/latest/user guide/#changes-to-the-pip-dependency-

resolver-in-20-3-2020

17

https://wheel.readthedocs.io/en/stable/
https://pip.pypa.io/en/latest/cli/pip_install/
https://pip.pypa.io/en/latest/user_guide/#changes-to-the-pip-dependency-resolver-in-20-3-2020
https://pip.pypa.io/en/latest/user_guide/#changes-to-the-pip-dependency-resolver-in-20-3-2020

2. BACKGROUND AND RELATED WORK

C++, and R. Conda retrieves and caches package metadata locally. Conda’s depen-

dency resolution uses a SAT solver, invoked multiple times to optimize criteria such as

minimizing package removals, maximizing requested package versions, and respecting

channel priorities.8 The solver iteratively refines constraints to optimize these goals

and resolve conflicts. This iterative refinement, while thorough, significantly increases

runtime, making Conda slower compared to more streamlined alternatives. Moreover,

since its Python-specific package collection (more than 7,500 packages)9 is smaller than

PyPI’s, Anaconda recommends combining Conda and pip for package management.10

2.4 Dependency Constraints

We describe the constraints commonly used in the configuration files of Python

packages. An example of the declarations for these constraints in the library seaborn

version 0.13.2 is shown in Figure 2.4.1.

Package version constraints specify the version requirements for third-party de-

pendencies of a client package release. When installing the package, pip resolves and

installs dependencies satisfying these constraints. The version constraints [40] are

defined using comparison operators:

• ~= : Specifies a compatible version range, with the meaning that ~=V.N is

equivalent to >= V.N, == V.*. The * in == V.* is a wildcard that matches any

patch version for the major version V. For example, == 1.* accepts versions like

1.0, 1.1, 1.2, etc., as long as the major version is 1.

• == : Version equality.

• != : Version not equal.

• <=, >= : Inclusive ordered comparison.

• <, > : Exclusive ordered comparison.

8https://www.anaconda.com/blog/understanding-and-improving-condas-performance
9https://docs.conda.io/projects/conda/en/latest/glossary.html

10https://www.anaconda.com/blog/understanding-conda-and-pip

18

https://www.anaconda.com/blog/understanding-and-improving-condas-performance
https://docs.conda.io/projects/conda/en/latest/glossary.html
https://www.anaconda.com/blog/understanding-conda-and-pip

2. BACKGROUND AND RELATED WORK

requires-python>=3.8
 numpy>=1.20, !=1.24.0
 pandas>=1.2
 matplotlib>=3.4, !=3.6.1

(0.13.2)

Package Version Constraint Python Version Constraint

Stated Dependency Constraints

Fig. 2.4.1: An example of the declaration of two types of constraints in library the
seaborn.

The Python version constraint defines the compatible Python versions for a package

release on PyPI. A package can only be installed if the Python version of the local

environment satisfies this constraint. Otherwise, an installation error will occur.

2.5 Satisfiability Solving

The Boolean Satisfiability Problem (SAT) involves determining if there exists a way to

assign truth values (true or false) to the variables in a Boolean expression such that the

entire expression evaluates to true. The expression is typically given in Conjunctive

Normal Form (CNF), which is a conjunction (AND, ∧) of clauses. Each clause is a

disjunction (OR, ∨) of literals, where literals are either variables (e.g., a) or their

negations (e.g., ¬a). The notation a → b is shorthand for the clause ¬a ∨ b.

For example, the expression

(a → ¬b) ∧ (a → c) ∧ (¬c → ¬b)

consists of the three clauses (¬a∨¬b), (¬a∨c), and (c∨¬b). Each clause is a disjunction

of literals, and the entire expression is a conjunction of those clauses. The goal is to

assign truth values to the variables a, b, and c such that the expression evaluates to

true, thereby solving the SAT problem. If no truth assignment exists, the problem

is said to be unsatisfiable or inconsistent. SAT solving is an NP-complete problem,

and no known algorithms for SAT are efficient in the worst case. Despite this, in

practice, a variety of problems can effectively be solved using SAT solvers [8]. Similarly,

SMT (Satisfiability Modulo Theories) solvers extend SAT solving by incorporating

additional theories, such as arithmetic and bit-vectors, enabling them to handle more

19

2. BACKGROUND AND RELATED WORK

complex constraints.

2.5.1 Satisfiability Solvers

SAT solvers are specialized tools that address the Boolean Satisfiability problem by

finding truth value assignments for variables in a Boolean formula that is typically

expressed in Conjunctive Normal Form (CNF). They employ advanced algorithms

like the Davis–Putnam–Logemann–Loveland (DPLL) procedure [16] and conflict-

driven clause learning (CDCL) [36] to efficiently navigate the solution space. Modern

implementations, such as MapleSAT [31] and CaDiCaL [5], excel in applications like

circuit verification and scheduling, despite the NP-complete nature of SAT. These

solvers systematically resolve conflicts and learn from inconsistencies, making them

highly effective for practical problem instances [6].

SAT modulo theories (SMT) solvers extend SAT solvers by handling formulas

combining Boolean logic with constraints from mathematical theories, such as linear

arithmetic, bit-vectors, arrays, or strings. For instance, an SMT solver can determine

whether a formula like (x ≥ 3)∧ (x+ y = 5)∧ (y > 0) is satisfiable, where x and y are

real numbers, by integrating Boolean satisfiability with arithmetic reasoning. Popular

SMT solvers, such as Z3 [17] and cvc5 [2], combine a SAT solver for the Boolean

structure of the formula with specialized theory solvers for non-Boolean constraints.

Additionally, SMT solvers can incorporate optimization objectives, such as minimizing

or maximizing a variable (e.g., finding the smallest x that satisfies the formula),

making them suitable for tasks requiring optimal solutions [17].

The distinctions between SAT and SMT solvers are significant, particularly in

their scope, capabilities, and applications [3]:

• Expressiveness: SAT solvers are restricted to propositional logic, handling only

Boolean variables and their combinations. SMT solvers, however, support a

wider range of constraints by incorporating domain-specific theories, enabling

them to model complex relationships, such as numerical inequalities or data

structure operations.

20

2. BACKGROUND AND RELATED WORK

• Optimization Objectives: SAT solvers are designed to determine whether a

given formula is satisfiable, producing one of two outcomes: either a valid

assignment that satisfies the formula, or a declaration that the formula is

unsatisfiable. Their functionality is limited to this binary result—they natively

do not support an objective function. In contrast, SMT solvers extend beyond

mere satisfiability by supporting optimization objectives. This capability allows

them to not only find a satisfying solution but also identify an optimal one,

such as selecting the latest compatible package version in dependency resolution

scenarios. An example of SMT solvers’ optimization capabilities is their support

for soft constraints. Unlike hard constraints, which must be satisfied for a

solution to be valid, soft constraints are optional—goals the solver attempts to

meet but can violate if necessary. Each soft constraint is assigned a weight, a

numerical value reflecting its relative importance. The solver’s objective is to

maximize the weighted sum of satisfied soft constraints, balancing trade-offs to

achieve an optimal outcome. In our specific approach to dependency resolution,

we leverage this feature by formulating the problem as a weighted MaxSMT

problem [7]. Here, hard constraints enforce essential requirements, such as

ensuring all dependencies are correctly satisfied, while soft constraints guide

the solver toward preferred outcomes—for instance, prioritizing newer package

versions or avoiding unnecessary installations. During the solving process, the

Z3 solver [17] detects conflicts between the soft and hard constraints. When a

set of soft constraints is detected to be in conflict with the hard constraints, Z3

replaces it with a smaller set of soft constraints. This refinement continues until

a solution is found that satisfies all hard constraints and the updated set of soft

constraints, and this solution will maximize the weighted sum of the satisfied

soft constraints.

• Complexity: SAT solvers deal with purely Boolean formulas, which are compu-

tationally challenging (NP-complete) but simpler than the mixed Boolean and

theory-based constraints of SMT solvers. SMT problems may be undecidable in

21

2. BACKGROUND AND RELATED WORK

certain theories, necessitating advanced heuristics and theory-specific decision

procedures.

• Applications: SAT solvers excel in problems reducible to Boolean constraints,

such as hardware verification and combinatorial optimization. SMT solvers, with

their richer constraint modeling and optimization capabilities, are preferred for

tasks like program verification, symbolic execution, and dependency resolution,

where constraints are modeled using variable types such as Int, Bool, or Real, and

solved within logics like QF LIA ((Quantifier-Free Linear Integer Arithmetic) or

AUFLIA (Arrays, Uninterpreted Functions, Linear Integers with quantifiers).11

• Implementation: SAT solvers rely on algorithms like CDCL to find satisfying

assignments, while SMT solvers integrate a SAT solver for the Boolean skeleton

with theory solvers for non-Boolean constraints, adding complexity but enhancing

versatility.

In this thesis, SMT solvers are central to the proposed SMTpip tool, leveraging

their ability to encode complex dependency constraints (e.g., version ranges, Python

interpreter compatibility) and optimize solutions (e.g., selecting the latest compatible

package versions). The distinction between SAT and SMT solvers, particularly the

optimization capabilities of SMT solvers, underscores why SMT is well-suited for

addressing the dependency resolution challenges explored in this work.

2.6 Related Work

Dependency management in software engineering is complex due to version conflicts

and transitive dependencies, which are indirect requirements of a package’s dependen-

cies. Traditional package managers like pip, which uses backtracking, systematically

evaluates versions to resolve dependencies but require downloading multiple versions

of packages in order to find a set of compatible package versions. Conda, relying on

the Anaconda repository, faces challenges due to limited package availability compared

11https://smt-lib.org/logics.shtml

22

https://smt-lib.org/logics.shtml

2. BACKGROUND AND RELATED WORK

to PyPI. Recent research, described below, addresses these issues through innova-

tive approaches to dependency conflict resolution, environment reproducibility, and

build-failure repair.

2.6.1 Dependency Conflict Resolution

Several studies have proposed methods to address dependency conflicts in Python

projects. Wang et al. introduced smartPip [47], which resolves Python package depen-

dencies by leveraging global constraint solving to encode package version requirements

as SMT expressions. Its contribution lies in resolving dependency conflicts through

the use of package metadata. Similarly, Ye et al. [52] and Cheng et al. [11] developed

heuristic-driven dependency inference systems using knowledge graphs, which represent

dependencies as nodes and edges. These systems infer dependencies from project

source code.

Mukherjee et al. [37] and Cao et al. [9] employ reactive strategies, using pip to

attempt installations and parsing error messages to resolve dependency conflicts, but

these approaches incur high runtime overhead and do not guarantee a compatible

solution for all cases due to limitations in error parsing. Tools like DockerizeMe [26]

analyzes a Python snippet’s code, PyPI package details, and GitHub project setups

to identify and include all necessary packages, creating an environment with the latest

versions to make the snippet run. V2 [27] enhances this by detecting and fixing errors

caused by outdated package versions, using a guided search informed by error messages

and a database of past project failures to select compatible versions that restore the

snippet’s functionality. Other approaches prioritize constraint relaxation. Zhu et al.’s

LooCo [48] automatically loosens version constraints to broaden solution spaces, but

this risks unstable or insecure configurations. Here, instability refers to potential

runtime errors or inconsistent behavior due to untested or incompatible package

versions, while insecurity arises from the possible inclusion of outdated versions with

known vulnerabilities. Conversely, InstSimulator [54] detects module conflicts but

does not address dependency-level incompatibilities.

23

2. BACKGROUND AND RELATED WORK

2.6.2 Environment Reproducibility and Build-Failure Repair

Reproducing executable environments remains a persistent challenge. Horton et

al. [25] found that 38% of GitHub Python snippets fail due to dependency issues,

highlighting the need for robust dependency management. Tools like Gistable [25]

and SnifferDog [49] address post-hoc environment reconstruction: SnifferDog infers

dependencies from Jupyter notebooks, while RELANCER [53] updates deprecated

APIs. These tools operate reactively, addressing issues after failures occur.

Build failures caused by dependency conflicts have spurred repair-focused tools.

Watchman [50] monitors dependency drift and alerts developers, while PyDFix [37]

automates fixes for incompatible dependencies. However, these methods often modify

project configurations, potentially introducing instability. In the Java ecosystem,

Decca [51] and LibHarmo [28] harmonize library versions—selecting compatible ver-

sions to ensure consistency—using historical data and API analysis.

2.6.3 SAT and SMT Solvers in Software Engineering

Satisfiability (SAT) solvers, which determine whether a Boolean formula can be

satisfied, and Satisfiability Modulo Theories (SMT) solvers, which extend SAT to

handle constraints from mathematical theories like linear arithmetic, have become

powerful tools in software engineering. Beyond dependency management, SAT solvers

are applied in formal verification of hardware and software, model checking to verify

system specifications, and test suite minimization to optimize regression testing [6].

For example, Lopez et al. [33] used SAT solvers to minimize test suites, reducing

testing overhead while maintaining coverage.

In dependency management, Cox [15] demonstrated that the package version selec-

tion problem, often termed “dependency hell,” is NP-complete but can be effectively

addressed using SAT solvers by modeling version constraints as Boolean satisfiability

problems. This approach has been adopted by package managers like Conda [14],

which uses SAT solvers to manage dependencies across its extensive ecosystem, and

Mamba [34], a faster alternative. Similarly, Nimble [39] employs SAT-based resolution

24

2. BACKGROUND AND RELATED WORK

for multiversioning. Wang et al. [1] applied SAT solvers to dependency harmonization,

selecting compatible dependency versions. ReadPyE by Cheng et al. [10] integrates a

pre-built knowledge graph with the Z3 SMT solver to analyze error log files, generate

constraints, and iteratively optimize solutions until the program executes successfully.

Our work advances these efforts by leveraging SMT solvers, which enable optimiza-

tion objectives not natively possible with SAT solvers. Unlike SAT-based tools, which

are limited to determining satisfiability of Boolean constraints, our SMTpip tool treats

dependency resolution as an optimization problem, using weighted max SMT [7] to

select the latest compatible package versions. We encode Python’s version constraints

(e.g., numpy ≥ 1.21, < 2.0) as SMT formulae, leveraging the pySMT library [23],

which provides a Python interface to SMT solvers like Z3 [17].

25

CHAPTER 3

Dependency Conflict Resolution

3.1 Introduction

Sharing and reusing code have become standard practices in contemporary software

development. To support the installation and management of third-party packages,

modern software ecosystems provide package management tools and a central repository

storing third-party packages. Python has gained significant popularity in recent years,

driven in part by advancements in machine learning and data analysis [20, 29]. As of

now, there have been more than 6 million package releases in the official repository,

PyPI (Python Package Index) [43]. However, users face installation problem due

to various factors, including third-party package dependency conflicts [50, 47] and

Python version incompatibilities [26, 52]. Many software systems depend on third-party

packages to reuse their functionalities instead of reinventing everything from scratch.

As a result, package installations become more complicated due to the presence of

numerous dependencies [32, 21, 45]. Beyond the relationships between packages,

conflicts in third-party packages can lead to issues in resolving dependencies between

libraries and incompatibilities with specific Python versions [1, 18, 19]. Recent studies

show that resolving these dependency conflicts during package installations requires

significant time and collaboration between upstream and downstream developers [50,

30].

Figure 3.1.1 shows an example of third party library dependency conflict. In

issue #1 from the open-source project fflpy [22], a dependency conflict arises when a

client requests library click == 6.6 while also requiring library pip-tools ≥ 4.0.0. The

26

3. DEPENDENCY CONFLICT RESOLUTION

pip-tools

== 6.6

>= 8.0
7.4.1, 7.4.0..... 4.4.1

4.4.0, 4.3.0,

click
no transitive dependency

on click >= 8.0

click

version conflict with click == 6.6

Project

>= 4.0.0

versions of
pip-tools

Direct Dependency Transitive Dependency

Fig. 3.1.1: An example of a third party library dependency conflict between direct
and transitive dependencies.

Fig. 3.1.2: Backtracking in pip’s dependency resolution by evaluating multiple versions
of pip-tools to find compatibility with click == 6.6. It initially downloads pip-tools 7.4.1
but backtracks through versions 7.4.0, 7.3.0, and 7.2.0, finally selecting pip-tools 4.4.0
as the compatible version. The downloads for each attempted version are shown
during this process.

27

3. DEPENDENCY CONFLICT RESOLUTION

INFO: pip is looking at multiple versions of tensorflow to determine which version is compatible with other requirements.
ERROR: Could not find a version that satisfies the requirement numpy>=1.20.0 (from tensorflow==2.10.0) (from versions: none)
ERROR: No matching distribution found for numpy>=1.20.0.

NumPy(1.26.0)
NumPy(1.25.0)

.......................

Python 3.6.5
incompatibleProject

==2.10.0

Direct Dependency Transitive Dependency

≥ 1.20.0 >=3.7

Fig. 3.1.3: An example of installation failure due to Python version incompatibilities.
The project requires TensorFlow 2.10.0, which depends on NumPy ≥ 1.20.0. However,
NumPy ≥ 1.20.0 is incompatible with Python 3.6.5, as it requires Python ≥ 3.7.0.
This results in an installation failure, as indicated by the error messages in the box.

conflict occurs because the latest version of pip-tools (7.4.1) has a direct dependency

on click ≥ 8.0. This introduces a dependency conflict with the project’s explicit

requirement on click == 6.6. In this scenario, pip’s backtracking strategy [41] starts

from the latest version of pip-tools (7.4.1) as shown in Figure 3.1.2. It downloads the

metadata and checks for conflicts, and after finding the conflict with click == 6.6, pip

backtracks to the previous version, 7.4.0. It repeats the process until a non-conflicting

version is found (in this case 4.4.0). However, pip does not know how many versions

it will need to try or how much computation is required.

Additionally, Figure 3.1.3 illustrates a Python installation failure caused by version

constraints. Consider a user attempting to install TensorFlow version 2.10.0 under

Python 3.6.5. According to its dependency specifications, TensorFlow == 2.10.0

requires numpy ≥ 1.20.0. However, all versions of numpy ≥ 1.20.0 mandate Python

version ≥ 3.7.0, as specified in its configuration files.1 Consequently, pip reports an

installation error due to this unresolved dependency chain. This error is particu-

larly opaque to users because neither the initial installation command (pip install

tensorflow == 2.10.0) nor pip’s error message explicitly surface the root cause: the

indirect Python version requirement imposed by numpy. To diagnose the issue, users

must manually trace dependency chains or consult external documentation (e.g.,

GitHub repositories), significantly increasing troubleshooting effort. Although some

studies have attempted to address these installation incompatibilities [12, 46], limited

1https://github.com/numpy/numpy/blob/main/pyproject.toml

28

https://github.com/numpy/numpy/blob/main/pyproject.toml

3. DEPENDENCY CONFLICT RESOLUTION

research has been conducted to understand and analyze these issues within the Python

ecosystem. Existing techniques [47, 52, 26] focus mainly on parsing third-party depen-

dencies during installations, but fail to account for the impact of local settings and

user-specific requirements. Most of them apply heuristics or rule-based approaches to

resolve dependency conflicts. As a result, these techniques cannot help users resolve

installation errors effectively.

Existing tools for Python dependency resolution, such as PyEGo [52] and smart-

Pip [47], face limitations. PyEGo, which infers dependencies via source code analysis,

generates SMT expressions with a non-CNF (Conjunctive Normal Form, a conjunction

of disjunctions) structure and multiple satisfiability checks, increasing solving overhead.

smartPip, which processes configuration files to generate SMT expressions, incurs

high computational costs in its SMT expression generation phase, also its non-CNF

encoding structure adds significant solver overhead.

SMTpip addresses these shortcomings by formulating dependency resolution as

an optimization problem using SMT solvers. It employs a dependency knowledge

graph, derived from PyPI metadata, source code, and configuration files, to model

package relationships, and encodes version constraints (e.g., numpy ≥ 1.21, < 2.0)

as SMT expressions via the pySMT library [23] with Z3 [17]. By solving weighted

max SMT problems [7], SMTpip prioritizes the latest compatible package versions.

Evaluated on four datasets—Watchman [50], HG2.9K [25], SD [52], and a new dataset

of 1,359 Jupyter Notebook projects from GitHub—SMTpip successfully resolves all

consistent dependency cases (where compatible package versions exist), and identifies

all inconsistent cases (cases with no solutions). It achieves significant performance

gains, running 39 times faster than pip, 37 times faster than Conda, 3.2 times faster

than smartPip, and 4 times faster than PyEGo.

3.2 SMTpip: SMT-driven approach

Figure 3.2.1 shows the overview of our proposed approach, SMTpip. The approach

consists of two parts: knowledge graph construction and dependency resolution.

29

3. DEPENDENCY CONFLICT RESOLUTION

Direct
Dependency

Transitive
Dependency

Python
Dependency

Expression 1
∧

Expression 2
∧

.......
Expression n

successful
Proof for

unsuccessful

Encoding

Optimization
Function

Dependency Conflict Solving Dependency Conflict

Knowledge Graph

Python Version Conflict

Library Dependency Conflict

Install Script pip install

yes

no

SMT solving

SMT Expression

User

Configuration
File

Fig. 3.2.1: SMTpip architecture

This section focuses primarily on constructing the dependency knowledge graph by

extracting Python version constraints and dependency version constraints from a

central repository of package information. Additionally, it details the encoding of

these dependency constraints into SMT expressions.

3.2.1 Knowledge Graph Construction

Since pip with the backtracking strategy is required to iteratively download one

candidate version of a concerned library when a dependency conflict occurs, it becomes

inefficient when the number and size of iteratively downloaded libraries are large, as

discussed in Section 2.3. This is why we construct a knowledge graph in advance. This

section describes how the dependency data is collected and modeled into a knowledge

graph.

Data Collection: Figure 3.2.2 illustrates the data collection procedure. PyPI, as

a central repository for third-party libraries in the Python language, is extensively used

in most Python project developments. To collect the necessary data, we implemented a

program that retrieves the dependency data from PyPI by collecting the configuration

files of each library. At the time of data collection, there were around 6 million

releases and nearly half a million packages available on PyPI. The entire process of

downloading this information took 10 days.

Dependency Analysis: Once all Python libraries were collected from PyPI, we

proceeded to analyze the dependency configuration files for each package. This step

involved extracting the version constraints for the dependency libraries as well as the

compatible Python version. Section 2.4 outlines how libraries declare their dependency

30

3. DEPENDENCY CONFLICT RESOLUTION

Web
Crawling

Dependency
Analysis

PyPI
Metadata

Dependency
Data

Knowledge
Graph

A

B

DC

Fig. 3.2.2: Data collection process.

A B

v2

v1

v2

v3

v1

package

version

package_version

dependency

python _version >=3.8

release_date=Feb 18, 2020

Fig. 3.2.3: The knowledge graph illustrates the version-specific dependencies between
libraries A and B. Library A has two versions, v1 and v2, while library B has three
versions, v1, v2, and v3. Directed edges represent dependency relationships: A v1
depends on B v1, and A v2 depends on B v3. Each version node is annotated with
two properties: its release date and Python version constraints.

constraints in their configuration files.

Knowledge Graph Representation of Package Dependencies: These depen-

dency constraints were modeled into a knowledge graph to represent the relationships

between packages, their versions, and respective dependencies, as illustrated in Fig-

ure 3.2.3. This approach allows us to visualize and analyze complex dependency

structures.

The knowledge graph consists of two types of nodes:

• Package node: This node represents individual packages.

• Version node: This node represents specific versions of a package. Each version

node has two properties: “python version”, which specifies the required Python

31

3. DEPENDENCY CONFLICT RESOLUTION

version for that particular package version, and “release date”, which indicates

the date when the version was released on PyPI.

Additionally, the graph contains two types of edges:

• Versioning edge: This edge connects a package node to its respective version

nodes, establishing the relationship between a package and the available versions.

• Dependency edge: This edge connects the version nodes to the version nodes

of the dependent packages, indicating the dependencies between different versions

of the packages.

Together, these components form a comprehensive structure that captures the hier-

archical relationships and dependencies within the Python package ecosystem. Stored

in JSON format with a size of 122 MB, this knowledge graph enables efficient analysis

of third-party package dependency conflicts and Python version incompatibilities while

also supporting their resolution.

Knowledge Graph Update: Downloading the entire PyPI repository from

scratch every time is neither practical nor efficient, as it would be unable to keep

up with continuous updates of PyPI. To address this challenge, we implemented

an updater program that efficiently retrieves only the necessary changes instead of

re-downloading the entire dataset. The updater operates by periodically querying

PyPI for updates, identifying modified or newly published packages, and extracting

relevant metadata. Once the updates are fetched, it seamlessly integrates them into the

existing knowledge graph by modifying dependencies, adding new package entries, and

resolving any inconsistencies. To maintain accessibility, the updated knowledge graph

is then saved and uploaded back to Google Drive. To further optimize performance, the

updater follows a differential update strategy. Daily updates focus on 8,000 popular

packages, identified using source rank from libraries.io,2 ensuring that frequently used

libraries stay up-to-date. Meanwhile, a full update of all packages is scheduled weekly

to capture broader changes in the ecosystem. Figure 3.2.4 illustrates the diagram of

2https://libraries.io/

32

https://libraries.io/

3. DEPENDENCY CONFLICT RESOLUTION

Knowledge Graph

Fetching updates

Downloading the
last updated graph

Applying updates

Re-uploading
updated graph

Google Drive

PyPI Updater

Fig. 3.2.4: The full process of updating the dependency knowledge graph.

this updater process, showcasing the workflow from querying PyPI for updates to

integrating the changes into the knowledge graph. This visual representation highlights

the steps involved in efficiently updating the knowledge graph without the need for

re-downloading the entire dataset.

By leveraging this approach, the updater minimizes redundant data transfers,

reduces processing overhead, and ensures that the knowledge graph remains up-to-date

with the evolving package landscape of PyPI.

3.2.2 SMT Encoding of Dependency Resolution

Solving the dependency constraints involves addressing two primary types of issues:

resolving Python version incompatibilities and resolving library dependency conflicts.

These two types of dependency conflicts are the focus of our work, as discussed in

Section 1.2.1. In this section, we formalize the process of encoding the dependency

resolution problem as a Boolean satisfiability problem.

Given a set of dependency constraints (as described in Section 2.4), our goal is to

encode the dependency resolution problem as an instance of the SAT modulo theories

(SMT) problem. That is, the resulting SMT instance should have a solution exactly

when the dependency resolution problem has a solution. A solution to the SMT

instance can also be converted into a solution to the dependency resolution problem.

To do this, for every package p with version v we define a literal pv representing

that version v of package p will be installed. Say that V (p) denotes the set of version

numbers of the package p. Since at most one version of any package can be installed

33

3. DEPENDENCY CONFLICT RESOLUTION

at once, we encode this constraint using the expression

∑
v∈V (p)

pv ≤ 1.

Such expressions are natively represented by a cardinality constraint in our SMT

instance. For example, the SMT solver Z3 [17] supports the parameterized theory

function “(_ at-most 1)” as part of an extension of the SMT-LIB language [4].

Secondly, we need to express the requirements found in the configuration file

requirements.txt. Each package version constraint in the configuration file determines

a subset of the possible versions of package p meeting that requirement. For example,

if V (p) = {1, 2, 3} the requirement p >= 2 would only be satisfied by either version

2 or 3 of package p. Suppose Cp is a constraint in the configuration file involving

package p and S(Cp) ⊆ V (p) denotes the versions of p meeting the constraint. Then

we enforce that some acceptable version of p will be installed using the clause

∨
v∈S(Cp)

pv.

Note that the equality constraint p == 1 then results in a unit clause (a clause of

length 1), i.e., just the literal p1.

Furthermore, installing a package may require other packages to be installed—

these are known as transitive dependencies and we need to ensure that all transitive

dependencies are met on all packages that are installed. Say that the configuration file

of version v of package p requires the constraint Cq on package q. That is, if package

p version v is installed, then a version package of q whose version number is in the set

S(Cq) must also be installed. We represent package dependencies using the clause

pv →
∨

u∈S(Cq)

qu

for each package p in the original set of requirements, or in the requirements of any

package that p depends on, and so on inductively, until all packages that the original

34

3. DEPENDENCY CONFLICT RESOLUTION

set may transitively depend on are identified. These packages are determined by

computing the components of the dependency knowledge graph containing the vertices

corresponding to the original requirements. The graph components are computed using

a recursive algorithm with a dictionary to track visited nodes. Starting from the direct

dependencies, the algorithm recursively visits all connected transitive dependencies,

adding each node to the dictionary once explored. If a node is encountered that

is already in the dictionary, the algorithm skips further exploration of that node,

ensuring efficient identification of all relevant packages without redundant visits. The

Python version constraints are also encoded similarly.

Finally, we would like the solver to prioritize the most recent versions of packages

when possible. In order to do this, we define an objective function that the solver

maximizes. This function assigns higher values to solutions that select more recent

versions and encourages not installing packages at all when possible. Let P denote

the set of all packages in the instance. Precisely, the objective function is given by

∑
p∈P

 ∑
v∈V (p)

rank(pv)

|V (p)|
· pv + pnone

 .

In this expression, note that the Boolean pv takes the value 1 if version v of package p

is installed (and 0 otherwise), while the Boolean pnone takes the value 1 if no version

of package p is installed (and 0 otherwise). Also, rank(pv) is the rank of version v

of package p, defined such that the oldest version has rank 0, the second oldest has

rank 1, and so forth, with the most recent version having rank |V (p)| − 1.

To ensure consistency, we enforce that at most one of { pv | v ∈ V (p) ∪ {none} }

is true. This is encoded in the SMT solver using a cardinality constraint and logical

implications. Specifically, we use Z3’s (_ at-most 1) constraint to ensure that the

sum of the Boolean variables { pv | v ∈ V (p) }∪{pnone} is at most 1, i.e., the cardinality

constraint from before is modified to be
∑

v∈V (p) pv + pnone ≤ 1. Additionally, we

add the implications pnone → ¬pv for each version v ∈ V (p). The weights rank(pv)
|V (p)| are

normalized, ranging from 0 to |V (p)|−1
|V (p)| < 1, ensuring that selecting pnone = 1 yields

the highest possible value (1) for the parenthesized expression when no version of

35

3. DEPENDENCY CONFLICT RESOLUTION

p is installed. This structure incentivizes the solver to avoid installing a package

unless required by the constraints, while prioritizing the most recent versions when

installation is necessary.

3.2.3 Example of Dependency Constraints

Consider the open-source project fflpy [22], with the following dependencies:

• click == 6.6

• pip-tools ≥ 4.0.0

We encode these dependencies along with all transitive dependencies and Python

version requirements using Boolean variables and clauses. We define:

• cv: Boolean variable for version v of click, or if v = none this denotes no version

of click will be installed.

• pv: Boolean variable for version v of pip-tools, or if v = none this denotes no

version of pip-tools will be installed.

• A: Set of all click versions (and the symbol none).

• B: Set of all pip-tools versions (and the symbol none).

• T ⊆ B: Versions of pip-tools ≥ 4.0.0, e.g., {7.4.1, 7.4.0, . . . , 4.0.0}.

Explicit Clauses

1. Package Requirements:

• click == 6.6:

c6.6

• pip-tools ≥ 4.0.0:

∨
v∈T

pv (e.g., p7.4.1 ∨ p7.4.0 ∨ · · · ∨ p4.0.0)

36

3. DEPENDENCY CONFLICT RESOLUTION

2. Consistency Constraints: Ensure at most one version per package using

cardinality constraints:

∑
v∈A

cv ≤ 1 ∧
∑
v∈B

pv ≤ 1

Cardinality constraints are supported by SMT solvers like Z3 via (_ at-most 1).

Although not strictly necessary, we also add the constraints cnone → ¬cv for all

v ∈ A \ {none} and pnone → ¬pv for all v ∈ B \ {none}.

3. Transitive Dependencies:

• pip-tools == 7.4.1 requires click ≥ 8.0:

p7.4.1 → (c8.0 ∨ c8.1)

• pip-tools == 4.4.1 requires click ≥ 7.0:

p4.4.1 → (c8.0 ∨ c8.1 ∨ c7.0 ∨ c7.1)

4. Python Version Constraints:

• click == 6.6 requires python ≥ 2.7:

c6.6 → (python2.7 ∨ python2.8 ∨ · · ·)

• pip-tools == 7.4.1 requires python ≥ 3.9:

p7.4.1 → (python3.9 ∨ python3.10 ∨ · · ·)

5. Optimization:

To encode the objective function in SMT, we formulate a MaxSMT problem

using the following weighted soft constraints.

37

3. DEPENDENCY CONFLICT RESOLUTION

• A soft clause asserting pnone with weight 1. This corresponds to the case

where no version of pip-tools is installed.

• For each version v ∈ T , a soft clause asserting pv with weight rank(pv)
|T | , where

rank(pv) is the rank of version v of pip-tools (0 for the oldest version, 1 for

the second oldest, . . ., |T | − 1 for the newest).

For example, there are 47 versions of pip-tools in T , from 4.0.0 (rank(p4.0.0) = 0)

to 7.4.1 (rank(p7.4.1) = 46). The soft constraint for pnone has weight 1, while

version-specific clauses have weights such as 46
47

≈ 0.978 for version 7.4.1 and

0
47

= 0 for version 4.0.0.

The solver maximizes the weighted sum of the satisfied soft constraints. Selecting

pnone = 1 contributes a weight of 1, while installing a version pv = 1 contributes

a weight of rank(pv)
47

< 1, so the soft constraints prioritize not installing a package

when possible. When installation is required, newer versions with higher ranks

maximize the objective function.

This encoding ensures compatibility and resolves conflicts efficiently, suitable for

processing by an SMT solver.

Solving and Validation: Once all dependency constraints are encoded into SMT

expressions, we utilize the Z3 SMT solver [17] to determine a satisfying assignment.

This assignment specifies compatible versions for the required libraries and a Python

version that adheres to all constraints, ensuring a conflict-free installation. Sample

SMT instances illustrating this encoding are provided in Sample SMT Instances

(Appendix A).

After obtaining the solution (satisfying assignment), a validation step is performed

using the knowledge graph. In this step, all direct dependencies of the selected versions

of the packages in the solution set are cross-verified. This verification ensures that the

selected versions did not introduce any conflicting requirements with other selected

packages. In cases where no satisfying assignment exists, the solver produces a proof

of the inconsistency of the instance.

38

3. DEPENDENCY CONFLICT RESOLUTION

3.3 Comparison With Baseline

In this section, we compare different dependency resolution tools, highlighting their

strengths and limitations. Table 3.3.1 shows a comparative summary of their capabili-

ties.

3.3.1 Comparison with smartPip

In the smartPip paper by Wang et al. [47], the evaluation methodology involved

selectively choosing projects from the datasets. For instance, they included 58 projects

from the Watchman dataset that were already solvable by pip’s backtracking, and 36

projects from the HG2.9K dataset that exhibited dependency conflict issues. Since

these projects were pre-filtered to be solvable by pip, it is unsurprising that smartPip

also managed to resolve them successfully. In contrast, our evaluation encompassed

all projects in the datasets, regardless of their solvability by pip. This broader and

more exhaustive evaluation likely contributed to the lower observed performance of

smartPip in our results compared to what was reported in its original paper.

The smartPip tool resolves Python third-party package dependencies through

a two-phase process that leverages global constraint solving to encode version re-

quirements as Satisfiability Modulo Theories (SMT) expressions. In the first phase,

smartPip parses package requirements and their sub-dependencies, generating SMT

constraints to represent valid version ranges. For a requirement like pandas==1.3.3,

which depends on numpy>=1.17.3, the tool recursively processes each dependency,

assigning unique IDs to versions (e.g., 1.17.3 to 716459) and creating constraints

such as (numpy ≥ 716459). However, this phase is inefficient because smartPip’s

recursive depth-first search (DFS) redundantly processes sub-dependencies. For ex-

ample, when resolving pandas==1.3.3, which requires python-dateutil>=2.7.3,

smartPip evaluates three satisfying versions (2.7.6, 2.7.5, 2.7.4), each with the same

sub-dependency six>=1.5. smartPip processes six>=1.5 separately for each version,

redundantly calling its internal function (e.g., judge version range) to retrieve ver-

sion lists, check compatibility, and generate identical SMT constraints, significantly

39

3. DEPENDENCY CONFLICT RESOLUTION

increasing expression generation time. This redundancy worsens in complex graphs

where sub-dependencies have their own layered dependencies, amplifying the com-

putational overhead. In the second phase, the Z3 solver evaluates this expression to

find a satisfiable version assignment or declare unsatisfiability, indicating that the

dependencies cannot be resolved.

A difference in smartPip’s approach, compared to SMTpip, arises in its handling

of version constraints, dependency traversal, and solution optimization, which can

lead to resolution failures and performance degradation in some cases. For example,

for the numpy>=1.17.3 dependency of pandas==1.3.3, smartPip interprets ≥ 1.17.3

as ∼= 1.17.3, restricting versions to ≥ 1.17.3 and < 1.18.0. We also uncovered a

bug in smartPip—due to an unsorted version list, 1.16.5 is selected as the upper

bound rather than 1.18.0. This generates the inconsistent SMT constraints (numpy <

716457) and (numpy ≥ 716459). In contrast, SMTpip adheres to PEP 440,3 encoding

≥ 1.17.3 to include all versions larger than 1.17.3 (including, for example, 2.0).

Additionally, smartPip’s recursive DFS has redundant processing as described above,

whereas SMTpip employs a dictionary to track visited dependencies, ensuring each

sub-dependency, like six>=1.5, is processed only once. Furthermore, smartPip’s

SMT formulation lacks an optimization objective to exclude unnecessary packages not

required by the selected version of a direct dependency, such as including packages from

unselected python-dateutil versions (e.g., 2.7.5, 2.7.4) when only 2.7.6 is chosen,

resulting in bloated solutions. SMTpip, however, incorporates optimization objectives

to prioritize minimal package sets, ensuring only necessary dependencies are included

in the solution. These differences—in constraint interpretation, dependency traversal

efficiency, encoding format, and solution optimization—explain why SMTpip resolves

some cases where smartPip fails and contributes to the observed performance disparity.

3.3.2 Comparison with PyEGo

Ye et al. propose a tool named PyEGo for dependency resolution [52]. Unlike our

approach, PyEGo does not consider the configuration files of a project to resolve

3https://peps.python.org/pep-0440/#version-specifiers

40

https://peps.python.org/pep-0440/#version-specifiers

3. DEPENDENCY CONFLICT RESOLUTION

Table 3.3.1: Comparison of dependency resolution tools.

Tool
Library

Dependency
Conflict

Python
Version

Incompatibility

Handles
Projects With

Multiple
Files

Uses
Config.
Files

as Input

Technique to
Resolve
Conflicts

Encodes
as SAT
Problem

Gen.
Missing

Conf. File

Identify
Consistent &

Inconsistent Cases

pip ✓ ✓ ✓ ✓ Backtracking ✗ ✗ ✓

Conda ✓ ✓ ✓ ✓ SAT Solver ✓ ✗ ✓

smartPip ✓ ✗ ✗ ✓ SMT Solver ✓ ✗ ✗

PyEGo ✓ ✓ ✗ ✗ SMT Solver ✓ ✗ ✗

SMTpip ✓ ✓ ✓ ✓ SMT Solver ✓ ✓ ✓

dependencies and cannot handle projects containing multiple Python files. Instead,

it takes a single Python file as input and infers dependencies from that file alone.

This limitation is why the authors used a dataset of GitHub gists, where each gist

is a standalone Python script, and evaluated their approach on 4,836 single Jupyter

notebooks.

Additionally, PyEGo determines the required Python version by checking the

presence of 19 syntax features corresponding to different Python releases. If an

input file does not contain any of these predefined features, PyEGo cannot infer the

correct Python version. In contrast, our approach extracts all libraries used across

multiple files within a project, considers the Python version dependency information

for all versions of all dependent libraries, and encodes these constraints into logical

expressions using the SMT encoding techniques discussed in Section 3.2.2.

Furthermore, the encoding techniques differ significantly between PyEGo and

SMTpip. PyEGo’s SMT expressions, as inferred from available examples, use conjunc-

tions of a Disjunctive Normal Form (DNF)-like structure, which is less efficient for

SMT solvers due to the cost of converting such expressions to Conjunctive Normal

Form (CNF) [35]. Modern SMT solvers, including Z3, are optimized for CNF, as it

aligns with efficient SAT solving techniques like DPLL and CDCL. SMTpip leverages

this by specifying its encoding in CNF (or in a form easily converted to CNF in the

case of the cardinality constraints) to evaluate all constraints simultaneously, ensuring

efficient solving. These differences in encoding structure and solving strategy likely

contribute to PyEGo’s increased solving time compared to SMTpip.

41

3. DEPENDENCY CONFLICT RESOLUTION

3.4 Evaluation

This section discusses the evaluation procedure and results of our study. We evaluated

the effectiveness of SMTpip in resolving dependency conflicts and Python version

incompatibilities using popular open-source Python projects. We answer the following

two research questions (RQs):

RQ1: How effective is SMTpip in resolving library dependency conflict and Python

version incompatibilities during installation compared to pip, Conda, smartPip and

PyEGo?

RQ2: Is the technique efficient enough to be used in practice?

3.4.1 Datasets

As listed in Table 3.4.1, three datasets were selected—Watchman [50], HG2.9K [25],

and SD [52]—based on their inclusion of dependency conflicts and Python version

incompatibilities, gathered from real-world Python projects across diverse domains.

These datasets have also been used in prior studies, further validating their relevance.

Additionally, we created a new dataset comprising 190 real-world Jupyter Notebook

projects collected from GitHub.4

One of the key contributions of SMTpip is its ability to detect inconsistent cases,

where it is impossible to satisfy all dependency constraints simultaneously. To verify

SMTpip’s accuracy in detecting inconsistencies, we performed all detected inconsistent

cases using pip and confirmed that SMTpip detection matched. Our findings show

that there are 45, 1,223, 24, and 14 inconsistent instances in the Watchman, HG2.9K,

SD, and Jupyter Notebook datasets, respectively.

We also measured the size of the dependency graph for each case across all

datasets. The size of a dependency graph is defined as the total number of releases

involved in generation of SMT instance. For example, a project depends on dagit5

version 1.1.5, which in turn depends on dagster version 1.1.5, and dagster depends

4https://github.com/
5https://github.com/dagster-io/dagster/blob/master/pyproject.toml

42

https://github.com/
https://github.com/dagster-io/dagster/blob/master/pyproject.toml

3. DEPENDENCY CONFLICT RESOLUTION

Table 3.4.1: Datasets used for evaluation and information about the instances in each
dataset.

Dataset Total Cases
Number of

Consistent Cases

Number of

Inconsistent Cases

Dependency Graph Size

(Min/Max/Median/Average)

WatchMan 159 114 45 17 / 6911 / 458 / 864

HG2.9K 2891 1668 1223 6 / 5821 / 139 / 403

SD 100 76 24 13 / 4550 / 93 / 1199

Jupyter

Notebook
1359 891 468 50 / 3830 / 780 / 1782

on universal-pathlib (any version); then all versions of universal-pathlib, along with

dagit version 1.1.5 and dagster version 1.1.5, form the dependency graph. The total

number of releases in this graph represents its size. The maximum dependency graph

sizes observed in our datasets are 6,911, 5,821, 4,550, and 3,830 for the Watchman,

HG2.9K, SD, and Jupyter Notebook datasets, respectively. The following section

briefly describes each dataset.

Watchman: Watchman conducted an empirical study on 235 real-world depen-

dency conflict (DC) issues using PyPI snapshots from July to August 2019. The

dataset consists of two types of cases: Pattern A, which includes 210 conflicts caused

by remote dependency updates, and Pattern B, which includes 24 conflicts affected by

the local environment. Since our focus is primarily on Pattern A cases, we selected

only these 210 cases. However, after searching for all the associated projects, we

found that 51 repositories had been removed by the time of writing this paper. As

a result, we finalized a subset of 159 Python projects for our study. After detecting

the consistent and inconsistent cases using SMTpip, we found that there were 114

consistent cases and 45 inconsistent cases in the dataset.

HG2.9K: The dataset consists of 2,891 executable code snippets, designed to

facilitate reproducible studies in software engineering. These snippets were collected

by scraping gist URLs from the GitHub Gist user interface (UI). After analyzing

the dataset with SMTpip, we identified 1,668 consistent cases and 1,223 inconsistent

cases.

43

3. DEPENDENCY CONFLICT RESOLUTION

SD: This dataset was created by the authors of PyEGo and consists of 100 real-

world Python projects sourced from GitHub. The selected projects are executable,

well-documented, and popular, covering diverse domains such as machine learning,

development, security, and more. The dataset includes third-party packages, appli-

cations, and tutorials, with an average of 58 Python files, 10,821 lines of code, and

270 import statements per project. After analyzing the dataset with SMTpip, we

identified 76 consistent cases and 24 inconsistent cases.

Jupyter Notebook: Our dataset derives from the GH Torrent archive [24],

initially containing 247,356 Python-based Jupyter Notebook projects. To ensure

reproducibility and relevance, we applied the following filtering and validation steps:

• Initial Filtering: We queried the GitHub API to identify projects containing

requirements.txt files, a standard indicator of explicit dependency specifications.

This reduced the dataset to 22,340 projects with dependency metadata.

• Dependency Graph Analysis: For each project, we calculated the dependency

graph size (i.e., the total number of releases involved in generation of SMT

instance). We selected 2,587 projects with dependency graphs exceeding 50

nodes, ensuring a representation of large-scale dependency graphs projects.

• Conflict Identification: We employed pip to install dependencies for each

project and recorded both successful and failed installations. For successful

cases, we analyzed the logs to detect instances where pip used backtracking,

identifying those as consistent dependency conflicts. For failure cases, if the

failure was due to the absence of a valid version satisfying all constraints, we

classified them as inconsistent dependency conflicts. This process identified

1,359 projects with dependency conflicts.

Consistent instances (891 cases): Conflicts confirmed by pip as resolvable through

pip’s package installation process. Consistent cases arise when an initial depen-

dency conflict can be resolved by choosing compatible versions of the required

packages, allowing all dependencies to co-exist without breaching version con-

straints.

44

3. DEPENDENCY CONFLICT RESOLUTION

Table 3.4.2: Results of SMTpip, pip, Conda and PyEGo in resolving dependencies for
consistent cases using the latest dependency knowledge graph.

Dataset Tool
Resolved Dependency Failed in Resolution

Num Min/Max/Median/Average Total Num Min/Max/Median/Average Total

WatchMan

pip 114/114 (100%) 1.5 s/641.2 s/11.2 s/29.1 s 3317.4 s 0/114 - -

Conda 31/114 (27%) 6.26 s/22.07 s/7.82 s/9.62 s 298.22 s 83/114 4.6 s/18.07 s/4.82 s/4.32 s 358 s

SMTpip 114/114 (100%) 0.01 s/15.7 s/0.15 s/1.99 s 226.86 s 0/114 - -

HG2.9K

pip 1668/1668 (100%) 2 s/568.5 s/11.22 s/ 13.9 s 23185.2 s 0/1668 - -

Conda 1062/1668 (64%) 3.79 s/77.79 s/10.41 s/12.9 s 13699 s 606/1668 2.49 s/30.69 s/7.61 s/6.3 s 3817.8 s

PyEGo 1334/1668 (80%) 0.68 s/4.68 s/0.95 s/1.1 s 1467.4 s 334/1668 0.88 s/3.68 s/0.65 s/1.05 s 350 s

SMTpip 1668/1668 (100%) 0.04 s/4.08 s/0.14 s/ 0.26 s 433.68 s 0/1668 - -

SD

pip 76/76(100%) 1.3 s/645.1 s/10.53 s/27.02 s 2053.5 s 0/76 - -

Conda 24/76 (32%) 11.76 s/72.5 s/21.3 s/25.3 s 607.2 s 52/76 2.6 s/25.15 s/8.5 s/5.3 s 275.6 s

PyEGo 62/76 (82%) 0.55 s/4.32 s/0.92 s/1.02 s 63.24 s 14/76 0.45 s/5.02 s/0.96 s/1.52 s 21.28 s

SMTpip 76/76 (100%) 0.03 s/9.31 s/0.17 s/0.48 s 36.48 s 0/76 - -

Jupyter

Notebook

pip 891/891 (100%) 1.7 s/773.2 s/12.48 s/17.16 s 15289.5 s 0/891 - -

Conda 784/891(88%) 9.6 s/40.46 s/13.7 s/15.06 s 11805 s 107/891 2.5 s/20.6 s/7.74 s/5.7 s 609.9 s

SMTpip 891/891 (100%) 0.04 s/9.15 s/0.1 s/0.45 s 400.95 s 0/891 - -

Inconsistent instances (468 cases): Analysis of the installation failure log files

revealed 468 instances of inconsistent conflicts, where no possible selection of

package versions could satisfy all constraints simultaneously.

• Final Dataset Composition: The resulting Notebook Dataset comprises 1,359

real-world Jupyter Notebook projects with validated dependency conflicts, each

containing multiple .ipynb files. With a total of 3,081 .ipynb files, this dataset

addresses the scarcity of benchmarks for dependency conflict research and is

publicly available for reproducibility.

3.4.2 RQ1: How effective is SMTpip in resolving library de-

pendency conflicts and Python version incompatibilities

during installation compared to pip, Conda, smartPip,

and PyEGo?

This section addresses Research Question 1 (RQ1), which evaluates the effectiveness of

SMTpip in resolving library dependency conflicts and Python version incompatibilities

45

3. DEPENDENCY CONFLICT RESOLUTION

Table 3.4.3: Results of SMTpip and smartPip in resolving dependencies for consistent
cases using downgraded dependency knowledge graph.

Dataset Tool
Successfully Identified Inconsistency Failed to Identify Inconsistency

Num Min/Max/Median/Average Total Num Min/Max/Median/Average Total

WatchMan
smartPip 104/107 (97%) 0.6 s/358.2 s/1.1 s/ 5 s 520 s 3/107 0.9 s/248.2 s/1.01 s/ 4.5 s 13.5 s

SMTpip 107/107 (100%) 0.02 s/13.2 s/0.13 s/1.46 s 156.22 s 0/107 - -

HG2.9K
smartPip 1640/1646 (99%) 0.6 s/39.3 s/ 0.7 s/0.9 s 1476 s 6/1646 0.8 s/54.3 s/ 0.8 s/1.01 s 6.06 s

SMTpip 1646/1646 (100%) 0.03 s/3.18 s/0.11 s/ 0.16 s 263.36 s 0/1646 - -

SD
smartPip 62/66 (93%) 0.009 s/3.3 s/0.01 s/ 0.6 s 37.2 s 4/66 0.04 s/4.13 s/0.03 s/ 0.5 s 2 s

SMTpip 66/66 (100%) 0.01 s/6.3 s/0.18 s/0.37 s 24.42 s 0/66 - -

Jupyter

Notebook

smartPip 689/711 (96%) 0.01 s/18.49 s/0.1 s/0.55 s 378.95 s 22/711 0.03 s/4.44 s/0.13 s/0.64 s 14.08 s

SMTpip 711/711 (100%) 0.02 s/7.25 s/0.12 s/0.43 s 305.73 s 0/711 - -

during installation, compared to four existing tools: pip, Conda, smartPip, and PyEGo.

The evaluation is conducted across four diverse datasets—WatchMan, HG2.9K, SD,

and Jupyter Notebook—each representing a range of real-world scenarios with varying

complexity. The results are divided into two parts: the first assesses the tools’ ability

to resolve consistent dependency cases, as presented in Tables 3.4.2 and 3.4.3, and

the second examines their effectiveness in identifying inconsistent cases, as detailed

in Tables 3.4.4 and 3.4.5. For fairness in comparisons, evaluations with pip, Conda,

and PyEGo utilize the latest dependency knowledge graph, ensuring alignment with

the current package ecosystem. In contrast, the comparison with smartPip employs a

downgraded knowledge graph, replicating smartPip’s outdated dependency information

(last updated around 2022), to maintain an equitable assessment given smartPip’s

reliance on an older knowledge base.

In resolving consistent dependency cases, SMTpip demonstrates improved perfor-

mance in both success rate and computational efficiency, as evidenced in Table 3.4.2

for comparisons with pip, Conda, and PyEGo, and Table 3.4.3 for comparisons with

smartPip. Using the latest dependency knowledge graph, SMTpip achieves a 100%

resolution rate across all datasets. For instance, in the HG2.9K dataset, SMTpip

resolves all 1,668 cases in 433.68 seconds, with a median resolution time of 0.14

seconds per case, as shown in Table 3.4.2. In contrast, pip, while also achieving a 100%

resolution rate, requires 23,185.2 seconds, with a median time of 11.22 seconds per

case. Pip’s resolution time includes the downloading time of each package’s metadata

46

3. DEPENDENCY CONFLICT RESOLUTION

when it backtracks. Pip’s inefficiency stems from its exhaustive exploration of possible

dependency versions without prior knowledge of necessary iterations, coupled with

the repeated downloading of distribution files during backtracking. Conda, which

solves only 64% of the HG2.9K cases in 13,699 seconds, is hampered by its dependence

on multiple times of SAT solver invocations, for multiple optimization criteria as

described in section 2.3. Each refinement necessitates re-solving the dependency graph

with updated constraints, leading to multiple solver invocations and significantly pro-

longed runtimes. PyEGo, evaluated on HG2.9K and SD datasets due to its limitation

to single-file Python scripts, resolves 80% of HG2.9K cases in 1,467.4 seconds. Its

heuristic-based strategy pre-selects popular, non-conflicting packages based on import

statements before applying SMT solving, prematurely eliminating valid dependency

combinations and reducing solution completeness. This restricted scope, excluding

configuration files and multi-file projects, limits PyEGo’s applicability. In the com-

parison with smartPip using a downgraded knowledge graph, SMTpip maintains its

100% resolution rate, resolving 1,646 HG2.9K cases in 263.36 seconds, while smartPip

achieves a 99% success rate in 1,476 seconds, as shown in Table 3.4.3. smartPip’s

failures arise from an incorrect handling of version specifiers (≥ and > constraints

are treated as ∼=), and an unsorted version list that leads to erroneous upper-bound

assumptions, preventing the identification of valid solutions even when they exist.

In identifying inconsistent dependency cases, SMTpip exhibits exceptional capabil-

ity, achieving a 100% identification rate across all datasets, as detailed in Tables 3.4.4

and 3.4.5. With the latest dependency knowledge graph, SMTpip identifies all 1,223

inconsistent cases in the HG2.9K dataset in 134.52 seconds, with a median time of

0.02 seconds per case, as reported in Table 3.4.4. Pip also achieves 100% identification

but requires 9,050.2 seconds, attributed to its exhaustive backtracking and repeated

downloading of distribution files, which, while thorough, is computationally inefficient

for large-scale problems. Conda identifies only 70% of HG2.9K cases in 5,350.6 seconds,

failing in the remaining 30% primarily due to the unavailability of certain Python

packages or their specific versions in the Anaconda repository. Since the Anaconda

repository is smaller than PyPI’s comprehensive catalog used by SMTpip and pip,

47

3. DEPENDENCY CONFLICT RESOLUTION

Table 3.4.4: Results of SMTpip, pip, Conda and PyEGo in identifying inconsistency
among the inconsistent cases using the latest dependency knowledge graph.

Dataset Tool
Successfully Identified Inconsistency Failed to Identify Inconsistency

Num Min/Max/Median/Average Total Num Min/Max/Median/Average Total

WatchMan

pip 45/45 (100%) 1.4 s/430.0 s/8.5 s/18.5 s 832.5 s 0/45 - -

Conda 32/45 (71%) 5.5 s/10.5 s/8.0 s/5.0 s 160.0 s 13/45 6.3 s/21.9 s/7.9 s/6.5 s 84.5 s

SMTpip 45/45 (100%) 0.01 s/10.5 s/0.14 s/1.5 s 67.5 s 0/45 - -

HG2.9K

pip 1223/1223 (100%) 2.1 s/381.0 s/4.7 s/7.4 s 9050.2 s 0/1223 - -

Conda 863/1223 (70%) 2.8 s/58.1 s/6.4 s/6.2 s 5350.6 s 360/1223 3.9 s/78.5 s/10.5 s/3.5 s 1260.0 s

PyEGo 545/1223 (45%) 0.7 s/2.7 s/0.96 s/1.15 s 626.75 s 678/1223 0.8 s/4.9 s/0.98 s/1.2 s 813.6 s

SMTpip 1223/1223 (100%) 0.001 s/3.10 s/0.02 s/0.11 s 134.52 s 0/1223 - -

SD

pip 24/24 (100%) 1.2 s/30.0 s/5.6 s/17.5 s 420 s 0/24 - -

Conda 11/24 (46%) 5.8 s/43.0 s/21.5 s/15.8 s 173.8 s 13/24 11.7 s/72.0 s/21.2 s/11.5 s 149.5 s

PyEGo 18/24 (75%) 0.56 s/3.3 s/0.93 s/1.05 s 18.9 s 6/24 0.57 s/4.35 s/0.94 s/1.08 s 6.48 s

SMTpip 24/24 (100%) 0.004 s/8.4 s/0.016 s/0.35 s 8.4 s 0/24 - -

Jupyter

Notebook

pip 468/468 (100%) 1.34 s/80.5 s/7.5 s/7.5 s 3510 s 0/468 - -

Conda 156/468 (33%) 4.7 s/21.0 s/13.8 s/5.2 s 811.2 s 312/468 9.5 s/40.0 s/13.6 s/5.0 s 1560.0 s

SMTpip 468/468 (100%) 0.005 s/14.5 s/0.52 s/0.55 s 257.4 s 0/468 - -

Table 3.4.5: Comparison of smartPip and SMTpip in Identifying Inconsistencies Across
Datasets using downgraded Kgraph.

Dataset Tool
Successfully Identified Inconsistency

Num Min/Max/Median/Average Total

WatchMan
smartPip 52/52 (100%) 0.5 s/258.4 s/1.2 s/4.3 s 223.6 s

SMTpip 52/52 (100%) 0.01 s/4.5 s/0.14 s/1.2 s 62.4 s

HG2.9K
smartPip 1245/1245 (100%) 0.6 s/19.5 s/0.8 s/1.1 s 1369.5 s

SMTpip 1245/1245 (100%) 0.001 s/1.10 s/0.01 s/0.07 s 87.15 s

SD
smartPip 34/34 (100%) 0.01 s/2.2 s/0.012 s/0.65 s 22.1 s

SMTpip 34/34 (100%) 0.014 s/2.4 s/0.036 s/0.25 s 8.5 s

Jupyter

Notebook

smartPip 648/648 (100%) 0.012 s/3.5 s/0.11 s/0.45 s 291.6 s

SMTpip 648/648 (100%) 0.05 s/8.5 s/0.42 s/0.21 s 136.08 s

48

3. DEPENDENCY CONFLICT RESOLUTION

Conda may encounter projects requiring packages it cannot access. In inconsistent

cases, where dependency conflicts exist, the absence of a required package prevents

Conda from constructing a complete dependency graph. As a result, Conda fails to

declare these cases inconsistent, producing errors like PackagesNotFoundError in-

stead of accurately identifying the inconsistency. This limitation accounts for Conda’s

30% failure rate in the HG2.9K benchmark, distinguishing it from tools like SMTpip

and pip that benefit from PyPI’s broader package availability. These limitations

contrast with SMTpip’s efficient use of a single SMT solving pass and access to PyPI’s

full package set, enabling complete and rapid identification of all inconsistent cases.

PyEGo, limited to HG2.9K and SD datasets due to its single-file script constraint,

identifies 45% of HG2.9K cases in 626.75 seconds. In the comparison with smartPip

using the downgraded knowledge graph, both tools achieve a 100% identification rate

for inconsistent cases, as shown in Table 3.4.5.

However, SMTpip completes the identification of 1,245 HG2.9K cases in 87.15

seconds, compared to smartPip’s 1,369.5 seconds. smartPip’s longer processing times

stem from its recursive DFS approach to parsing dependencies and generating SMT

constraints, which redundantly traverses nodes (e.g., exploring a shared dependency

like D multiple times in paths A → B → C1 → D and B → C2 → D), leading to

inefficiency in large dependency graphs. For instance, the slowest SMTpip instance,

which took 100 seconds, involved a project with over 500 packages and 2,000 tran-

sitive dependencies, highlighting the computational demands of encoding extensive

dependency chains. SMTpip’s superior speed and reliability in this context further

highlight its effectiveness.

Moreover, the graph in Figure 3.4.1 compares the performance of SMTpip and

smartPip in generating SMT expressions for 104 projects from the Watchman Dataset

(the instances that both tools successfully solved). The projects are sorted by increasing

time required for SMT expression generation. The x-axis represents the number of

project files, ordered from least to most time-intensive, ranging from 1 to 104, and the

y-axis shows the cumulative time taken in seconds, where each project’s time includes

the sum of all previous projects’ times. SMTpip (blue line with circular markers) and

49

3. DEPENDENCY CONFLICT RESOLUTION

20 40 60 80 100 120
Number of Project Files

100

200

300

400

500

600

To
ta

l S
M

T
Ex

pr
es

sio
n

Ge
ne

ra
tio

n
Ti

m
e

(s
ec

on
ds

)

0

Comparison of Time Taken To Generate SMT Expression by SMTpip & smartPip (Watchman Dataset)
SMTpip
smartPip

Fig. 3.4.1: Comparison of time taken to generate SMT expression by SMTpip &
smartPip for the Watchman dataset.

smartPip (orange line with circular markers) both start with low processing times, but

as the projects become more time-intensive, smartPip’s cumulative time rises sharply,

approaching 500 seconds for the most complex projects, while SMTpip shows a more

gradual increase, reaching around 100 seconds.

In conclusion, SMTpip proves highly effective in both resolving consistent depen-

dency cases and identifying inconsistent ones, consistently achieving a 100% success

rate across the WatchMan, HG2.9K, SD, and Jupyter Notebook datasets. Its per-

formance surpasses that of pip, Conda, smartPip, and PyEGo, which face distinct

challenges: pip’s exhaustive backtracking and repeated downloads lead to extended

runtimes; Conda’s multiple SAT solver invocations for optimization increase com-

putational costs; smartPip’s non-CNF encoding structure contributes to resolution

delays, as discussed in Section 3.3.1; and PyEGo’s non-CNF encoding increase solving

overhead, as noted in Section 3.3.2. The use of a downgraded knowledge graph for

the smartPip comparison ensures fairness, yet SMTpip still outperforms, establishing

itself as a robust and efficient tool for managing library dependency conflicts and

Python version incompatibilities during installation.

50

3. DEPENDENCY CONFLICT RESOLUTION

20 40 60 80 100 120
Number of Project Files

20

40

60

80

100

120

140

160

180

To
ta

l S
M

T
Ex

pr
es

sio
n

So
lv

in
g

Ti
m

e
(s

ec
on

ds
)

0

Comparison of Time Taken To Solve SMT Expression by SMTpip & smartPip (Watchman Dataset)
SMTpip
smartPip

Fig. 3.4.2: Comparison of Time Taken To Solve SMT Expression by SMTpip &
smartPip for the Watchman dataset.

RQ1: How effective is SMTpip in resolving dependency conflicts?

In particular:

• SMTpip achieves a 100% success rate in resolving consistent dependency cases

across all datasets (WatchMan, HG2.9K, SD, Jupyter Notebook), outperforming

pip (100% but slower), Conda (33%–88%), smartPip (93%–99%), and PyEGo

(80%–82%).

• For inconsistent cases, SMTpip identifies 100% of conflicts, matching pip’s

reliability but surpassing Conda (33%–71%), smartPip (100% but less efficient),

and PyEGo (45%–75%) in both accuracy and speed.

• SMTpip’s effectiveness persists even with a downgraded knowledge graph for fair

comparison with smartPip, maintaining 100% resolution and identification rates.

• Challenges faced by other tools stem from pip’s exhaustive backtracking, Conda’s

multiple SAT solver invocations, smartPip’s non-CNF encoding structure, and

PyEGo’s single file scope, non-CNF encoding.

51

3. DEPENDENCY CONFLICT RESOLUTION

3.4.3 RQ2: Is the Technique Efficient Enough for Practical

Use?

The efficiency of SMTpip in resolving library dependency conflicts is critical to deter-

mining its suitability for practical use in real-world software development environments.

To address Research Question 2 (RQ2), we analyze the speedup achieved by SMT-

pip compared to established dependency management tools—pip, Conda, smartPip,

and PyEGo—across four datasets: WatchMan, HG2.9K, SD, and Jupyter Notebook.

Table 3.4.6 presents a comprehensive time cost comparison for projects where both

SMTpip and the compared tools successfully resolved dependency conflicts. In this con-

text, Success Count (SC) represents the number of projects with resolved dependency

conflicts, Time Cost (TC) denotes the total time required for resolution, and Speedup

is calculated as the ratio of the compared tool’s time cost to that of SMTpip. The

results demonstrate SMTpip’s remarkable efficiency, with significant speedups over all

tools, underscoring its potential as a practical solution for dependency management.

Table 3.4.6 reveals that SMTpip consistently achieves substantial speedups across

all datasets, with overall speedups of 39 times faster than pip, 37 times faster than

Conda, 3.2 times faster than smartPip, and 4 times faster than PyEGo for the combined

datasets. Against pip, SMTpip’s performance is particularly notable: in the HG2.9K

dataset, SMTpip resolves 1,668 projects in 433.68 seconds, compared to pip’s 23,185.2

seconds, yielding a 53 times faster performance. Pip’s prolonged resolution times result

from its exhaustive exploration of dependency versions, requiring repeated downloads

during backtracking, which increases runtime for large-scale projects. Similarly, Conda

exhibits significant delays, with SMTpip being 49 times faster in HG2.9K, where

Conda takes 13,699 seconds to resolve 1,062 projects compared to SMTpip’s 276.12

seconds. Conda’s SAT solver-based resolution, incorporating additional optimization

criteria, requires multiple solver invocations, increasing computational overhead.

In the comparison with smartPip, SMTpip achieves a 5.6 times faster performance

in HG2.9K, resolving 1,640 projects in 262.4 seconds versus smartPip’s 1,476 seconds.

smartPip’s delays are attributed to its non-CNF encoding structure, which increases

52

3. DEPENDENCY CONFLICT RESOLUTION

Table 3.4.6: Comprehensive time cost comparison across tools (pip, Conda, smartPip,
PyEGo vs. SMTpip). SC (Success Count) is the number of projects where both the
tool and SMTpip successfully resolved dependency conflicts. TC (Time Cost) is the
time taken for dependency resolution, shown as “Tool TC — SMTpip TC” with
Speedup in parentheses (Tool TC / SMTpip TC). Speedup indicates how much faster
SMTpip resolves dependencies compared to the respective tool.

Dataset
pip vs. SMTpip Conda vs. SMTpip smartPip vs. SMTpip PyEGo vs. SMTpip

SC TC (pip — SMTpip) SC TC (Conda — SMTpip) SC TC (smartPip — SMTpip) SC TC (PyEGo — SMTpip)

WatchMan 114 3317.4 s — 226.86 s (14X) 31 298.22 s — 61.69 s (5X) 104 520 s — 151.84 s (3.4X) N/A N/A

HG2.9K 1668 23185.2 s — 433.68 s (53X) 1062 13699 s — 276.12 s (49X) 1640 1476 s — 262.4 s (5.6X) 1334 1467.4 s — 346.84 s (4.2X)

SD 76 2053.5 s — 36.48 s (56X) 24 607.2 s — 11.52 s (52X) 42 25.2 s — 22.9 s (1.1X) 62 63.24 s — 29.76 s (2.12X)

Jupyter

Notebook
891 15289.5 s — 400.95 s (38X) 784 11805 s — 352.8 s (33X) 689 378.95 s — 296.27 s (1.27X) N/A N/A

Sum 2749 43845.6 s — 1097.97 s (39X) 1901 26409.42 s — 702.13 s (37X) 2475 2400.15 s — 733.45 s (3.2X) 1396 1530.64 s — 376.56 s (4X)

solver overhead, as discussed in Section 3.3.1. PyEGo, evaluated only for HG2.9K

and SD due to its design for single-file Python scripts, shows SMTpip being 4.2 times

faster in HG2.9K, resolving 1,334 projects in 346.84 seconds compared to PyEGo’s

1,467.4 seconds. PyEGo’s non-CNF encoding contribute to increased solving times,

as noted in Section 3.3.2. In smaller datasets like SD, SMTpip’s performance over

smartPip is modest (1.1 times faster), reflecting smartPip’s efficiency in simpler cases,

yet SMTpip still outperforms it. These results, grounded in Table 3.4.6, highlight

SMTpip’s ability to resolve dependencies significantly faster than its counterparts,

often by factors of 3 to 53 times depending on the dataset and tool.

The practical implications of SMTpip’s efficiency are evident when considering the

cumulative time savings across all datasets. For the 2,749 projects where both SMTpip

and pip succeeded, SMTpip completes resolutions in 1,097.97 seconds, compared to

pip’s 43,845.6 seconds, making it 39 times faster. Against Conda, SMTpip resolves

1,901 projects in 702.13 seconds versus Conda’s 26,409.42 seconds, making it 37 times

faster. Even against smartPip, which uses a downgraded knowledge graph, SMTpip is

3.2 times faster, resolving 2,475 projects in 733.45 seconds compared to smartPip’s

2,400.15 seconds. For PyEGo, SMTpip is 4 times faster across 1,396 projects (376.56

seconds versus 1,530.64 seconds), further underscoring its efficiency. The reasons

for these speed improvements tie directly to the inefficiencies of the compared tools:

pip’s exhaustive backtracking, Conda’s multiple SAT solver calls, smartPip’s and

53

3. DEPENDENCY CONFLICT RESOLUTION

PyEGo’s use of a non-CNF SMT encoding. In contrast, SMTpip leverages CNF-based

Satisfiability Modulo Theories (SMT) instances to efficiently navigate the dependency

graph, minimizing redundant computations and ensuring convergence to valid solutions.

The consistent and substantial speed improvements across diverse datasets, as detailed

in Table 3.4.6, confirm that SMTpip’s technique is not only theoretically sound but

also highly efficient for practical use, making it a viable and superior alternative to

existing dependency management tools in real-world software development scenarios.

RQ2: Is the technique efficient enough to be used in practice?

In particular:

• SMTpip achieves significant speedups over pip (39× overall, up to 56× in SD),

driven by pip’s inefficient backtracking and repeated downloads.

• Compared to Conda, SMTpip offers a 37× speedup (up to 52× in SD), as

Conda’s SAT solver requires multiple constraint refinements, inflating runtime.

• Against smartPip, SMTpip provides a 3.2× speedup (up to 5.6× in HG2.9K),

overcoming smartPip’s non-CNF encoding structure that increases solver overhead.

• SMTpip outperforms PyEGo with a 4× speedup (up to 4.2× in HG2.9K), where

PyEGo’s non-CNF encoding contribute to increased solving times.

3.5 Threats to Validity

This section discusses threats to the validity of our research. Threats to external

validity refer to the generalizability of our findings, and threats to internal validity

involve potential biases or errors in our research methodology.

3.5.1 External Validity

Threats to external validity refer to the generalizability of our findings. We evaluate

SMTpip using Python-based projects. One can argue that the results may not be

generalized to every Python project. However, we would like to point to the fact that

54

3. DEPENDENCY CONFLICT RESOLUTION

we consider four different datasets of varying sizes and covering different application

domains. While Watchman, HG2.9K and SD datasets were used by prior studies,

we create a new dataset consisting of real-world Jupyter Notebook projects collected

from GitHub based on several criteria. Thus, our results should largely carry forward.

Other ecosystems (e.g., Java/Maven, JavaScript/npm, R/CRAN) may exhibit different

dependency resolution challenges due to variations in versioning schemes, dependency

graphs, or package metadata formats. However, the core of our technique does not

depend on any specific programming language or ecosystem. Thus, the technique

should be applicable to other ecosystems with minor changes.

3.5.2 Internal Validity

Threats to internal validity involve potential biases or errors in our research method-

ology. SMTpip assumes that package metadata (e.g., install requires in Python) is

accurate and complete. In practice, packages may omit dependencies, declare overly

permissive version constraints, or rely on implicit environment-specific behavior (e.g.,

system libraries). Such inaccuracies could propagate errors in the constraint-solving

process. The current implementation of SMTpip relies on the Z3 solver for constraint

resolution. The configuration of the Z3 solver could potentially affect the results, as it

directly influences how constraints are handled and solutions are selected. This aspect

was not explored in our experiments. However, the experimental results show that

SMTpip is more effective than state-of-the-art approaches despite using the default

settings for the Z3 solver. Future work could investigate solver-agnostic formulations

or adaptive configuration strategies to enhance the tool’s flexibility and performance

across different solver configurations.

3.6 Conclusion

Modern Python development is plagued by dependency conflicts and version incom-

patibilities, which disrupt workflows, compromise reproducibility, and degrade system

stability. This thesis introduces SMTpip, a novel SMT-based approach that addresses

55

3. DEPENDENCY CONFLICT RESOLUTION

these challenges by combining a dynamically constructed dependency knowledge

graph with constraint-driven optimization. By translating dependency rules, Python

version constraints, and user requirements into SMT expressions, SMTpip generates

conflict-free installation plans. It supports both configuration-aware resolution, for

projects with dependency files like requirements.txt, and code-driven inference,

which analyzes source code (e.g., import statements) to infer dependencies when

explicit dependency configuration files are absent.

Our evaluation in four datasets, three benchmark datasets (Watchman, HG2.9K,

SD), and a newly curated collection of 1359 real-world Jupyter Notebook projects,

demonstrate the superiority of SMTpip. It successfully resolved all dependency conflicts

and version incompatibilities for all the consistent cases and accurately identified all

the inconsistent cases, outperforming state-of-the-art tools like pip, Conda, smartPip,

and PyEGo by significant margins in speed (up to 39× faster than pip). These results

validate the efficiency of SMT solvers in navigating Python’s complex dependency

ecosystem, avoiding backtracking and combinatorial explosions inherent in traditional

methods.

Key contributions include: (1) a SMT-driven dependency resolution framework that

ensures compatibility during installation, (2) a public dataset of real-world dependency

conflicts to advance reproducibility research, and (3) empirical validation of SMT’s

viability in dependency management. By bridging the gap between installation-time

conflict resolution and post-hoc environment repair, SMTpip reduces developer effort,

enhances system stability, and promotes reproducible software environments.

Future work includes extending SMTpip to other ecosystems (e.g., JavaScript,

Java) and integrating incremental resolution strategies for evolving dependencies.

The success of SMTpip underscores the potential of formal methods in dependency

management, offering a pathway toward more robust, efficient, and scalable software

ecosystems.

56

CHAPTER 4

Generating Missing

Requirements.txt Files

This chapter introduces an automated approach to generating a requirements.txt file

for Python projects lacking dependency specifications, addressing the challenges of

identifying packages and their compatible versions through code parsing.

4.1 Introduction

The creation of a requirements.txt file is essential for ensuring the reproducibility

and portability of Python projects. This file specifies all external packages and

their versions required to run a project, allowing developers to recreate the same

environment across different systems. For example, a typical requirements.txt file for

a web-based project “jupyterhub”1 include packages like jupyter events, pydantic,

and SQLAlchemy with specific version constraints, as shown in Fig. 4.1.1. However,

many projects, particularly legacy or poorly documented ones, lack this file,2 creating

significant obstacles3 for deployment and maintenance. Manually reconstructing a

requirements.txt file is labor-intensive and prone to errors,4 as it involves identifying

all imported packages and selecting compatible versions.

To address this challenge, we introduce a standalone generator tool that automates

1https://github.com/jupyterhub/jupyterhub/blob/main/requirements.txt
2https://github.com/ktmeaton/NCBImeta/issues/10
3https://github.com/cool-RR/PySnooper/issues/26
4https://stackoverflow.com/questions/31684375/automatically-create-file-

requirements-txt

57

https://github.com/jupyterhub/jupyterhub/blob/main/requirements.txt
https://github.com/ktmeaton/NCBImeta/issues/10
https://github.com/cool-RR/PySnooper/issues/26
https://stackoverflow.com/questions/31684375/automatically-create-file-requirements-txt
https://stackoverflow.com/questions/31684375/automatically-create-file-requirements-txt

4. GENERATING MISSING REQUIREMENTS.TXT FILES

requirements.txt

alembic>=1.4

certipy>=0.1.2

jinja2>=2.11.0

jupyter_events

oauthlib>=3.0

pydantic>=2

SQLAlchemy>=1.4.1

tornado>=5.1

traitlets>=4.3.2

Fig. 4.1.1: An example of a requirements.txt file from the jupyterhub project.

the creation of a requirements.txt file by analyzing project files and leveraging historical

version data from PyPI, guided by the project’s development timeline. This work

tackles the second research problem of this thesis: generating a requirements.txt file

when none exists. It complements the first research problem, addressed by SMTpip

(Chapter 3), which uses a Satisfiability Modulo Theories (SMT) encoding to resolve

dependency conflicts and Python version incompatibilities for an existing require-

ments.txt file. The generator operates independently, relying solely on code parsing

and PyPI version data. Together, these tools form a powerful pipeline: the generator

produces a requirements.txt file, which SMTpip can then use to ensure a conflict-free

environment. This chapter outlines the problem, the generator’s methodology, and its

role in enhancing the reproducibility of Python projects.

4.2 The Problem of Missing Dependency Specifi-

cations

In Python projects, the absence of a requirements.txt file creates significant challenges

that impede installation, deployment, and maintenance. A primary issue is that

automated installation processes, such as those using pip, often depend on this

file to identify and install the necessary dependencies. When the file is missing,

the installation can fail entirely, as demonstrated by real-world examples from the

58

4. GENERATING MISSING REQUIREMENTS.TXT FILES

Fig. 4.2.1: The PyPI package of PySnooper is missing the “requirements.txt” file,
causing installation to fail.

Fig. 4.2.2: The PyPI package of NCBImeta is missing the “requirements.txt” file,
causing installation to fail.

PySnooper5 project, a debugging tool that traces Python code execution, similar to

Bash’s set -x, and the NCBImeta6 project, a command-line application for retrieving

and organizing metadata from the NCBI. For instance, in the PySnooper project [44],

users attempting to install the package with pip install pysnooper encounter a

FileNotFoundError. The error occurs because the setup.py script tries to read a

requirements.txt file that does not exist, halting the installation process with the

output in Figure 4.2.1.

Another example of a missing requirements.txt file is the NCBImeta project [38].

When users run pip install NCBImeta to install the package, the installation fails

due to the missing requirements.txt file, producing error in Figure 4.2.2.

These cases illustrate how the absence of a requirements.txt file disrupts the

5https://pypi.org/project/PySnooper/
6https://pypi.org/project/NCBImeta/

59

https://pypi.org/project/PySnooper/
https://pypi.org/project/NCBImeta/

4. GENERATING MISSING REQUIREMENTS.TXT FILES

standard installation workflow, preventing users from setting up the project without

additional intervention. The setup scripts in both projects expect the file to specify

dependencies, and its absence triggers immediate failures, underscoring the file’s

critical role in Python package management.

Beyond these installation issues, the lack of a requirements.txt file introduces further

complications. Without it, developers must manually examine the project’s source

code to identify all imported external packages—a task that becomes increasingly

difficult in large or complex projects with numerous files and dependencies. Even

after identifying the packages, determining the correct versions remains a significant

hurdle. Packages evolve over time, with newer versions potentially introducing breaking

changes or removing features that the project relies upon. Without documentation of

the project’s intended dependency versions—typically provided by a requirements.txt

file—developers must resort to trial and error to find compatible versions, which can

result in runtime errors or unexpected behavior. Additionally, packages often have

interdependencies, requiring careful resolution of version conflicts. These challenges

emphasize the need for an automated tool capable of inferring both the required

packages and their compatible versions based on the project’s context.

4.3 Proposed Solution and Methodology

The absence of a requirements.txt file, as discussed in the previous section, leads to

significant challenges such as installation failures and manual dependency identification.

To address these issues, we introduce a standalone generator tool that automates

the creation of a requirements.txt file by parsing project code and querying historical

version data from PyPI, guided by the project’s release and last update dates. This

tool operates independently of SMTpip (Chapter 3), which focuses on resolving

dependency conflicts for an existing requirements.txt file. The generator produces a

requirements.txt file that serves as an input to SMTpip, forming a complementary

pipeline where the generator creates the dependency specification and SMTpip ensures

a conflict-free environment.

60

4. GENERATING MISSING REQUIREMENTS.TXT FILES

The methodology consists of the following steps:

1. Parsing Import Statements: The generator scans all Python files in the

project directory to extract import statements using static code analysis. It

identifies external packages (e.g., numpy, requests) while excluding standard

library modules. The tool supports various import patterns, such as import

pandas or from sklearn import metrics, ensuring a comprehensive list of

dependencies.

2. Collecting Project Metadata: The generator requires the project’s release

date and last update date, provided by the user. These dates define the temporal

range for selecting library versions. For example, a project released on March 1,

2021, and last updated on July 10, 2023, will have its version selection of packages

set to those available between these dates.

3. Querying PyPI’s Historical Data: The generator queries PyPI’s release

history to retrieve version information for each library. It assigns a version

range where the lower bound is the latest version available before the release

date, and the upper bound is the latest version before the last update date. For

instance, if requests had version 2.25.0 available in February 2021 and 2.28.0

in June 2023, the generator specifies requests >= 2.25.0, <= 2.28.0 in the

requirements.txt file.

4. Generating the Requirements File: The generator compiles the identified

packages and their version ranges into a requirements.txt file, formatted for

compatibility with pip. An example entry might be:

numpy >= 1.19.0, <= 1.23.0

The generator’s role concludes with the creation of the requirements.txt file. It does

not perform dependency conflict resolution or ensure compatibility with the target

Python version. Instead, the generated file serves as input to SMTpip, which applies

61

4. GENERATING MISSING REQUIREMENTS.TXT FILES

dependency constraint solving to produce a conflict-free environment. The generator’s

workflow, illustrated in Figure 4.3.1, relies solely on code parsing and PyPI’s historical

data, minimizing manual effort and errors. This pipeline—where the generator creates

the requirements.txt file and SMTpip refines it—ensures reliable project deployment

across systems.

Fig. 4.3.1: Requirements.txt generator workflow.

When combined with SMTpip’s conflict resolution, it achieves the ultimate goal of

enabling reproducible, conflict-free environments for Python projects lacking depen-

dency specifications.

4.4 Evaluation and Results

Having outlined the methodology for generating requirements.txt files in the previous

section, we now evaluate the effectiveness of our standalone generator tool for Jupyter

notebook projects. This section addresses the following research question (RQ):

RQ: Can our generator tool accurately generate missing requirements.txt files?

4.4.1 Evaluation Procedure

To assess the generator tool’s ability to infer dependencies and reconstruct missing

requirements.txt files, we applied it to 1,359 Jupyter Notebook projects (comprising

3,081 .ipynb files), as described in Section 3.4.1. For each project, we removed the

existing requirements.txt file to recreate the missing requirements.txt scenario and

assigned the generator to reconstruct dependencies by analyzing import statements

62

4. GENERATING MISSING REQUIREMENTS.TXT FILES

and determining version ranges based on the project’s release and last update dates, as

detailed in Section 4.3. The generator produces a requirements.txt file, which is then

used by SMTpip (Chapter 3) to resolve dependency conflicts and create a conflict-free

environment.

A baseline comparison was conducted with pipreqs,7 a widely used tool for

generating requirements.txt files. We selected pipreqs because it is a standard,

popular choice for automatically scanning project files to identify imported packages

and generate a requirements.txt file, typically using the latest available package versions.

This makes it a suitable benchmark for evaluating our generator’s performance.

According to its PyPI description, pipreqs does not consider temporal constraints or

project metadata, which can lead to incompatible dependencies.

To validate accuracy, we created isolated virtual environments for each project

using SMTpip with the generated requirements.txt files and executed all notebooks. A

successful execution was defined as completing all notebook cells without dependency-

related errors.

4.4.2 Results

Results, presented in Table 4.4.1, show that the pipeline achieved a 39.92% success rate,

with 1,230 of 3,081 notebooks executing fully. In contrast, pipreqs achieved a 20.84%

success rate (642 notebooks), significantly lower than our pipeline’s performance. The

improved success rate of our approach stems from the generator’s use of temporal

constraints (i.e., selecting package versions available during the project’s active devel-

opment period) and SMTpip’s conflict resolution, which ensures compatibility with

the target Python version.

These results demonstrate that our generator, combined with SMTpip, effectively

synthesizes requirements.txt files for projects lacking dependency specifications, out-

performing pipreqs by nearly 2×. The pipeline—where the generator creates the

requirements.txt file and SMTpip resolves conflicts—addresses the challenges of missing

dependency specifications.

7https://pypi.org/project/pipreqs/

63

https://pypi.org/project/pipreqs/

4. GENERATING MISSING REQUIREMENTS.TXT FILES

Table 4.4.1: Success Rate Comparison: SMTpip vs. pipreqs

Tool Successful Notebooks Success Rate

SMTpip 1,230 39.92%

pipreqs [42] 642 20.84%

Error Type Frequency

ModuleNotFoundError 592

FileNotFoundError 518

TypeError/SyntaxError 461

Environment-Specific 280

4.4.3 Failure Analysis

Failures were primarily due to non-dependency-related issues, detailed below with

examples.

ModuleNotFoundError (32%) occurs when a module is imported but not in-

stalled, often because static analysis cannot detect dynamic imports. For instance,

a notebook using importlib.import module(‘seaborn’) failed with ModuleNot-

FoundError: No module named ‘seaborn’. Similarly, another notebook imported

sklearn.metrics, but the generated requirements.txt included only sklearn without

specifying a version that included metrics, resulting in ModuleNotFoundError: No

module named ‘sklearn.metrics’.

FileNotFoundError (28%) is triggered when referenced files are missing. For

example, a notebook attempting to load a dataset with pd.read csv(‘data.csv’)

failed when data.csv was absent, producing FileNotFoundError: [Errno 2] No such

file or directory: ‘data.csv’. Another notebook using plt.imread(‘image.png’)

failed due to a missing image file, resulting in FileNotFoundError: [Errno 2] No such

file or directory: ‘image.png’.

TypeError/SyntaxError (25%) arises from incompatible API usage or syntax

issues. For instance, a notebook using an outdated numpy API, such as numpy.random.

RandomState(0), with a newer version where the API changed, failed with TypeError:

RandomState() got an unexpected keyword argument ‘dtype’. Another notebook with

Python 2 syntax in a Python 3 environment, like print ‘Hello’, caused SyntaxError:

Missing parentheses in call to ‘print’. Did you mean print(‘Hello’)?.

64

4. GENERATING MISSING REQUIREMENTS.TXT FILES

Environment-Specific Issues (15%) involve problems related to hardware or OS

dependencies. For example, a notebook requiring pycuda failed on a system without a

compatible GPU, producing RuntimeError: No CUDA GPUs are available. Another

notebook using a Windows-specific library on a Linux system failed with ImportError:

DLL load failed: The specified module could not be found.

RQ: Can Generator Tool Generate Missing Requirements.txt Files?

In particular:

• The generator tool successfully generated requirements.txt files and successfully

executed 1,230 out of 3,081 notebooks, achieving a 39.92% success rate in

recreating executable environments.

• Compared to pipreqs, which achieved a 20.84% success rate (642 notebooks),

SMTpip demonstrated nearly 2× better performance due to its contextual version

resolution and temporal constraint handling.

• Failures were primarily due to non-dependency issues, such as ModuleNot-

FoundError (32%), FileNotFoundError (28%), TypeError/SyntaxError

(25%), and Environment-Specific Issues (15%), highlighting challenges beyond

dependency resolution.

4.5 Related Work

The evaluation in the previous section demonstrated the effectiveness of our gener-

ator tool and its pipeline with SMTpip in reconstructing missing requirements.txt

files for Jupyter notebook projects. To contextualize our contribution, this section

reviews existing tools and research related to dependency management and automated

configuration synthesis in Python projects.

Several tools address the generation of requirements.txt files by analyzing Python

code. pipreqs, as discussed in Section 4.4, scans project files to identify imported

packages and generates a requirements.txt file using the latest available package versions.

65

4. GENERATING MISSING REQUIREMENTS.TXT FILES

While effective for simple projects, pipreqs does not consider the project’s development

timeline, often leading to incompatible versions, as evidenced by its 20.84% success

rate in our evaluation. Similarly, pipdeptree8 visualizes dependency trees and can

export them as requirements.txt files, but it requires an existing environment and

does not infer versions for projects lacking dependency specifications. poetry9 and

conda10 offer advanced dependency management but rely on pre-existing configuration

files (e.g., pyproject.toml or environment.yml), making them unsuitable for legacy

projects without such files.

Research on automated dependency inference has explored static and dynamic

analysis techniques. For instance, Cheng et al. [10] proposed a method to infer

dependencies by analyzing import statements and runtime behavior, but it requires

executing the code, which is impractical for notebooks with missing data files or

environment-specific dependencies (e.g., pycuda. Other studies, such as smartPip

[47], focus on version constraint solving but assume an existing requirements.txt

file, aligning more closely with SMTpip’s role than our generator’s. Unlike these

approaches, our generator leverages PyPI’s historical data and temporal constraints to

reconstruct requirements.txt files without requiring code execution, making it suitable

for legacy and poorly documented projects like those in the PySnooper and NCBImeta

cases [44, 38].

Dependency conflict resolution, addressed by SMTpip, has parallels in tools like

pip’s internal resolver and poetry’s dependency solver. However, these tools operate

on existing dependency specifications, whereas SMTpip integrates with our generator’s

output, forming a pipeline that handles both missing configurations and conflict

resolution. This combination distinguishes our work, as it addresses the full spectrum

of challenges—from generating missing requirements.txt files in the format shown in

Figure 4.1.1 to ensuring a conflict-free environment.

8https://pypi.org/project/pipdeptree/
9https://python-poetry.org/

10https://docs.conda.io/

66

https://pypi.org/project/pipdeptree/
https://python-poetry.org/
https://docs.conda.io/

4. GENERATING MISSING REQUIREMENTS.TXT FILES

4.6 Threats to Validity

The related work section positioned our generator and SMTpip within the landscape

of dependency management tools and research. Here, we discuss potential threats to

the validity of our evaluation (Section 4.4) to provide a balanced perspective on the

results and limitations of our approach.

Internal Validity: The accuracy of the generated requirements.txt files de-

pends on the completeness of static code analysis. 32% of failures were due to

ModuleNotFoundError from undetected dynamic imports (e.g., importlib.import

module(‘seaborn’)). Static analysis cannot capture runtime imports, which may

lead to incomplete dependency lists. Additionally, the reliance on user-provided release

and last update dates introduces potential errors if these dates are inaccurate, as they

directly influence version range selection. For example, an incorrect release date might

result in a requirements.txt file with incompatible versions, such as those seen in the

NCBImeta installation failure [38].

External Validity: Our evaluation focused on 1,359 Jupyter Notebook projects,

which may not represent all Python project types (e.g., web applications, CLI tools).

Jupyter notebooks often rely on data files and environment-specific dependencies (e.g.,

pycuda), contributing to 28% FileNotFoundError and 15% environment-specific

failures. Generalizing our findings to non-notebook projects could be limited, as

these may have different import patterns or dependency structures. However, the

generator’s methodology (Figure 4.3.1) is agnostic to project type, suggesting potential

applicability beyond notebooks.

4.7 Conclusion and Future Work

The previous section highlighted threats to validity, underscoring the challenges of

evaluating dependency generation for Python projects. This chapter introduced a

standalone generator tool to address the second research problem: generating missing

requirements.txt files for Python projects, particularly legacy or poorly documented

67

4. GENERATING MISSING REQUIREMENTS.TXT FILES

ones like PySnooper and NCBImeta [44, 38]. The generator automates dependency

inference by parsing import statements and querying PyPI’s historical data, guided

by project release and last update dates, as outlined in Section 4.3. It produces a

requirements.txt file, formatted as shown in Fig. 4.1.1, which serves as input to SMTpip

(Chapter 3) for dependency conflict resolution.

Our evaluation on 1,359 Jupyter Notebook projects (Section 4.4) demonstrated a

39.92% success rate, with 1,230 of 3,081 notebooks executing successfully, nearly dou-

bling the performance of pipreqs (20.84%). Failures due to ModuleNotFoundError,

FileNotFoundError, TypeError/SyntaxError, and environment-specific issues high-

light limitations beyond dependency management, such as dynamic imports and

missing data files.

Future work could enhance the generator by incorporating dynamic analysis

to detect runtime imports, reducing ModuleNotFoundError occurrences. Integrating

version inference with code execution traces could improve version accuracy, addressing

TypeError/SyntaxError issues from API changes. Expanding the knowledge graph

to include metadata from GitHub repositories or PyPI download statistics could refine

temporal constraints. Additionally, validating the generated requirements.txt files in

virtual environments before SMTpip’s resolution could catch errors early. Combining

these improvements with SMTpip’s conflict resolution would further advance the

pipeline’s ability to support diverse Python projects, ensuring seamless deployment

and maintenance.

This work represents a significant step toward automating dependency management

for Python projects lacking requirements.txt files. By providing a standalone generator

and a complementary conflict resolver, we address critical challenges in software

reproducibility, paving the way for more reliable and maintainable Python ecosystems.

68

CHAPTER 5

Conclusion

This chapter concludes the thesis by summarizing the key findings and contributions.

Section 5.1 provides a summary of the research, while Section 5.2 discusses potential

future research directions in the field.

5.1 Summary of Research Findings and Contribu-

tions

This thesis addresses the pervasive challenges of dependency conflicts and version

incompatibilities in modern Python development, which hinder reproducibility, dis-

rupt workflows, and compromise system stability. We introduced SMTpip, a novel

dependency resolution framework that leverages Satisfiability Modulo Theories (SMT)

to generate conflict-free installation plans. By integrating a dynamically constructed

dependency knowledge graph with constraint-driven optimization, SMTpip translates

dependency rules, Python version constraints, and user requirements into SMT ex-

pressions. This approach supports both configuration-aware resolution for projects

with dependency files and code-driven inference for those without, ensuring broad

applicability across diverse Python projects.

Our comprehensive evaluation spanned four datasets: three benchmark datasets

(Watchman, HG2.9K, SD) and a newly curated collection of 1,359 real-world Jupyter

Notebook projects. The results demonstrate SMTpip’s superior performance, as it

successfully resolved all dependency conflicts and version incompatibilities in consistent

cases while accurately identifying inconsistent cases. Compared to state-of-the-art

69

5. CONCLUSION

tools like pip, Conda, smartPip, and PyEGo, SMTpip achieved remarkable efficiency,

resolving dependencies up to 39× faster than pip. These outcomes highlight the power

of SMT solvers in navigating Python’s complex dependency ecosystem.

The key contributions of this work are threefold:

1. SMT-driven Dependency Resolution Framework: SMTpip provides a

robust and efficient solution for dependency management, ensuring compatibility

during installation.

2. Public Dataset of Real-world Dependency Conflicts: The curated dataset

of 1,359 Jupyter Notebook projects serves as a valuable resource for advancing

research on reproducibility and dependency management.

3. Empirical Validation of SMT in Dependency Management: Through

rigorous evaluation, we demonstrated the viability of formal methods in ad-

dressing real-world software engineering challenges, bridging the gap between

installation-time conflict resolution and post-hoc environment repair.

5.2 Future Research Directions

While SMTpip represents a significant advancement in Python dependency manage-

ment, several opportunities exist to extend and refine its capabilities. One promising

direction is to adapt the SMTpip framework to other programming ecosystems, such

as JavaScript (npm), Java (Maven), or R (CRAN). These ecosystems face similar

dependency challenges, and applying SMT-based resolution could yield comparable

benefits. However, this would require constructing ecosystem-specific dependency

knowledge graphs and adapting SMT expressions to account for unique versioning

conventions and dependency structures.

Another area for exploration is the integration of incremental resolution strategies

to handle evolving dependencies. As projects receive updates, their dependency

requirements may change, necessitating re-resolution of installation plans. Developing

mechanisms to incrementally update the dependency knowledge graph and SMT

70

5. CONCLUSION

constraints, rather than recomputing them from scratch, could significantly reduce

resolution times and improve scalability for large, dynamic projects.

Finally, exploring the application of machine learning to predict dependency

conflicts or recommend optimal version combinations could complement SMTpip’s

formal methods. By training models on historical dependency data, such as the public

dataset introduced in this work, future iterations of SMTpip could proactively identify

potential issues before resolution begins, further streamlining the development process.

The success of SMTpip underscores the transformative potential of formal methods

in software engineering. By addressing the limitations of existing tools and laying the

groundwork for future innovations, this work paves the way for more robust, efficient,

and scalable dependency management across diverse software ecosystems.

71

REFERENCES

[1] Abate, P., Cosmo, R. D., Gousios, G., and Zacchiroli, S. (2020). Dependency

solving is still hard, but we are getting better at it. In Proceedings of the 27th

International Conference on Software Analysis, Evolution and Reengineering, pages

547–551.

[2] Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mohamed,

A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M., Reynolds,

A., Sheng, Y., Tinelli, C., and Zohar, Y. (2022). cvc5: A versatile and industrial-

strength SMT solver. In Tools and Algorithms for the Construction and Analysis

of Systems, pages 415–442.

[3] Barrett, C., Sebastiani, R., Seshia, S., and Tinelli, C. (2009). Satisfiability modulo

theories. In Handbook of Satisfiability, volume 185, pages 825–885.

[4] Barrett, C., Stump, A., and Tinelli, C. (2010). The SMT-LIB standard: Version

2.0. In Proceedings of the 8th International Workshop on Satisfiability Modulo

Theories.

[5] Biere, A., Faller, T., Fazekas, K., Fleury, M., Froleyks, N., and Pollitt, F. (2024).

CaDiCaL 2.0. In Proceedings of the 36th International Conference on Computer

Aided Verification, page 133–152.

[6] Biere, A., Heule, M., van Maaren, H., and Walsh, T. (2009). Handbook of

satisfiability. In Handbook of Satisfiability, volume 185.

72

REFERENCES

[7] Bjørner, N. S. and Phan, A.-D. (2014). νZ - maximal satisfaction with Z3. In

International Symposium on Symbolic Computation in Software Science, pages 1–9.

[8] Bright, C., Gerhard, J., Kotsireas, I., and Ganesh, V. (2020). Effective problem

solving using SAT solvers. In Maple in Mathematics Education and Research, page

205–219.

[9] Cao, Y., Chen, Z., Zhang, X., Li, Y., Chen, L., and Wang, L. (2024). Diagnosis of

package installation incompatibility via knowledge base. In Science of Computer

Programming, volume 235, page 103098.

[10] Cheng, W., Hu, W., and Ma, X. (2024). Revisiting knowledge-based inference

of Python runtime environments: A realistic and adaptive approach. In IEEE

Transactions on Software Engineering, pages 258–279.

[11] Cheng, W., Zhu, X., and Hu, W. (2022). Conflict-aware inference of Python

compatible runtime environments with domain knowledge graph. In Proceedings of

the 44th International Conference on Software Engineering, pages 451–461.

[12] Claes, M., Mens, T., Cosmo, R. D., and Vouillon, J. (2015). A historical analysis

of Debian package incompatibilities. In Proceedings of the International Conference

on Mining Software Repositories, pages 212–223.

[13] Conda (2024). Conda documentation. https://docs.conda.io/en/latest/.

Last Accessed: 2024-09-18.

[14] Conda Community (2020). Understanding and improving Conda’s per-

formance. https://www.anaconda.com/blog/understanding-and-improving-

condas-performance. Last Accessed: 2024-10-12.

[15] Cox, R. (2016). Version SAT. https://research.swtch.com/version-sat. Last

Accessed: 2024-10-12.

[16] Davis, M., Logemann, G., and Loveland, D. (1962). A machine program for

theorem-proving. In Communications of the ACM, volume 5, pages 394–397.

73

https://docs.conda.io/en/latest/
https://www.anaconda.com/blog/understanding-and-improving-condas-performance
https://www.anaconda.com/blog/understanding-and-improving-condas-performance
https://research.swtch.com/version-sat

REFERENCES

[17] de Moura, L. and Bjørner, N. (2008). Z3: An efficient SMT solver. In Proceedings

of the 14th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, pages 337–340.

[18] Decan, A., Mens, T., and Claes, M. (2017). An empirical comparison of depen-

dency issues in OSS packaging ecosystems. In Proceedings of the International

Conference on Software Analysis, Evolution, and Reengineering, pages 2–12.

[19] Decan, A., Mens, T., Claes, M., and Grosjean, P. (2016). When GitHub meets

CRAN: An analysis of inter-repository package dependency problems. In Proceedings

of the International Conference on Software Analysis, Evolution, and Reengineering,

volume 1, pages 493–504.

[20] Dilhara, M., Ketkar, A., and Dig, D. (2021). Understanding software-2.0: A

study of machine learning library usage and evolution. In ACM Transactions on

Software Engineering and Methodology, volume 30, pages 1–42.

[21] Fan, G., Wang, C., Wu, R., Xiao, X., Shi, Q., and Zhang, C. (2020). Escaping

dependency hell: finding build dependency errors with the unified dependency

graph. In Proceedings of the 29th ACM SIGSOFT International Symposium on

Software Testing and Analysis, pages 463–474.

[22] Fflpy (2024). issue #1: Dependency conflict in fflpy repository. https://

github.com/smkell/fflpy/issues/1. Last Accessed: 2024-10-07.

[23] Gario, M. and Micheli, A. (2015). pySMT: A library for SMT formulae ma-

nipulation and solving. In Proceedings of the 4th International Symposium on

International Conference on Computer Aided Verification, pages 360–368.

[24] Gousios, G. (2013). The GHTorent dataset and tool suite. In Proceedings of the

10th Working Conference on Mining Software Repositories, pages 233–236.

[25] Horton, E. and Parnin, C. (2018). Gistable: Evaluating the executability of

Python code snippets on GitHub. In Proceedings of the International Conference

on Software Maintenance and Evolution, pages 217–227.

74

https://github.com/smkell/fflpy/issues/1
https://github.com/smkell/fflpy/issues/1

REFERENCES

[26] Horton, E. and Parnin, C. (2019a). DockerizeMe: Automatic inference of environ-

ment dependencies for Python code snippets. In Proceedings of the 41st International

Conference on Software Engineering, pages 328–338.

[27] Horton, E. and Parnin, C. (2019b). V2: Fast detection of configuration drift in

Python. In Proceedings of the 34th International Conference on Automated Software

Engineering, pages 477–488.

[28] Huang, K., Chen, B., Shi, B., Wang, Y., jian Xu, C., and Peng, X. (2020).

Interactive, effort-aware library version harmonization. In Proceedings of the 28th

ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering.

[29] Islam, M. J., Nguyen, G., Pan, R., and Rajan, H. (2019). A comprehensive study

on deep learning bug characteristics. In Proceedings of the International Conference

on Software Engineering, pages 510–520.

[30] Li, Z., Wang, Y., Lin, Z., Cheung, S.-C., and Lou, J.-G. (2022). Nufix: escape

from NuGet dependency maze. In Proceedings of the International Conference on

Software Engineering, pages 1545–1557.

[31] Liang, J. H., Ganesh, V., Poupart, P., and Czarnecki, K. (2016). Learning rate

based branching heuristic for SAT solvers. In Proceedings of the 19th International

Conference for Theory and Applications of Satisfiability Testing, pages 123–140.

[32] Liu, C., Chen, S., Fan, L., Chen, B., Liu, Y., and Peng, X. (2022). Demystifying

the vulnerability propagation and its evolution via dependency trees in the NPM

ecosystem. In Proceedings of the International Conference on Software Engineering,

pages 672–684.

[33] Lopez, J., Kapfhammer, G. M., and McMinn, P. (2012). On the application of

SAT solvers to test suite minimization. In Proceedings of the 4th International

Symposium on Search Based Software Engineering, pages 246–251.

75

REFERENCES

[34] Mamba (2020). Making Conda fast again. https://wolfv.medium.com/making-

conda-fast-again-4da4debfb3b7. Last Accessed: 2024-10-12.

[35] Masina, G., Spallitta, G., and Sebastiani, R. (2023). On CNF conversion for

disjoint SAT enumeration. In Proceedings of the 26th International Conference on

Theory and Applications of Satisfiability Testing.

[36] Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., and Malik, S. (2001).

Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th annual Design

Automation Conference, pages 530–535.

[37] Mukherjee, S., Almanza, A., and Rubio-González, C. (2021). Fixing dependency

errors for Python build reproducibility. In Proceedings of the 30th ACM SIGSOFT

International Symposium on Software Testing and Analysis, pages 439–451.

[38] NCBImeta (2018). Ncbimeta issue #10: Missing “requirements.txt” in PyPI

package. https://github.com/ktmeaton/NCBImeta/issues/10. Last Accessed:

2024-10-13.

[39] Nimble (2021). Modern techniques for dependency resolution. https://

nimblepkg.github.io/docs/dependency-resolution. Last Accessed: 2024-10-12.

[40] PEP440 (2013). Version identification and dependency specification. https:

//peps.python.org/pep-0440/#version-specifiers. Last Accessed: 2024-10-12.

[41] pip (2020). pip documentation v24.2. https://pip.pypa.io/en/stable/topics/

dependency-resolution/. Last Accessed: 2024-10-10.

[42] pipreqs (2024). Generate requirements.txt file for any project based on imports.

https://github.com/bndr/pipreqs. Last Accessed: 2024-10-13.

[43] PyPI (2024). Python package index. https://PyPI.org/. Last Accessed: 2024-

09-18.

76

https://wolfv.medium.com/making-conda-fast-again-4da4debfb3b7
https://wolfv.medium.com/making-conda-fast-again-4da4debfb3b7
https://github.com/ktmeaton/NCBImeta/issues/10
https://nimblepkg.github.io/docs/dependency-resolution
https://nimblepkg.github.io/docs/dependency-resolution
https://peps.python.org/pep-0440/#version-specifiers
https://peps.python.org/pep-0440/#version-specifiers
https://pip.pypa.io/en/stable/topics/dependency-resolution/
https://pip.pypa.io/en/stable/topics/dependency-resolution/
https://github.com/bndr/pipreqs
https://PyPI.org/

REFERENCES

[44] PySnooper (2018). Pysnooper issue #26: pip install fails for missing require-

ments.txt. https://github.com/cool-RR/PySnooper/issues/26. Last Accessed:

2024-10-13.

[45] Soto-Valero, C., Harrand, N., Monperrus, M., and Baudry, B. (2021). A compre-

hensive study of bloated dependencies in the Maven ecosystem. In Proceedings of

Empirical Software Engineering, pages 123–135.

[46] Vouillon, J. and Cosmo, R. D. (2013). On software component co-installability.

In ACM Transactions on Software Engineering and Methodology, volume 22, pages

34:1–34:35.

[47] Wang, C., Wu, R., Song, H., Shu, J., and Li, G. (2022). smartPip: A smart

approach to resolving Python dependency conflict issues. In Proceedings of the 37th

International Conference on Automated Software Engineering.

[48] Wang, H., Liu, S., Zhang, L., and Xu, C. (2023). Automatically resolving

dependency-conflict building failures via behavior-consistent loosening of library

version constraints. In Proceedings of the 31st ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering.

[49] Wang, J., Li, L., and Zeller, A. (2021). Restoring execution environments of

Jupyter notebooks. In Proceedings of the 43rd International Conference on Software

Engineering, pages 1622–1633.

[50] Wang, Y., Wen, M., Liu, Y., Wang, Y., Li, Z., Wang, C., Yu, H., Cheung, S.-C.,

Xu, C., and Zhu, Z. (2020). Watchman: Monitoring dependency conflicts for Python

library ecosystem. In Proceedings of the 42nd International Conference on Software

Engineering, pages 125–135.

[51] Wang, Y., Wen, M., Liu, Z., Wu, R., Wang, R., Yang, B., Yu, H., Zhu, Z., and

Cheung, S.-C. (2018). Do the dependency conflicts in my project matter? In

Proceedings of the 26th ACM Joint Meeting on European Software Engineering

77

https://github.com/cool-RR/PySnooper/issues/26

REFERENCES

Conference and Symposium on the Foundations of Software Engineering, pages

319–330.

[52] Ye, H., Chen, W., Dou, W., Wu, G., and Wei, J. (2022). Knowledge-based

environment dependency inference for Python programs. In Proceedings of the 44th

International Conference on Software Engineering, pages 1245–1256.

[53] Zhu, C., Saha, R. K., Prasad, M., and Khurshid, S. (2021). Restoring the

executability of Jupyter notebooks by automatic upgrade of deprecated APIs. In

Proceedings of the 36th International Conference on Automated Software Engineering,

pages 240–252.

[54] Zhu, R., Wang, X., Liu, C., Xu, Z., Shen, W., Chang, R., and Liu, Y. (2024).

ModuleGuard: understanding and detecting module conflicts in Python ecosystem.

In Proceedings of the 46th International Conference on Software Engineering, pages

1–12.

78

APPENDIX A

Sample SMT Instances

This appendix presents sample SMT instances generated by SMTpip, smartPip, and

PyEGo for dependency resolution, focusing on the packages python-dateutil and

six. Each tool encodes package version constraints differently, as shown in the

simplified snippets below. Full expressions are omitted for brevity. The snippets

illustrate variable declarations, constraints, and optimization objectives, highlighting

the structural differences in their approaches.

A.1 SMTpip: Boolean Variables

SMTpip declares a Boolean variable for each package version and the none case,

ensuring mutual exclusivity with (at-most 1) constraints. Soft assertions with

weights optimize for newer versions or non-installation.

1 ; Variable Declarations (for python-dateutil)

2 (declare-fun python-dateutil==none () Bool)

3 (declare-fun python-dateutil==2.7.3 () Bool)

4 (declare-fun python-dateutil==2.8.2 () Bool)

5 ; ... (other versions)

6

7 ; Constraint: At most one version

8 (assert ((_ at-most 1)

9 python-dateutil==none

10 python-dateutil==2.7.3

11 python-dateutil==2.8.2

79

A. SAMPLE SMT INSTANCES

12 ; ... (other versions)))

13

14 ; Exclusion Constraints

15 (assert (=> python-dateutil==none (not python-dateutil==2.7.3)))

16 (assert (=> python-dateutil==none (not python-dateutil==2.8.2)))

17

18 ; Optimization (soft assertions)

19 (assert-soft python-dateutil==none :weight 1)

20 (assert-soft python-dateutil==2.8.2 :weight 0.833)

A.2 smartPip: Integer Variables with Nested Logi-

cal Constraints

smartPip assigns integer variables to packages, mapping versions to numerical values.

Constraints enforce valid version ranges, and multiple maximization objectives aim to

favor newer versions, though Z3 prioritizes only the first objective.

1 ; Variable Declaration

2 (declare-fun python-dateutil () Int)

3

4 ; Constraints: Version Range and Specific Values

5 (assert (< python-dateutil 2726797)) ; Upper bound

6 (assert (>= python-dateutil 2726794)) ; Lower bound

7 (assert (or (= python-dateutil 2726794) ; 2.7.3

8 (= python-dateutil 2726796))) ; 2.8.2

9

10 ; Dependency Constraint (e.g., with six)

11 (assert (or (and (= python-dateutil 2726796) (< six 9232) (>= six 9215))

12 ; ... (other conditions)))

13

14 ; Optimization

80

A. SAMPLE SMT INSTANCES

15 (maximize python-dateutil)

16 ; ... (other maximize directives)

smartPip uses multiple maximization functions (e.g., (maximize python-dateutil),

(maximize six)) to prefer newer versions. However, Z3 only allows one effective

optimization objective, executing the first one fully and disregarding subsequent ones.

A.3 PyEGo: Nested Logical Constraints

PyEGo uses integer variables and complex logical expressions (Or, And) to model

dependencies, ensuring compatibility across version combinations. It issues multiple

(check-sat) calls for different constraint types.

1 (set-logic QF_LIA)

2

3 ; Dependency Constraint (for six and python)

4 (assert (Or (And (= six 8)

5 (Or (= python 0) (= python 1) (= python 2)))

6 (And (= six 1)

7 (Or (= python 0) (= python 1) (= python 2)))

8 ; ... (other combinations)))

9

10 ; Integer Constraint

11 (assert (And (six >= 0) (six <= 11)))

12

13 ; Version Constraint

14 (assert (Or (six == 0) (six == 1) (six == 8) ; ... (valid versions)))

15

16 (check-sat)

81

VITA AUCTORIS

NAME: Sadman Jashim Sakib

PLACE OF BIRTH: Dhaka, Bangladesh

YEAR OF BIRTH: 1998

EDUCATION: BRAC University, B.Sc in Computer Science & Engi-
neering, Dhaka, Bangladesh, 2022

University of Windsor, M.Sc in Computer Science, Wind-
sor, Ontario, 2025

82

	DECLARATION OF ORIGINALITY
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation
	Research Problems
	Dependency Conflicts
	 Package Dependency Conflicts
	Python Version Incompatibilities

	Missing or Incomplete Configuration Files

	Addressing the Research Problems
	Capabilities and Limitations of Pip
	Alternative Package Managers
	Existing Techniques in the Literature
	Proposed Solutions: SMTpip and Our Automatic Configuration Generator

	Contributions of the Thesis
	Outline of the Thesis

	Background and Related Work
	Package Management
	Configuration Files
	Python Package Installation
	Dependency Constraints
	Satisfiability Solving
	Satisfiability Solvers

	Related Work
	Dependency Conflict Resolution
	Environment Reproducibility and Build-Failure Repair
	SAT and SMT Solvers in Software Engineering

	Dependency Conflict Resolution
	Introduction
	SMTpip: SMT-driven approach
	Knowledge Graph Construction
	SMT Encoding of Dependency Resolution
	Example of Dependency Constraints

	Comparison With Baseline
	Comparison with smartPip
	Comparison with PyEGo

	Evaluation
	Datasets
	RQ1: How effective is SMTpip in resolving library dependency conflicts and Python version incompatibilities during installation compared to pip, Conda, smartPip, and PyEGo?
	RQ2: Is the Technique Efficient Enough for Practical Use?

	Threats to Validity
	External Validity
	Internal Validity

	Conclusion

	Generating Missing Requirements.txt Files
	Introduction
	The Problem of Missing Dependency Specifications
	Proposed Solution and Methodology
	Evaluation and Results
	Evaluation Procedure
	Results
	Failure Analysis

	Related Work
	Threats to Validity
	Conclusion and Future Work

	Conclusion
	Summary of Research Findings and Contributions
	Future Research Directions

	REFERENCES
	Sample SMT Instances
	SMTpip: Boolean Variables
	smartPip: Integer Variables with Nested Logical Constraints
	PyEGo: Nested Logical Constraints

	VITA AUCTORIS

