
Programmatic SAT for SHA-256 Collision
Attack

By

Nahiyan Alamgir

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2024

©2024 Nahiyan Alamgir



Programmatic SAT for SHA-256 Collision Attack

by

Nahiyan Alamgir

APPROVED BY:

H. Wu

Electrical and Computer Engineering

S. Samet

School of Computer Science

C. Bright, Supervisor

School of Computer Science

August 14, 2024



DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION

Co-Authorship

I hereby declare that this thesis incorporates material that is result of joint research,

as follows:

In Chapters 4 and 5 of this thesis, the findings are the result of collaborative work

with Dr. Curtis Bright and Dr. Saeed Nejati as co-authors. The computer algebraic

techniques presented in Section 4.1 and Section 4.2.2 were proposed by Dr. Bright

(based on the work of Mendel et al. [40]) and implemented by myself. Additionally,

all aspects of the research were accomplished through joint efforts and collaboration

with Dr. Bright and Dr. Nejati.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my thesis,

and have obtained written permission from each of the co-authors to include the above

materials in my thesis. I certify that, with the above qualification, this thesis, and the

research to which it refers, is the product of my own work.

Previous Publication

This thesis includes an original paper that has been previously published to a workshop

for publication, as follows:

• Portions of Chapter 3, 4, and 5: Alamgir, N., Nejati, S., & Bright, C.

(2024). SHA-256 Collision Attack with Programmatic SAT. In Kaufmann, D.

and Brown, C., editors, Proceedings of the 9th International Workshop on

Satisfiability Checking and Symbolic Computation, July 2, 2024, Nancy, France,

Collocated with IJCAR 2024, volume 3717 of CEUR Workshop Proceedings,

pages 91–110. CEUR-WS.org.

I certify that I have obtained a written permission from the copyright owners

to include the above published materials in my thesis. I certify that the above

material describes work completed during my registration as a graduate student at

the University of Windsor.

III



General

I declare that, to the best of my knowledge, my thesis does not infringe upon anyone’s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations,

or any other material from the work of other people included in my thesis, published

or otherwise, are fully acknowledged in accordance with the standard referencing

practices. Furthermore, to the extent that I have included copyrighted material that

surpasses the bounds of fair dealing within the meaning of the Canada Copyright

Act, I certify that I have obtained a written permission from the copyright owners to

include such materials in my thesis. I declare that this is a true copy of my thesis,

including any final revisions, as approved by my thesis committee and the Graduate

Studies office, and that this thesis has not been submitted for a higher degree to any

other University or Institution.

IV



ABSTRACT

Cryptographic hash functions play a crucial role in ensuring data security, generat-

ing fixed-length hashes from variable-length inputs. The hash function SHA-256 is

trusted for data security due to its resilience after over twenty years of intense scrutiny.

One of its critical properties is collision resistance, meaning that it is infeasible to find

two different inputs with the same hash. Currently, the best SHA-256 collision attacks

use differential cryptanalysis to find collisions in simplified versions of SHA-256 that

are reduced to have fewer steps, making it feasible to find collisions. In this thesis, we

use a satisfiability (SAT) solver as a tool to search for step-reduced SHA-256 collisions,

and dynamically guide the solver with the aid of a computer algebra system (CAS)

used to detect inconsistencies and deduce information that the solver would otherwise

not detect on its own. Our hybrid SAT + CAS solver significantly outperformed a

pure SAT approach, enabling us to find collisions in step-reduced SHA-256 with signif-

icantly more steps. Using SAT + CAS, we are able to find a 38-step slightly-modified

SHA-256 collision first found with a highly sophisticated search tool by Mendel, Nad,

and Schläffer. Conversely, a pure SAT approach could find collisions for no more than

28 steps. However, our work only uses the SAT solver CaDiCaL and its programmatic

interface IPASIR-UP.
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CHAPTER 1

Introduction

This thesis discusses several methodologies for finding collisions in cryptographic hash

functions by augmenting a SAT solver. Our focus is on the cryptographic hash function

SHA-256 (and weakened versions of SHA-256), and we investigate how augmenting

a SAT solver can be programmed to search for collisions. Specifically, we explore

integrating prominent differential cryptanalysis techniques into a SAT solver, which

aids the search process and enables the discovery of collisions for less-weakened versions

of SHA-256.

Cryptographic hash functions play a vital role in information security. They are

widely relied on for data security and integrity. Due to their critical importance,

cryptographic hash functions are frequent targets for cryptanalysis. Over time, many

once-reliable hash functions have been compromised. Notable examples include MD5

and SHA-1, which were found to be vulnerable to collision attacks as demonstrated by

Wang and Yu [58] and Stevens et al. [52], respectively. SHA-1, published by NIST in

1995 [43], showed vulnerabilities soon after the introduction of its successor, the SHA-2

family, in 2001. In 2011, due to identified weaknesses, NIST recommended migrating

from SHA-1 to more secure hash functions like those in the SHA-2 family, which

have since become widely used. For instance, SHA-256 is employed for transaction

signatures and proof-of-work in the Bitcoin protocol [42].

Despite the arrival of SHA-3 [21], NIST still recommends both the SHA-2 and

SHA-3 families. SHA-2 is attractive for its ease-of-computation while still being secure

to all known attacks—no collision attack has ever been successful on the full version,

despite a large number of attempts and partial results. One such attack by Mendel

et al. [40] in 2013 utilized differential cryptanalysis for SHA-256. It was inspired by

the 2005 work of Wang and Yu [58] that used a differential attack (involving modular

integer differences) to find MD5 collisions. Mendel et al. found collisions for step-

reduced versions of SHA-256 up to 28 steps and a “semi-free-start” collision (where

the hash function is slightly modified to allow changing some predefined constants) of

SHA-256 up to 38 steps. These records held for over ten years and were only broken

in the last few months with the announcement of a 31-step SHA-256 collision [34] and

1



1. INTRODUCTION

a 39-step semi-free-start (SFS) SHA-256 collision [33].

Traditionally, the best collisions for step-reduced SHA-256 were found using highly

sophisticated tools specifically designed to search for such collisions. Conversely,

another line of research examined using satisfiability (SAT) solvers to search for

collisions in step-reduced SHA-256, but the results of SAT solvers were not at all

competitive with the best custom-written search tools. For example, in 2016, Prokop

[46] successfully used a SAT solver to find a collision for 24 steps of SHA-256, but was

not able to go higher. In 2019, Nejati and Ganesh [44] pushed this to 25 steps by

using a SAT solver that was tuned to do programmatic propagation specifically for

the collision-finding problem. However, this was still a long way from Mendel et al.’s

28 step collision or 38 step SFS collision from 2013 [40].

In this work, we develop a hybrid approach of using a programmatic SAT solver

that uses a computer algebra system (CAS) to provide the SAT solver information it

wouldn’t be able to detect on its own—an approach that has been successful on many

other problems recently [14]. We encode the collision-finding problem directly into

SAT (see Section 5.1) and then programmatically encode several of the mathematical

constraints exploited by Mendel et al. [40] that made their 2013 search so effective.

In particular, we are able to detect and block inconsistencies in the solver’s state

using programmatic inconsistency blocking (see Section 4.1) and are able to deduce

nontrivial information about the solver’s state using programmatic propagation (see

Section 4.2). Our “SAT + CAS” solver was able to find several new 38-step SFS

SHA-256 collisions, matching the same step count of the SFS collisions found by

Mendel et al. [40], while a pure SAT approach was not able to go any further than 28

steps.

We note that our SAT-based tool is less efficient than the dedicated search tool of

Mendel et al. [40] for finding 38-step SFS SHA-256 collisions. However, even though

we did not reach the efficiency of a hand-crafted search tool, the novelty of our work

is that we show that the efficiency of an off-the-shelf SAT solver can be dramatically

improved by exploiting the IPASIR-UP interface. Moreover, the 38-step SFS SHA-256

collisions that we found are of independent interest as they have additional structure

not present in Mendel et al. [40]’s 38-step SFS SHA-256 collisions—an additional two

internal state variables have zero difference (see Table A.0.2) when compared with

Mendel et al. [40]’s collision.

The rest of this chapter aims to introduce cryptographic hash functions (emphasiz-

ing SHA-256), differential cryptanalysis, and various types of collision attacks.

In Chapter 2, we discuss the use cases, Boolean formulae (and different other

types of formulae), the Tseitin transformation, various types of SAT algorithms, and

2



1. INTRODUCTION

programmatic SAT.

Chapter 3 highlights progress of attacks on SHA-256 over the years.

Our methodology is discussed in Chapter 4—specifically our programmatic tech-

niques of bitsliced and wordwise propagation.

Chapter 5 presents the results of our experiments, along with a discussion of the

implementation and the SAT encoding used.

Finally, the conclusion and future work is discussed in Chapter 6.

1.1 Cryptographic Hash Functions

Cryptographic hash functions take an arbitrary-length input and produce a short

fixed-length output that acts as a signature or fingerprint of the input. The fingerprint

is called a hash value and the input is known as a message. Hash functions are

extensively used for data integrity and security. They are particularly helpful in cases

where storing the message would pose a security threat but a signature is still required

for verification, such as a password in a database. The hashes of the passwords can

be stored instead and each time the user enters their password, the hashes can be

matched for verification.

Hashes can be used for data integrity as well. For example, when some data is

stored or transferred, the integrity can be checked by comparing a known hash with

the hash of the stored data. This integrity check ensures that the data was preserved

without alteration.

Cryptographic hash functions are expected to have three primary characteristics:

• Preimage resistance: It’s computationally infeasible to find an input, x, given a

hash, y, such that y is the hash of x.

• 2nd preimage resistance: Given an input, x, and its hash, y, it’s infeasible to

find a different input, x′, that produces the same hash y.

• Collision resistance: It’s infeasible to find an input pair, x and x′ (x ̸= x′), that

both produce the same hash.

If any of these characteristics break, the hash function can no longer be used

depending on the purpose. For example, if a hash function is no longer preimage or

2nd preimage collision resistant, it cannot be reliably used for ensuring data integrity

in applications such as password hashing or file checksums. This is because the hash

is no longer unique for a specific input in practice.

An example of a weak hash function is MD4 [55] because it does not have collision

resistance—an attacker can easily generate colliding message pairs.

3



1. INTRODUCTION

f f f fIV

MB 1 MB 2 MB n− 1 MB n

Hash

Fig. 1.2.1: SHA-256 processes the input (with padding if needed) into message blocks
(abbreviated as “MB”), which are sequentially fed to the compression function, f . The
output of each compression is used as the chaining value in the next compression. The
compression of the last message block produces the final hash. The initial chaining
value (IV) is fixed by the specification of SHA-256. The entire method is known as
the Merkle–Damg̊ard construction, which is popular for building collision-resistant
hash functions.

fnCV

Message Block

Hash

Fig. 1.2.2: A diagram depicting the simplified version of SHA-256 we consider in our
work. fn is the step-reduced compression function having n steps. The chaining value,
CV, is arbitrary for semi-free-start (SFS) collisions and is not required to match the
IV actually used by SHA-256—though a SFS colliding message pair is required to
have matching CV s.

1.2 SHA-256

SHA-256 is a hash function that takes an arbitrary-length input and pads it as

necessary to produce one or many 512-bit message blocks. Afterwards, the message

blocks are processed iteratively to produce a 256-bit hash. Each message block is

processed by a compression function that takes the message block and a 256-bit

chaining value as inputs (see Figure 1.2.1).

In the compression function, 64 rounds (also called steps) of transformations are

performed to produce a hash. The hash from processing a single message block is used

as the chaining value for the next message block. This means that altering a message

block will lead to cascading changes in the next message blocks in the sequence. The

chaining value for the first message block is set by the specification [18] to a fixed value,

known as the standard IV (initialization vector). The hash output is the chaining

value produced after applying the compression function on the last message block.

In our work, we focus on a step-reduced version of SHA-256. This means that the

number of rounds/steps in the compression function is reduced to make the problem

easier. Moreover, we only consider messages with a single block of size 512 bits.

4



1. INTRODUCTION

Because the hash output has 256 bits, there is certainly enough freedom in the input

so that many collisions exist without needing to consider multiple blocks. A relaxed

type of collision known as a semi-free-start (SFS) collision allows an arbitrary initial

chaining value CV, so long as the same chaining value is used to initialize the hash

function for both colliding messages in the SFS collision (see Figure 1.2.2).

In our work, we find SFS collisions for SHA-256 using up to 38 steps of the

compression function. Note that the actual SHA-256 hash function has 64 steps,

meaning we are still very far from finding a true SHA-256 collision (roughly speaking,

as the number of steps increases the collision problem becomes exponentially more

difficult). The best known collision attacks on SHA-256 are very far from the full 64

steps, so this provides evidence that SHA-256 is secure.

1.2.1 Message Expansion

SHA-256 performs operations on 32-bit words only. The input message block consists

of 16 such words, Mi for 0 ≤ i < 16, but the compression function expands the Mi to

more words (dependant on M0 to M15) to fill up for the rest of the 64 steps. Altogether

there are 64 “extended” message words Wi for 0 ≤ i < 64 defined by

Wi =

Mi for 0 ≤ i < 16

σ1(Wi−2)⊞Wi−7 ⊞ σ0(Wi−15)⊞Wi−16 for 16 ≤ i < 64
(1)

where the functions σ0(x) and σ1(x) are defined as

σ0(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x ≫ 3), and

σ1(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x ≫ 10).

Here ⊞ denotes addition modulo 232, ⊕ denotes bitwise XOR, ≫ denotes the right

shift operator, and ≫ denotes the right circular shift operator.

1.2.1.1 State Update Transformation

The compression function of SHA-256 takes as input a chaining value and message

block and computes a new chaining value by applying 64 iterations of a state update

procedure. We describe this state update procedure using equations similar to those

presented by Mendel et al. [39]. The expanded message words Wi are used to compute

5



1. INTRODUCTION

internal state variables Ti, Ei, and Ai through the equations

Ti = Ei−4 ⊞ Σ1(Ei−1)⊞ IF(Ei−1, Ei−2, Ei−3)⊞Ki ⊞Wi,

Ei = Ai−4 ⊞ Ti, and

Ai = Ti ⊞ Σ0(Ai−1)⊞MAJ(Ai−1, Ai−2, Ai−3).

Here the functions IF and MAJ are defined on words by applying bitwise the functions

from F3
2 to F2

IF(x, y, z) = xy + xz + z, and MAJ(x, y, z) = xy + yz + xz,

and the linear functions Σ0 and Σ1 are defined by

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22), and

Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25).

The chaining value is taken to be [A−4, . . . , A−1, E−4, . . . , E−1]. In other words,

the chaining value sets the initial values of the state variables A and E. For example,

A−4 will be initialized to the first 32-bit word of the chaining value while E−1 will be

initialized to the last word of the chaining value. Ki is a constant given in SHA-256’s

specification and there is one unique constant for each step i. The auxiliary variable

Ti is introduced to keep the modular additions from having more than 5 addends.

After the state update transformations, the last four A and E words are added

with the chaining value to produce a new chaining value, which will be the output of

the compression function (and following the final block will be the output of the hash

function).

1.3 Types of Collision Attacks

Cryptographic hash functions are supposed to be collision resistant (see Section 1.1).

This means that finding two different hash inputs leading to the same hash shouldn’t

be practically feasible.

While the basic idea of collisions is to find different hash inputs that yield the

same hash, there are other constraints that can be enforced or relaxed. For example,

the initial chaining value (see Figure 1.2.1) of SHA-256 can be constrained to a fixed

value or fully relaxed to take an arbitrary value (see Figure 1.2.2).

The different types of collision attacks are categorized into 3 types:

6
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• (Regular) Collision

• Semi-free-start (SFS) Collision

• Free-start (FS) Collision

Let f(M, IV ) = h be a hash function, such as SHA-256, following the MD-scheme

(see Figure 1.2.1). The IV is a constant that is fixed by the specification of the hash

function for a function like SHA-256, while M is a message of arbitrary size, producing

the hash h.

In a (regular) collision, f(M) = f(M ′), where M ̸= M ′. However, when the

initialization vector can take an arbitrary value and is provided as an input to the hash

function, finding collisions in this variant of the hash function is called a semi-free-start

(SFS) collision. In other words, SFS collision solves for f(CV ,M ) = f (CV ,M ′) where

M ̸= M ′.

To further relax the problem, CV can be allowed to be different in the two hash

instances of the collision, as in f(CV ,M ) = f (CV ′,M ′). The variables CV and

CV ′ aren’t constrained to be equal. This scenario, where the initialization values are

relaxed and the relationship between the values provided to both hash instances is

altered, is called a free-start collision.

Solutions for an attack with relaxed constraints (SFS and FS collision) are usually

easier to find (as per Mendel et al. [39]), and may be extended to a collision through

various techniques. The overall process may be more practically feasible than aiming

straight for a collision.

Moreover, when finding collisions for a specific number of steps of a hash function

gets practically infeasible, it may still be feasible to find the SFS and FS collisions.

Benchmarking on the time and count of SFS and FS collisions may help analyze the

magnitude of the difficulty over the reduced number of steps.

1.4 Differential Cryptanalysis

Differential cryptanalysis is a technique that analyzes how the input differences

influence the output differences in, for example, a hash function. This technique is

crucial in collision attacks of hash functions, since we’re interested in studying the

diffusion of the input differences to the output differences such that we get a zero

output difference and a non-zero input difference.

In differential cryptanalysis of hash collisions, we have two hash inputs and

we examine the differences in all the operations until the output for both inputs.

7
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(x, x′) 0 u n 1 x - ?

(0, 0) + + +
(1, 0) + + +
(0, 1) + + +
(1, 1) + + +

Table 1.4.1: This table shows the notation we use for differential conditions in our
study. A ‘+’ indicates whether a specific value pair is possible for (x, x′). For example,
‘?’ indicates that the variables x and x′ can take any value, ‘x’ indicates the variables
x and x′ have distinct values, and ‘-’ represents equal values. In the rest of the
conditions, the exact values of the variables x and x′ are known.

Usually differences between the values are calculated through XOR operations, such as

∆x = x⊕ x′, where x is a single bit, x′ is its counterpart in the second hash instance,

and ∆x is the difference of x and x′.

Hash functions such as SHA-256 operate on bitvectors (also called words) of

32 bits in length. If a Boolean variable representing a bit in one bitvector and its

counterpart in the second hash instance form a pair, in general the pair may have

up to 4 combinations, {(0, 0), (0, 1), (1, 0), (1, 1)}. The possibilities can be generalized

as the differential conditions [20] presented in Table 1.4.1. For example, if a pair

(x, x′) has the possibilities {(0, 0), (1, 1)}, we can describe it as having the differential

condition ‘-’.

For convenience, the differential conditions of a pair of words (A,A′) can be

collectively described in a vector ∇A = [cncn−1 · · · c1c0], where ci is the differential

condition of the ith bit pair (ai, a
′
i) with A = [an−1 · · · a0] and A′ = [a′n−1 · · · a′0].

The differential over a function f(X) = Y where X and Y are bitvectors is denoted

∇X → ∇Y . On a high level, we want f to be the hash function while ∇X and ∇Y

are the input and output differences represented by differential conditions. In practice,

analyzing this differential alone isn’t helpful as it contains too little information.

We want to study all the operations in between as well—chaining the operations in

SHA-256 together as a series of steps starting from the input to the output. If we

represent the differences in an operation’s input and output values as a differential,

we can represent the 2 hash function instances as a chain of differentials. This chain

of differentials is called the differential path and analyzing this path shows how the

differences propagate from the input differences all the way to the output differences,

which is essential for finding collisions.
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CHAPTER 2

Boolean Satisfiability (SAT)

Boolean satisfiability (SAT) solving involves searching for a solution of a Boolean

formula (an assignment of the variables that makes the formula true). The tools

designed for this purpose are called SAT solvers. SAT solving is NP-complete, which

means that the solutions to a SAT problem can be verified in polynomial time, but

currently there is no known way to solve the problem in polynomial time. Even though

all known algorithms for SAT solving run in exponential time in the worst case, in

practice many problems can be solved by modern SAT solvers in a reasonable amount

of time. In fact, SAT solvers are so effective that in practice there are problems

unrelated to logic that are most effectively solved by reducing them to SAT and calling

a SAT solver [12].

The beauty of SAT solving lies in its generic nature, meaning that it can be applied

to any domain as long as the problem can be encoded into a Boolean formula. This

also allows solvers to be tuned for performance independent of any specific problem.

Modern SAT solvers are adept at solving search problems, comprising sophisticated

techniques like conflict analysis and clause learning, clever branching heuristics, and

simplification techniques [8]. The combination allows them to be highly potent at

solving search problems in general.

In this chapter, we look into the use cases of SAT, how a problem is encoded

into CNF, the core concepts of modern SAT solvers, along with the concepts of

programmatic SAT.

2.1 Use Cases

Due to its versatility in both searching for solutions under given constraints and proving

the non-existence of solutions, SAT solvers have been proven useful in numerous fields.

The following are some of the prominent applications of SAT.

Cryptanalysis. Cryptanalysis involves assessing the properties of crypographic

algorithms to find weakenesses. For example, a cryptographic hash function can be

9
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analysed to find collisions [39, 40, 46, 44] or preimages [60]. Such problems usually

involve searching through a huge space for which SAT solving has been found to be

quite useful.

Conflict Detection. Conflict detection has been a popular problem ranging from

package managers to compilers. Many package managers have been using SAT solvers

to describe the dependencies and find contradictions (see [54, 30]). Many compilers

have utilized SAT for finding bugs. Specifically, there are cases where the code can be

converted to a Boolean formula that can be verified by the SAT solver (see [29]).

2.2 Boolean Formulae

SAT solving involves a Boolean formula composed of Boolean variables and constraints.

The formula describes a problem and the SAT solver is a tool used to find solutions

to the problem. If there exists no solution to the given problem, the solver can also

prove that there is none. Modern SAT solvers conventionally work with formulas in

Conjunctive Normal Form (CNF). Given a CNF formula, a SAT solver tries to find

a set of variable assignments such that the formula is satisfied (yields true). CNF,

in simple terms, is a conjunction (logical and) of clauses. For a set of n clauses

{c1, c2, . . . , cn−1, cn}, the CNF can be written as

c1 ∧ c2 ∧ · · · ∧ cn−1 ∧ cn =
n∧

i=1

ci.

Each clause is a disjunction (logical or) of literals, which defines a constraint. For a

set of m literals {l1, l2, . . . , lm−1, lm}, a clause can be expressed as

ci = l1 ∨ l2 ∨ · · · ∨ lm−1 ∨ lm =
m∨
i=1

li.

Each literal is a Boolean variable or its negation. For example, a literal can be x or ¬x
for the Boolean variable x, and a clause can be x ∨ ¬y ∨ z for the Boolean variables

x, y, z.

CNF has been widely adopted by the SAT community because any Boolean

expression can be efficiently converted to CNF, and most algorithms used by modern

SAT solvers work efficiently with this form (see Section 2.3).

10
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The DIMACS CNF file format. Many SAT solvers use a standardized file format

called DIMACS CNF to accept CNF formulas, proposed in the DIMACS Challenge

of 1993 [31]. This format provides a textual representation of the CNF formula and

serves as an interface to the solver. DIMACS CNF takes a preamble comprising the

number of variables (v) and clauses (c):

p cnf v c

This is followed by all the clauses each in their own line, with each clause terminated

by a trailing 0. Each variable is represented by a numerical ID (starting from 1) with

a minus sign denoting a negation.

For example, to encode 2 clauses (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z), we can write the

following DIMACS code with the IDs 1, 2, and 3 representing the variables x, y, and

z respectively:

1 2 3 0

-1 2 3 0

Comments can also be placed anywhere in the file, even preceding the preamble.

These optional lines start with the character “c”, such as this:

c An example comment.

There are augmentations to the DIMACS format that are only to be handled by

specific SAT solvers or algorithms. For example, CryptoMiniSat supports DIMACS

CNF augmented with XOR clauses, meaning that the CNF file can have special

clauses for XOR constraints. This is beneficial because it not only makes the problem’s

encoding easier to read in most cases but also allows the solver to detect and handle

the XOR clauses directly, often resulting in an improved performance.

Another interesting augmentation to the DIMACS CNF format involves cardinality

constraints, with the augmented format known as KNF [47]. Overall, this augmented

format includes a generalization of clauses called “klauses” that define the constraint

n∑
i=1

li ≥ k

for a set of n literals {l1, l2, . . . , ln−1, ln} and a lower bound k. A KNF solver imple-

mentation, known as “Cardinality CDCL”, includes a modification of the SAT solver

CaDiCaL to provide native support for handling cardinality constraints (see their

GitHub repository1 for more details). The project also has support for extracting

1https://github.com/jreeves3/Cardinality-CDCL
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klauses from DIMACS CNF encodings and also converting KNF encodings to DIMACS

CNF.

2.3 Tseitin Transformation

To solve a problem using SAT solving, it must first be expressed in Conjunctive

Normal Form (CNF), the format required by most modern SAT algorithms. A

propositional logic formula can be transformed into CNF by applying the rules of

Boolean Algebra [8]. However, this process often results in an exponential increase

in the size of the resulting formula. While encoding a logical formula into CNF in a

scalable manner may initially seem challenging, the Tseitin transformation [53] offers

an efficient method to accomplish this. This process converts any problem into a

formula in CNF that is satisfiable if and only if the original formula is.

Tseitin transformation, introduced in 1968 by Russian scientist Grigori Tseitin [53],

is a technique for converting non-CNF formulas into CNF. It does this by breaking

down the original formula into smaller subformulas and introducing auxiliary variables

that are equivalent to these subformulas, meaning that they take the same truth

values. For convenience, we use the “equivalence” operator (↔). The resulting CNF is

a conjunction of these subformulas, each represented by an auxiliary variable. While

this method increases the number of variables, it ensures that the encoding process

scales linearly with the number of operations in the original expression.

Consider the logical expression that involves 4 operations:

(p ∨ q) ∧ ¬(p ∧ q).

The expressions can be broken down into subexpressions, each equivalent to the newly

introduced variables x, y, and z respectively:

x ↔ (p ∨ q),

y ↔ (p ∧ q), and

z ↔ ¬y.

The subexpressions can then be expressed as the CNF clauses

(¬p ∨ x) ∧ (¬q ∨ x) ∧ (p ∨ q ∨ ¬x),
(p ∨ z) ∧ (q ∨ z) ∧ (¬p ∨ ¬q ∨ ¬z), and

(y ∨ z) ∧ (¬y ∨ ¬z).

12
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Altogether, Tseitin transformation gives us the CNF formula

x∧z∧(¬p∨x)∧(¬q∨x)∧(p∨q∨¬x)∧(p∨z)∧(q∨z)∧(¬p∨¬q∨¬z)∧(y∨z)∧(¬y∨¬z),

which is equisatisfiable to the original formula (satisfiable if and only if the original

formula is satisfiable).

Overall, the Tseitin transformation is a technique that converts a given logical

formula into an equisatisfiable clausal form. This transformation operates with a

time complexity of O(n), where n represents the number of operations in the original

formula. It achieves this at the cost of a linear increase in the number of variables,

proportional to the number of operations in the original formula.

2.4 The DPLL Algorithm

Most modern SAT algorithms are tailored to handle CNF formulas. One of the

most significant CNF-based SAT solving algorithms is the DPLL (Davis–Putnam–

Logemann–Loveland) algorithm [19], widely recognized as the core of modern SAT

solvers. It was introduced in 1962 as an improvement over the Davis–Putnam (DP)

procedure. See [3] for more details on the implementation of the DPLL algorithm.

The DP algorithm. The Davis–Putnam procedure (predecessor of DPLL) is based

on the resolution rule for variable elimination.

The resolution rule says that two clauses can be merged when one clause has a

variable x while the other clause has the negation of that variable, ¬x. For example,

if we have the following clauses containing x and ¬x respectively,

p1 ∨ p2 ∨ · · · ∨ pn−1 ∨ pn ∨ x

q1 ∨ q2 ∨ · · · ∨ qm−1 ∨ qm ∨ ¬x

these clauses can be reduced to

p1 ∨ p2 ∨ · · · ∨ pn−1 ∨ pn ∨ q1 ∨ q2 ∨ · · · ∨ qm−1 ∨ qm

as per the resolution rule. The resultant clause doesn’t include x and ¬x.
The idea behind the DP algorithm is to remove trivially satisifiable clauses, deduce

variables and remove clauses, and eliminate variables through resolution. This process

continues until an empty clause is found (indicating that the problem is unsatisfiable)

or if the entire clause set is empty (indicating a satisfiable solution) during any of the

steps.

13



2. BOOLEAN SATISFIABILITY (SAT)

The DP algorithm works by sequentially performing the following steps:

• Remove trivially satisfiable clauses: Any clause that has a variable x and

its negation ¬x is trivially satisfiable and hence removed.

• Deduce variables and remove clauses: If a literal x appears in one or more

clauses and ¬x is absent from the entire clause set, the variable x can be set to

true to satisfy those clauses. Similarly, if only ¬x appears in the entire clause

set, x should be set to false to satisfy the related clauses. Once the clauses are

satisfied, they can be removed.

• Variable elimination through resolution: Pick a variable that appears

positively in a set of clauses and negatively in another set of clauses (assuming

that the sets are non-empty). Perform resolution between all the clauses in both

the sets. The resulting clauses are added while the clauses in the two sets can

be removed. At the end, the chosen variable is eliminated.

The problem with the DP algorithm is that the number of clauses can increase

exponentially in the number of variables, which leads to high memory usage over time.

Boolean Constraint Propagation (BCP). To overcome the shortcoming of the

DP algorithm, the DPLL algorithm has been introduced which utilizes a technique

called Boolean Constraint Propagation (BCP) [59]. BCP ensures that variable elimi-

nation and clause removal can be efficiently done without increasing the clause set

size.

BCP takes advantage of unit clauses, which are clauses with only one literal. The

idea that unit clauses constrain a variable to a fixed value is useful in satisfying many

clauses and removing them in the process.

For example, if BCP is performed on a clause set with a unit clause {u} (let a set

of literals represent a clause), all the literals ¬u can be removed from all the clauses.

On the other hand, all the clauses containing the literal u are satisfied and can be

removed. This eliminates the variable u from the entire clause set. Another way to

look at BCP is that the deduced information from the unit clauses propagates to the

other clauses, satisfying many of them in the process.

Since more unit clauses could have been introduced through BCP, the process has

to be repeatedly performed till there’s no more unit clauses remaining in the clause

set.

14
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Overview of DPLL. Another key difference from the DP algorithm is the “branch-

ing” technique. Unlike DP which performs resolution till there’s no variable left, BCP

doesn’t eliminate all the variables. As a result, DPLL has to ground a variable after

BCP to progress, meaning that it has to choose a variable and decide to set it to true

or false. It’s done by adding a unit clause {x} or {¬x} for a chosen variable x.

Overall, DPLL works in the following steps performed sequentially:

• BCP: Deduce variables from unit clauses and remove satisfied clauses.

• Branch: Pick a variable x and decide to set it to true or false by recursively

calling the DPLL algorithm with a new clause {x} or {¬x}.

The entire process is repeated until the entire clause set is empty (SAT) or has an

empty clause (UNSAT). Even if one of clauses is UNSAT, it doesn’t mean that the

SAT problem is UNSAT. The overall problem is deemed UNSAT only if it’s UNSAT

for both branches of every variable.

Despite BCP not increasing the size of the clause set, a major downside of DPLL

is the depth of the recursion and the number of recursive calls made, which will be 2n

in the worst case.

2.5 The CDCL Algorithm

In 1996, Silva and Sakallah [50] introduced the concepts of Conflict-Driven Clause-

Learning (CDCL) and non-chronological backtracking. These innovations, involving

the concept of learning conflict clauses and backjumping in the search space greatly

revolutionized SAT solving.

CDCL resolves a shortcoming of the DPLL algorithm, which is that the search is

done in a rigid and inflexible manner for no good reason. However, CDCL retains key

components of DPLL, such as Boolean Constraint Propagation (BCP) and branching.

The CDCL algorithm enhanced SAT solvers by providing increased freedom

to explore the search space while also avoiding areas previously determined to be

unsatisfiable. Whenever a conflicting state is reached, the algorithm identifies and

learns the cause of the conflict as a reason clause, ensuring it avoids the same or

similar conflicts in the future. This is because many areas of the search space lead to

a conflict for the same reason.

The algorithm includes non-chronological backtracking, which allows undoing

multiple conflict-related decisions simultaneously. This approach enables the solver to

focus on more promising areas of the search space away from unsatisfiable regions.
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Trail. In most CDCL implementations, a trail is maintained to track the decisions

and propagatons. Each decision increments the “decision level,” which decrements

when a decision is undone through backjumping. The trail organizes decision and

propagation literals by decision levels. Within each decision level, the decision literals

along with the propagated literals implied by that decision are stored.

Implication graph. The implication graph is a directed acyclic graph that keeps

track of the consequences of variable assignments. The root nodes represent decisions

(nodes with no incoming edges) while the propagated literal nodes have at least one

incoming edge. The parent nodes of a propagated literals node are the assignments

that led to the propagation; in other words, these literals form the “antecedent” of

the propagated literal. Any conflict caused by a set of assignments is also added to

the graph as a node. Other information such as the decision level of each node is also

stored.

Overall, the implication graph is crucial for generating better conflict reason clauses,

and backjumping to a level where the conflict can be resolved.

Learning conflict clauses. A simple way to learn a conflict clause is to simply

construct a reason out of all the decision literals that led to the conflict. For example,

if the decision literals x,¬y, and z lead to a conflict, the reason clause would be

{¬x, y,¬z}, meaning that at least one of our decisions was incorrect and blocking the

simultaneous assignment of the decisions.

The propagated literals aren’t part of the conflict reason clause because these

literals are implied by the decision literals. The exclusion of the propagated literals

keeps the reason clause concise but still long if there were many decision levels existing

during the conflict. A shorter and compact conflict reason clause can be constructed

by analyzing and picking the decision literals directly responsible for the conflict, as

not all the decision literals are necessarily responsible for the conflict.

In general, a shorter clause is easier for the SAT algorithm to process and is more

powerful, as it describes the same constraint with fewer literals than an equivalent

longer clause.

Backjumping. After a conflict clause is learned, the conflict is resolved by back-

jumping to the decision level where the conflict can be effectively resolved. Although

backjumping by only one level is sufficient to address the conflict, it is not ideal in

practice. To both resolve the conflict and explore more promising areas of the search

space, the solver should backtrack to the farthest decision level where the conflict
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clause becomes a unit clause under the current partial assignment. In other words,

the conflict clause must be asserting after the backjump and capable of performing

unit propagation.

2.6 Programmatic SAT

Programmatic SAT involves injecting code into the solver to aid the solver and solve

a problem more efficiently [27]. It is particularly useful when certain aspects of the

problem are challenging to express in the Boolean formula. Moreover, solving parts

of the problem in high-level code might be easier to implement and faster to solve

programmatically (see [11, 14, 61]). For example, algorithms for solving a subproblem

can be written in high-level languages like C/C++, which may be more efficient than

using a SAT solver to handle the same subproblem expressed through a Boolean

formula.

Programmatic SAT is usually domain-specific and combines the powerful techniques

of search possessed by SAT solvers with the most efficient high-level algorithms and

analysis tools for the problem. Some modern SAT solvers can be customized in a

programmatic way through built-in interfaces like IPASIR-UP [25]. The solver may

be aided through the following ways during search:

• External propagation: Assigning variables derived through high-level deduc-

tion.

• External decisions: Making decisions on picking important unassigned vari-

ables and guessing their values through high-level analysis.

• External learning: Injecting learned clauses during conflicts detected through

the high-level conflict analysis.

Overall, the external routines function as an oracle for the SAT solver, providing

information that either cannot be derived from the Boolean formula or can be obtained

much faster than through conventional SAT solving techniques.

The SC2 (Satisfiability Checking and Symbolic Computation) Project. SAT

solving, ever since its inception, has been found to be useful for solving general search

problems. On the other side, Computer Algebra Systems (CASs) include algorithms

that are efficient at solving mathematical problems. However, many problems exist

that can be solved using the methods of both satisfiability checking and symbolic
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computation. Bridging the two fields was proposed in 2015 in the work of Ábrahám

[1] and Zulkoski et al. [62].

Shortly afterwards, the SC2 project [2] was initiated to support the joint community.

Since then, a wide variety of problems have been tackled using SC2 techniques—from

circuit verification [32], knot theory [37], graph theory [35], projective geometry [9],

quantifier elimination and cylindrical algebraic decomposition [16], searching for

combinatorial sequences [15] and matrices [13], and factoring integers with known

bits [4]. See England’s survey [24] for an overview of many other examples.
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CHAPTER 3

Related Works

Cryptographic hash functions such as MD4, MD5, SHA-1, etc. have been extensively

relied on for information security for many years. However, Wang et al. [55] devised

an efficient method in 2005 for finding MD4 collisions with probability from 2−2 to

2−6 using at most 256 MD4 hash operations. Wang et al. also proposed an attack

on MD5 [58] for finding collisions within 15–60 minutes of computational time in the

same year. Also in 2005, Wang et al. [56] presented a collision attack on SHA-1 using

at most 269 SHA-1 hash computations.

3.1 Progress on SHA-256 Attacks

The SHA-2 family of hash functions, however, survived these remarkable attacks, likely

due to their relatively complex design with message expansion. One of the earliest

attacks on SHA-256 and its family members was in 2003 by Gilbert and Handschuh

[28]. In FSE 2006, Mendel et al. [41] reported that the message expansion of the SHA-2

family of hash functions was one of the key points for their increased collision resilience

over SHA-1. To tackle this, Mendel et al. applied a message modification technique

and reached an 18-step collision for SHA-256. In INDOCRYPT 2008, Sanadhya and

Sarkar [49] presented collisions up to 24 steps of SHA-256 and SHA-512, making

improvements over the work of Nikolić and Biryukov [45] that presented collisions up

to 21 steps of SHA-256 at FSE 2008.

In ASIACRYPT 2011, Mendel et al. [39] revealed a collision for 27-step SHA-256

and a semi-free-start (SFS) collision for 32 steps. They automated the search with a

domain-specific tool that searches for differential characteristics for SHA-256. The

tool utilizes propagation, analysis of the bit constraints, clever branching on the most

constraints bits, and contradiction detection in the differential characteristics.

In EUROCRYPT 2013, Mendel et al. [40] came back with another breakthrough—a

28-step collision of SHA-256 along with a 38-step SFS collision. They further improved

the automatic search tool that finds differential characteristics. The improvements

included local collisions over a larger number of steps and improved decision/branching
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Publication Year Author Collision SFS Collision

2006 Mendel et al. [41] 18 -

2008 Sanadhya and Sarkar [49] 24 -

2011 Mendel et al. [39] 27 32
2013 Mendel et al. [40] 28 38
2024 Li et al. [34, 33] 31 39

Table 3.1.1: Progress of step-reduced SHA-256 collision attacks (including SFS colli-
sions) from 2006 to 2024. The entries in the table indicate the number of steps for
which the collisions (or SFS collisions) were found.

heuristics over [39].

Very recently, in the rump session of FSE 2024, Li et al. [34] announced a 31-step

collision of SHA-256, and in a 2024 paper appearing in EUROCRYPT 2024 found a

39-step SFS collision [33]. These works also made an advancement in cryptanalysis

with SAT solving, searching for characteristics by controlling the sparsity (number of

variables with no difference).

The progress of the attacks on SHA-256 is presented in Table 3.1.1.
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CHAPTER 4

Methodology

In this chapter, we present the methodology used in our SHA-256 collision attack.

Our work is based on interacting with a SAT solver through a programmatic interface.

Using differential crypanalysis techniques, we aid the solver with finding collisions.

Specifically, we check for inconsistencies (see Section 4.1) and perform local (see

Section 4.2.1) and global (see Section 4.2.2) propagation. The techniques allow us to

find SFS collisions with a significantly higher number of steps than that with a plain

SAT solver.

4.1 Programmatic Inconsistency Blocking

As discussed in Section 1.4, analyzing differential paths is essential in cryptanalysis.

There are cases when a differential path has inconsistencies. In other words, parts of

the differential path define a relation contradicting a relation defined by other parts

of the differential path. For example, if we can derive the conditions a = b and a ̸= b

from differential conditions in the same path, then there certainly cannot exist any

message pairs conforming to that path. During solving, it’s crucial to analyze the

current path for such inconsistencies and block them as early as possible to prevent

the solver from exploring paths that are inconsistent.

The idea of looking for and blocking inconsistencies in the SHA-256 collision attack

was utilized by Mendel et al. [39]. They described having linear equations relating

two Boolean variables in SHA-256’s state. Each of these equations can be derived

from bitsliced differentials of bitwise functions and modular addition. Such relations

can lead to conditions on the equality or inequality of two variables. Mendel et al.

[39, 40] referred to these conditions as “two-bit conditions”.

Two-bit conditions can be derived from bitsliced differentials of bitwise functions

and addition operations. To deduce the two-bit conditions from a bitsliced differential,

we enumerate all the possibilities and look for a pattern. As an example, consider

the differential ∇[x2x1x0] → ∇[y0] of the XOR operation x0 ⊕ x1 ⊕ x2 = y0. If the

differential is specifically [-0-] → [0], it means that (x2, x0) ∈ {(0, 0), (1, 1)} giving

21



4. METHODOLOGY

20 21 22 23 24 25 26 27 28
Steps

103

104

105

CP
U 

Ti
m

e 
(s

ec
on

ds
) i

n 
Lo

g 
Sc

al
e

Inconsistency Blocking With and Without Auxiliary Variables

CaDiCaL/IB
CaDiCaL/IB(w/ aux.)

Fig. 4.1.1: The plot highlights the runtime of programmatic inconsistency blocking
with and without auxiliary variables. Each instance is about finding SFS collisions in
step-reduced SHA-256.

us the two-bit condition x2 = x0.

In practice, two-bit conditions are significantly more common in the bitsliced

differentials of bitwise functions than that of addition operations. Thus, in our

experiments, we only computed the two-bit conditions of these bitwise functions

to reduce computational costs. Additionally, there are two-bit conditions involving

Boolean variables other than that of A, E, and W . For example, two-bit conditions

often involve the output variables of bitwise functions along with other auxiliary

variables. However, we did not find it beneficial to address inconsistencies involving

two-bit conditions of these auxiliary variables (see Figure 4.1.1). As a result, we

focused solely on the two-bit conditions involving the primary variables to block

inconsistencies.

The two-bit conditions are expressed in the form x ⊕ y = z where x and y are

variables in the differential path and z ∈ {0, 1}. For example, the two-bit condition

x ̸= y gives the equation x⊕ y = 1. The set of these linear equations often lead to

inconsistencies that are non-trivial. For example, if a = b, b = c, and c ̸= a, we have

a contradiction involving the 3 two-bit conditions and can be visualized as a cycle

a = b = c ̸= a.

Such cycles of inconsistencies translate to cycles of inconsistent differentials, which

in turn would are blocked to direct the search away from an invalid differential path.
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To do this efficiently we employ a custom-written computer algebraic routine to detect

cycles of inconsistent equations during solving. In particular, we use a graph for

finding inconsistent cycles, where in the graph each vertex represents a variable and

each edge represents a two-bit condition. Every time a new edge is added to the graph,

we search for an inconsistent cycle involving that edge (and the shortest such cycle

when one exists).

The graph algorithm we use for detecting inconsistent cycles involves a breadth-first

search starting from vertex v0 where (v0, vd) is a newly added edge. We look for all

possible ways to reach vd excluding the edge (v0, vd). Each edge (u, v) holds a Boolean

variable d(u, v) = u⊕v, called an edge value, which tells whether the Boolean variables

u and v are equal or not.

For each path from v0 to vd found through the method described above, we get a

cycle v0, v1, . . . , vd, v0 by adding the edge (v0, vd) to the path. We check if there’s

a contradiction in a cycle (connecting Boolean variables v0 to vn) by taking the F2

sum of all the edge values, s = d(v0, v1) + d(v1, v2) + · · ·+ d(vd−1, vd) + d(vd, v0). If

the sum s is 1, there is an odd number of edges with inequal variables, indicating an

inconsistent cycle. We iterate through the inconsistent cycles and take the shortest

one for blocking.

When an inconsistency is detected it is blocked by adding a conflict clause con-

structed from the parts of the SAT solver’s partial assignment (during the time of

detection) implying the 2-bit conditions in the cycle. The IPASIR-UP interface [25] is

used for feeding the new clause to the solver. The falsified clause causes the solver to

backtrack right away, stepping out of the invalid differential path causing the solver

to backtrack earlier than it otherwise would.

4.2 Programmatic Propagation

During the search for a collision, we work with a partial state that comprises known

and unknown variables. Using the known variables, unknown variables may be derived.

In other words, the information that we have can spread or propagate. This form

of deduction is crucial in the search process. As mentioned in Section 5.1, many

propagation rules such as [xx-] → [-] for the XOR function are encoded directly

into the SAT encoding. However, it is not feasible to encode all possible propagation

rules on 32-bit words because there are simply too many.

Ideally, one would use “perfect” propagation encoding the most stringent conditions

possible given the current state. For example, we describe a simple example of perfect

propagation given by Eichlseder [22, Ex. 3.4]. Suppose X = [x3x2x1x0] is a 4-bit
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word, Σ(X) = (X ≫ 1) ⊕ (X ≫ 2) ⊕ (X ≫ 3) = Y , and we want to perform

perfect propagation on the differential ∇X → ∇Y . If the differential ∇X is known

to be [11--], then there are 22 = 4 possibilities for (X,X ′) because x2 = x′
2 ∈ {0, 1}

and x3 = x′
3 ∈ {0, 1} may be chosen independently. After trying all 4 possibilities

one derives that (Σ(X),Σ(X ′)) = (Y, Y ′) must be one of (1100, 1100), (0010, 0010),

(0001, 0001), or (1111, 1111). In each case we have Y = Y ′ meaning that we can derive

that ∇Y = [----].

Since all possibilities for “grounding” ∇X were explored, the maximum amount of

possible information was propagated to∇Y and this is said to be “perfect” propagation.

Unfortunately, in general perfect propagation in infeasible because there are too many

possibilities to explore.

4.2.1 Bitsliced Propagation

Perfect propagation is only feasible for small differentials with a small number of

possibilities to explore. However, SHA-256 performs operations on 32-bit words, which

means that every function operates on 32-bit words as input. If we want to propagate

the output for a function, we’d have to deal with a relatively large number of bits.

To keep the process computationally feasible, we only perform perfect propagation

on the output of a bitwise operation in each bit position independently. This reduces

the number of bits involved in the propagation while still helping to deduce information.

Each output condition is propagated by enumerating all possibilities conforming to

the input conditions that the output condition is dependent on—the same as perfect

propagation, but only perfect locally. This is a practical version of perfect propagation

called “bitsliced” propagation.

For example, suppose we have X⊞Y = Z and we want to propagate ∇X = [x-x-]

and ∇Y = [x---] to ∇Z. We will focus on propagating information for the second-

least significant bit; the conditions of this bitslice are enclosed in boxes in the depiction

below:

∇Z =

??-
[x-x-]

⊞ [x---]
[???-]

In the example above, the wordwise addition (modulo 24) involves 2 addends

with the differential conditions [x-x-] and [x---], and the first row denotes the

differential conditions of the carries. In general the bitslices involve 3 input conditions

and 2 output conditions (namely, a sum differential bit and a carry differential bit).
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The conditions are derived through perfect propagation on each bitslice—in this case

the slice having a width of 1 bit.

In this example, the highlighted bitsliced differential [-x-??] (with the last ?

denoting the carry) after propagation becomes [-x-x?] (i.e., the sum differential bit

becomes an x). This process of bitwise propagation can be repeated for the rest of

the bit positions, resulting in propagation over a wordwise operation with a low cost.

4.2.2 Wordwise Propagation

SHA-256’s hash output is calculated by a series of Boolean operations on 32-bit

words. Each step involves the state update equations of Section 1.2.1.1 that are used

for transforming the state variables A and E. We also have the message expansion

equation (1) defining Wi for all steps i ≥ 16. All these equations involve modular

additions and therefore to effectively search for collisions it is essential to have effective

propagation for the modular additions. Bitsliced propagation is helpful in deriving

information for modular additions, however, this technique doesn’t capture all the

relations between the bits as it is local to a bitslice and doesn’t operate on the entirety

of the 32-bit words.

To mitigate this shortcoming of bitwise propagation, we utilize a global “wordwise”

propagation technique, that is significantly cheaper than perfect propagation on words

pairs in practice but typically derives more information than bitwise propagation.

Wordwise propagation works by exploiting the constraints in the modular addition,

such as the modular integer differences of words. Modular word differences were also

used in the work of Wang and Yu [58] for performing the differential attacks.

When A⊞B = C and A′ ⊞B′ = C ′, wordwise propagation may derive additional

information on the differential conditions ∇A and ∇B if the modular difference of C

and C ′ is known.

Denoting modular subtraction of two 32-bit words by ⊟, the modular difference of

C and C ′ is

δC := C ⊟ C ′ =
31∑
i=0

(ci − c′i)2
i mod 232 (1)

where ci and c′i denote the ith least significant bits of C and C ′.

In the previous example, the modular addition equations in both the hash instances

can be combined via (A ⊟ A′) ⊞ (B ⊟ B′) = C ⊟ C ′ which can be rewritten as

δA⊞ δB = δC.

In general, wordwise propagation is performed on equations like

δA1 ⊞ δA2 ⊞ · · ·⊞ δAn = C (2)
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where C can be determined in advance and we want to derive some additional

information on at least one of the differential conditions ∇A1 to ∇An. In practice,

we propagate for equations of the form (2) with at most 2 word pairs with unknown

modular differences. This limits the computational complexity while allowing us to

deduce sufficient information.

For example, suppose we know δA = δB, ∇A = [ux-], and ∇B = [-n-]. It

follows that δB = 0 · 22 + (0 − 1) · 2 + 0 = −2 is known (modulo 8), but δA =

(1 − 0) · 22 + (a1 − a′1) · 2 + 0 = 4 ± 2 is either 2 or 6 since a1 − a′1 = ±1. From

∇A alone the value of δA cannot be determined exactly, but when the additional

constraint δA = δB is considered it is clear that the only solution is δA = 6 meaning

that a1 − a′1 = 1. Thus, wordwise propagation in this case would derive ∇A = [uu-].

To avoid dealing with negative numbers, the differential conditions x, n, and ?

are normalized by adding an appropriate power of two. For example, in the above

example 21 would be added making the equation

(1− 0) · 22 + w · 21 + 0 = −2 + 21 = 0 where w := a1 − a′1 + 1 ∈ {0, 2}

becoming (1 + v) · 22 = 0 where v := w/2 ∈ {0, 1}. As a 3-bit bitvector equation

(hence performed modulo 23), this is [1 + v, 0, 0] = [0, 0, 0] which has just one solution

v = 1.

Tracking the carries. After reducing equations of the form (2) to bitvector equa-

tions, we want to determine all solutions for the variables. However, for multi-word

modular addition, we need to track the carries and include them in the bitvector

equations.

For example, let’s consider δA⊞ δB = C where

∇A = [---------x--],

∇B = [??????-??x--], and

C = 0.

The problem is normalized by adding appropriate powers of 2 for the conditions x and

? in ∇A and ∇B. Specifically, we add:

2 · 22 + 23 + 24 + 26 + 27 + 28 + 29 + 210 + 211 = 4064

to ensure there are no negative difference for any of the conditions.

After normalization and adding the difference variables along with the carries, we

obtain δA⊞ δB ⊞ 4064 = 4064 generating the bitvector modular addition problem
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[ v8, v7, v6, v5, v4, v3, v2, v1, v0, 0, 0, 0 ]
[ v15, v14, v13, v12, v11, 0, c1, v10, v9, 0, 0, 0 ]

⊞ [ 0, 0, 0, 0, 0, 0, 0, c0, v16, 0, 0, 0 ]

1 1 1 1 1 1 1 0 0 0 0 0

where v0, . . . , v16, c0, c1 ∈ {0, 1}.
The carry variable c0 was added since v0 ⊕ v9 ⊕ v16 = 0 has the solutions

{(0, 0, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1)} for (v0, v9, v16), 3 of which can induce a carry.

There are cases when a carry is ruled out, such as that for v2 ⊕ c1 = 1, which has the

solutions {(0, 1), (1, 0)} for (v2, c1). If v2 ⊕ c1 was 0 instead, a carry variable would

have to be added to the next column.

Unit propagation. Once we’ve reduced the problem to bitvector equations and

tracked the carries, the first step in solving for the variables is to perform unit

propagation. In this step, columns in the bitvectors that contain only a single variable

can be easily resolved. Since this process may result in more columns having a single

variable, we repeat it until no such columns remain. In the above example, we deduce

that v3 = 1 in the first cycle of unit propagation.

Note that a ? can have a difference of 0, 1, or 2 (if it’s n, -, or u respectively) after

normalization, so two Boolean variables are required to define its difference. During

propagation, we can deduce the higher bit of the difference of ? to be 0 if the lower bit

is known to be 1, since its difference can’t be 3. In this case, ∇B[6], whose difference

is defined by v3 and v4, is propagated to -. The subsequent cycles of unit propagation

deduce ∇B[7], . . . , ∇B[11] using the same logic.

Brute-force attack. After unit propagation, possibilities for the remaining unknown

variables can be determined through a brute-force attack. Specifically, this involves

enumerating all possible solutions for each column, given the constraints imposed by

the chained columns. For example, if c0 = 0 is known, then (v0, v9, v16) = (0, 0, 0)

would be the only possible solution. However, in the above example, none of the

remaining variables could be derived through a brute-force attack. Similar to unit

propagation, we repeat the brute-force attack whenever a variable is deduced, as it

may introduce new constraints for other columns. At most, we will have 26 = 64

iterations for each column, as we restrict the number of addends in the modular

addition equation to 2. This is because in a single column, we will have no more

than 6 variables (4 difference variables + 2 carry variables). For example, in the

most extreme case, a column can have 2 low-order difference variables from 2 ‘?’, 2

high-order difference variables from 2 ‘?’, and 2 carry variables.
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Implementation details. Wordwise propagation is applied to all the modular addi-

tion equations, specifically the message expansion (1) and state update transformation

equations, including the one for the auxiliary word Ti. However, the only variables

that are propagated are the differential variables in ∇Ai, ∇Ei, and ∇Wi. This is

because propagating the other (auxiliary) variables was found to hurt the solver’s

performance.

During the wordwise propagation routine, a heuristic that we used which we found

dramatically improved the efficiency of the solver was to assume that any differential ‘?’

in the auxiliary variables (including ∇Ti and the differential variables corresponding

to the output of IF, MAJ, σ0, Σ0, etc.) was actually a ‘-’ differential.

In practice, making this assumption allowed the modular difference of the auxiliary

differential words to be calculable much more frequently, and increased the likelihood

that variables in the word differentials∇Ai, ∇Ei, and∇Wi were derived. This heuristic

is related to the ‘decision’ search strategy of Mendel et al. [39] which always first imposes

a ‘-’ for a ‘?’ before imposing a ‘x’. However, we found that making assumptions on

the primary word differentials ∇Ai, ∇Ei, and ∇Wi themselves significantly decreased

the solver’s performance, preventing us from finding SFS collisions for SHA-256 beyond

28 steps.

Updates since the SC2 publication. Although the core concept of exploiting

known modular differences remains unchanged, various improvements have been made

to address some shortcomings. Previously, we divided the problem into subproblems

and brute forced on the variables in the subproblem. This limited the brute-force

attack to subproblems with a small set of variables. Our new form of brute-force attack

no longer enumerates solutions for more than a single column while still deducing the

same amount of variables for a given problem, if not more. Moreover, we do iterative

unit propagation to deduce variables before any brute-force attack. In many cases,

unit propagation, which is a cheaper technique, proved to be sufficient for deducing

all the variables. There is also an update to the propagation of ? conditions where

we utilize a known lower-order difference bit to deduce a higher-order bit, and vice

versa. Altogether the changes reduced the compuational complexity and also resulted

in propagation of more conditions in differentials.
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CHAPTER 5

Experiments and Results

Our programmatic SAT + CAS solver was implemented in CaDiCaL 1.8.0 [7] using

the programmatic interface IPASIR-UP [25]. Our experiments were run in the Digital

Research Alliance of Canada’s [6] Narval cluster. Each SAT solver instance ran on a

single core of an AMD Rome 7532 processor running at 2.4 GHz with 4 GiB of RAM.

Our implementation is free software and is available online.1

5.1 The SAT Encoding

In our problem, we want the hashes in the two blocks to be the same while having a

similar message pair. We use SAT solvers as a search tool for the collision attack. Our

SAT formula comprises the encoding of two blocks of SHA-256 that we are aiming to

find collisions for. For each block, the formula includes an n-step compression function

that takes a 512-bit message block and a 256-bit chaining value, and then computes a

256-bit hash. The number of steps/rounds, n, is adjusted to generate a step-reduced

version of the hash function.

Encoding the compression function includes bitwise Boolean functions such as IF

and MAJ. The other functions, σ0, σ1, Σ0, and Σ1, boil down to 3-operand XOR

functions after circular rotations and shifts. For each 3-bit XOR a⊕b⊕c, our encoding

produces x ↔ a⊕ b⊕ c (where x is an auxiliary variable) using 23 = 8 clauses. An

auxiliary variable is introduced for every gate in the circuit similar to how the Tseitin

transformation [53] is performed (see Section 2.3).

The 32-bit modular addition is encoded as bitslices, where each bitslice involves

at most 7 addends (including carries) and a 3-bit output (a high carry, a low carry,

and a sum). The addition encoding is taken from the work of Nejati and Ganesh [44],

which used the Espresso logic minimizer.

On top of the two hash function instances, we have the differential cryptanalysis

layer. Each Boolean variable in one instance, say x, has a counterpart x′ in the other

instance. For the analysis of the differences as per differential cryptanalysis, we encode

1https://github.com/nahiyan/cadical-sha256
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the bitwise differences as ∆x ↔ x ⊕ x′ (following Nejati and Ganesh [44]) where

∆x ∈ {0, 1} is a new auxiliary variable. Each triple (x, x′, ∆x) defines a differential

condition. For example, (x, x′, 1) defines an ‘x’ while (1, 0,∆x) defines a ‘u’ (see

Table 1.4.1 for the complete list of differential conditions).

The core ideas behind this SAT encoding are taken from the work of Prokop [46],

which also uses bitwise XOR differences. The implementation of this SAT encoder

utilizes a framework2 for building SAT encoders.

A naive way to constrain collisions is to have zero differences in the hash pair while

maintaining at least one difference in the message pair. However, we want to analyze

all the differences between the 2 hash instances, especially the state update as well as

the auxiliary variables, to capture as much information as possible. Thus, we follow

the idea of a local collision as presented in the works of Mendel et al. [39, 40] and

many others.

To induce a local collision, we constrain the differential conditions in the state

update variables, A and E, along with the message words, W . This set of constraints

on the differentials conditions is called the “starting point” (of the differential path),

and are enforced through clauses added to the encoding. For example, if a differential

condition on the variable x is constrained to be a ‘-’, we add the unit clause ¬∆x to

set the difference to be zero (thus x = x′). The explicit starting points we used in our

work are given in the appendix (Tables B.0.1–B.0.4).

Any solution found by the solver will be within the confinements set by the starting

point. This reduction of the search space is found to very beneficial and the possibility

and time required for finding collisions highly depend on a well-crafted starting point.

To make the base problem easier, we also add clauses for the propagation of

common differentials, especially ones with - and x. For example, the encoding has a

clause for propagation of [xx-] → [-] for the XOR function, encoding that when x

is the auxiliary variable for a⊕ b⊕ c we have (∆a ∧∆b ∧ ¬∆c) → ¬∆x. Such helpful

clauses are present for all the operations XOR, MAJ, IF, and the modular addition of

words from equation (1) and the state update equations of Section 1.2.1.1.

5.2 Implementation

Our framework comprises CaDiCaL 1.8 that includes the programmatic interface,

IPASIR-UP. IPASIR-UP provides access to the current state of the solver for the

relevant variables (i.e., those encoding the state of the hash function and the differential

variables). IPASIR-UP also enables us to perform custom propagation and branching

2https://github.com/saeednj/SAT-encoding
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as well as learning custom conflict clauses.

Only the Boolean variables necessary for the programmatic techniques are added

to the list of observed/watched variables through the interface. This ensures that

these variables are preserved after each simplification step performed by the solver.

Furthermore, the solver will not send assignment notifications for any variable not

included in the observed list.

Our implementation also maintains a high-level state of the differential cryptanalysis

layer. In other words, for each variable pair (x, x′), the conditions {x, -, u, n, ?} are

updated in memory with respect to the variable assignments. This ensures that

whenever the conditions are needed for the differential cryptanalysis techniques, they

do not have to be re-computed.

For implementing inconsistency blocking, we used our own implementation of a

graph library. This houses the graph algorithm described in Section 4.1 for detecting

minimal inconsistent cycles in linear time. The implementations of bitsliced and

wordwise propagation, as well as the two-bit condition detection engine used for

inconsistency blocking, are based on the ideas described in the works of Mendel et al.

[39] and Eichlseder [22, 23]. We used a least-recently-used cache data structure for

caching propagation rules and rules for deriving two-bit conditions. The cache doesn’t

grow beyond the maximum available RAM, since the least frequently used entries are

deleted on the fly.

In our experiments, most queries to the propagation and two-bit detection engines

could be served from the cache, which is much faster than deriving the propagation

rules or the two-bit conditions on the fly each time. Since the set of rules that are

queried throughout the entire runtime is usually small (i.e., consumes a small portion

of the total CPU time), it wasn’t necessary to precompute any rules.

We perform bitsliced propagation for all operations in SHA-256 (including the

modular additions) alongside the solver’s built-in Boolean constraint propagation

(BCP). As wordwise propagation is much more expensive in terms of computational

cost, it’s performed only when the SAT solver finishes with the other propagation

methods. This ensures that wordwise propagation only deduces the conditions that

bitsliced propagation and BCP could not.

IPASIR-UP asks for a “reason” clause of propagated literals when it becomes

necessary for the solver to know why a literal was propagated. For bitsliced propagation,

these reason clauses were relatively short, so in this case we provided reason clauses

directly via IPASIR-UP’s interface. On the other hand, wordwise propagation involves

multiple word pairs and a single propagated literal may depend on a relatively large

number of bits, leading to long reason clauses. To avoid overwhelming the solver with
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long reason clauses, we did not use IPASIR-UP’s propagation interface for wordwise

propagation and instead set the values of any literals deduced by wordwise propagation

via branching.

Every time bitsliced propagation is performed, the reason clauses are stored

in memory in case the solver requires them. However, the list of reason clauses

grows continuously. To automatically prune obsolete reason clauses, the clauses are

categorized by the solver’s decision level, a process known as maintaining a trail. The

decision level increments with each new decision made by the solver and decrements

upon backtracking. Consequently, when the solver moves to a lower decision level,

all reason clauses associated with higher levels are deleted. This form of garbage

collection is also applied to two-bit conditions.

5.3 Results

In this section, we discuss finding SFS collisions of step-reduced SHA-256 for 20 to

39 steps and the attempts to find collisions for 40 steps. We also discuss the use of

various programmatic techniques and also different encoders.

5.3.1 SFS Collisions: 20–38 steps

We performed the same experiment with three separate solvers: an unmodified version

of CaDiCaL 1.8.0, a version of CaDiCaL with programmatic bitsliced and wordwise

propagation, and a version of CaDiCaL with both programmatic propagation and

inconsistency blocking. We also tried using CryptoMiniSat 5.11.21 [51], given that

it supports XOR constraints natively and has been tuned to work on cryptographic

problems. However, we did not pursue this extensively as CryptoMiniSat currently

does not have a programmatic interface and did not perform as well as CaDiCaL.

With each solver we searched for semi-free-start collisions for step-reduced SHA-

256 with 20 to 38 steps. In order to reduce the randomness inherent in the search,

each instance was solved ten times independently using 10 different random seeds,

though these 10 different seeds were consistently used across all our experiments.

Each instance was run for a time limit of 500,000 seconds (roughly 5.8 days). The

number of instances successfully solved in each case is given in Table 5.3.1, and all the

running times for finding a collision are plotted in Figure 5.3.1 and Figure 5.3.2. The

starting points used for the 21-step, 25-step, 28-step, and 38-step instances are given

in the appendix. The starting points for all other step counts were formed from one

of these starting points by dropping a number of rows at the bottom, e.g., the 26-step
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Fig. 5.3.1: Running times for finding a SFS collision for step-reduced SHA-256 for a
varying number of steps. The plot compares a plain SAT solver with two programmatic
SAT+CAS solvers. CaDiCaL/P[no-bf] represents bitsliced and wordwise propagation
(without any brute-force attack). CaDiCaL/P[no-bf]+IB represents bitsliced and
wordwise propagation (without any brute-force attack) along with inconsistency
blocking. The lack of a data point indicates no collisions were found within 500,000
seconds.

instance matches the 28-step starting point with two rows removed. This means that

the instances in the step ranges 20–21, 22–25, 26–28, and 29–38 can be expected to

roughly have similar difficulty as they were created from the same starting point.

The results show that programmatic propagation was clearly effective at helping

the solver find SFS collisions. The plain SAT solver could only find SFS collisions up

to 28 steps, while CaDiCaL with programmatic propagation, both with and without

inconsistency blocking, successfully found SFS collisions for every step count from

20 to 38, with the exception of 35—no 35-step instances were solved when both

programmatic propagation and inconsistency blocking were enabled (see Table 5.3.1).

We could get significantly lower solve times for 30, 31, 34, and 35 when wordwise

propagation doesn’t include any brute-force attack. In general, we found that the

wordwise propagation brute-force method and the inconsistency blocking method

tended to decrease the efficiency of the solver.
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Fig. 5.3.2: Running times for finding a SFS collision for step-reduced SHA-256
for a varying number of steps. The plot compares a plain SAT solver with two
programmatic SAT+CAS solvers. CaDiCaL/P represents bitsliced and wordwise
propagation. CaDiCaL/P+IB represents bitsliced and wordwise propagation along
with inconsistency blocking. Note that unlike Figure 5.3.1, the wordwise propagation
here involves a brute-force attack, as detailed in Section 4.2.2. The lack of a data
point indicates no collisions were found within 500,000 seconds.
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Steps 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

CaDiCaL 10 10 10 10 10 10 4 4 6 0 0 0 0 0 0 0 0 0 0
CaDiCaL/P 10 10 10 10 10 10 10 10 10 6 6 9 3 1 3 2 1 0 1

CaDiCaL/P[no-bf] 10 10 10 10 10 10 10 10 10 8 6 7 0 2 6 2 1 1 1
CaDiCaL/P+IB 10 10 10 10 10 10 10 10 10 7 7 7 2 0 5 0 1 1 2

CaDiCaL/P[no-bf]+IB 10 10 10 10 10 10 10 10 10 5 6 9 1 1 0 0 0 1 1

Table 5.3.1: Number of step-reduced SFS collisions found in each instance for the
5 methods: plain CaDiCaL, CaDiCaL with Propagation (P), and CaDiCaL with
Propagation and Inconsistency Blocking (P+IB), and also 2 variants of P and P+IB
where brute-force attack is turned off (P[no-bf] and P[no-bf]+IB). For each number of
steps and solver, we solved the same instance using 10 different SAT solver seeds.

5.3.2 SFS Collisions: 39–40 steps

Although our experiments showed that programmatic propagation could improve the

performance of the solver and find SFS collisions up to 38 steps, we could not find

SFS collisions beyond 38 steps.

The work of Li et al. [33] involves an SMT (Satisfiability Modulo Theories) encoding

that could find SFS collisions up to 39 steps. SMT is the problem of determining the

satisfiability of mathematical formulas. It’s similar to SAT, but SMT supports more

expressive formulas involving complex entities like real numbers, integers, bitvectors,

strings, and cardinality constraints. Li et al. [33]’s work involves cardinality constraints

to find a differential characteristic with minimum differences in the ∇Wi, ∇Ai, and

∇Ei variables.

The quantity of differences is the sum of the Hamming weights of the differences.

For example, the Hamming weight for the expanded message variable differences is

HW =
n−1∑
i=0

31∑
j=0

Wi[j]⊕W ′
i [j]

where n is the number of steps. Similarly, it’s HA and HE for the sums of the ∇A

and ∇E differences.

The minimization for HW , HA, and HE is done in the following steps in order:

• Minimize HW : Find the minimum HW . Let this minimum HW be tw.

• Minimize HA: Find the minimum HA with HW = tw constrained. Let this

minimum HA be ta.

• Minimize HE: Find the minimum HE with HW = tw and HA = ta constrained.
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Let this minimum be te.

The minimization process involves proving that a valid characteristic doesn’t exist

below a certain point. For example, if tw = 25, it means that there exists no valid

characteristic for HW < 25.

Minimizing the Hamming weight leads to a sparse differential characteristic, thereby

increasing the chances of finding a message pair that conforms to an SFS collision.

For example, the minimum Hamming weights for a 39-step SFS collision are tw = 25,

ta = 10, and te = 90 with the starting point B.0.5.

The relation between the sparsity and the likelihood of finding SFS collisions is

also utilized in the work of Mendel et al. [40]. In our experiments, we’ve observed that

the likelihood of finding SFS collisions is very high within the constraints of sparse

characteristics found with Li et al. [33]’s encoding.

Improving Li et al. [33]’s encoder. The original encoder3 of Li et al. [33] generates

high-level code describing a problem, which is then processed by an SMT (Satisfiability

Modulo Theories) solver called STP (Simple Theorem Prover) [26] to find a solution.

SMT solvers determine the satisfiability of logical formulas. Unlike SAT solvers,

SMT solvers accept high-level problem descriptions, typically supporting arithmetic

operations, bit-vectors, and arrays. However, SMT solvers often translate the problem

into a SAT problem and then use a SAT solver to solve it.

In their implementation, STP is configured to use CryptoMiniSat as the SAT solver

in portfolio mode. However, we modified the implementation to output DIMACS

CNF instead, allowing it to be solved with CaDiCaL and most other SAT solvers.

Moreover, the original implementation’s cardinality constraints, which were im-

plemented using modular addition for Hamming weights, have been replaced by

cardinality constraints based on the totalizer algorithm [5]. Overall, these changes

significantly reduced the solve time and allowed us to retrieve the variable mapping,

which was not possible with STP. Having the variable mapping and gaining the

ability to solve with CaDiCaL opened the pathway to trying out our programmatic

techniques on this different type of SAT encoding.

Note that STP has an option to output DIMACS CNF, but it doesn’t provide the

variable mapping and also doesn’t let us select the algorithm used for encoding the

cardinality constraints.

Interestingly, we didn’t benefit from the programmatic techniques that provided a

performance boost for finding 20–38 steps SFS collisions (as specified in Section 5.3.1).

See Figure 5.3.3 for the results using our modification of Li et al. [33]’s encoder.

3https://github.com/Peace9911/sha 2 attack
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The minimum Hamming weights for each number of steps are provided in Ta-

ble 5.3.2. Note that the times for finding the characteristics (see Figure 5.3.3) are

much higher for 26–28 steps compared to that for ≥ 29 steps. This likely was a result

of cardinality constraints that were relatively tighter in the instances with 26–28 steps.

To find message pairs conforming to an SFS collision out of the found characteristics,

we utilize our SAT encoder (see Section 5.1). We encode an SFS collision problem

using the found characteristic as the starting point. Solving this problem gives us

a colliding message pair that conforms to the characteristic. The running times for

finding the SFS collisions from the found characteristics are shown in Figure 5.3.4.

Note that there exists no collision conforming to the characteristics involving 26–28

steps, meaning that the solver yields UNSAT for all instances of these steps. The tight

cardinality constraints might explain why no collisions exist for the characteristics

found for 26–28 steps.

Steps 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

HA 1 4 1 1 4 4 12 12 12 6 6 7 7 7 7 7 7 7 7 10
HE 68 35 73 73 33 33 58 58 58 151 151 140 141 141 141 141 141 141 141 90
HW 2 11 5 5 22 25 37 37 37 19 19 23 23 23 23 23 23 23 23 25

Table 5.3.2: Minimum Hamming weights for each number of steps found with Li et al.
[33]’s encoding.

Cardinality Clauses We have benchmarked the performance with cardinality

clauses [47] and experimented with our implementation of the totalizer encoding [5].

The comparison is highlighted in Figure 5.3.5. The results show that Cardinality

CDCL is significantly slower than CaDiCaL 1.5.2 for problems based on Li et al. [33]’s

SAT encoder. We chose CaDiCaL 1.5.2 for comparison because Cardinality CDCL is

based this version of CaDiCaL.

Searching for 40-step SFS collisions. As shown in Figure 5.3.3, Li et al. [33]’s

form of encoding could be used to find SFS characteristics up to 39 steps with low

solve times. This brings up a question: can it find valid SFS characteristics for 40

steps? To investigate, we used a starting point for 40 steps (see Table B.0.6).

The initial stage in the search for a 40-step SFS collision with this type of encoding

involves sequentially minimizing the Hamming weights HW , HA, and HE. This step

is crucial, as finding a message pair that conforms to a differential characteristic is

highly unlikely without minimizing the Hamming weights.
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Fig. 5.3.3: Running times for finding a SFS characteristic using Li et al. [33]’s technique
for step-reduced SHA-256 for a varying number of steps. The plot compares a plain
SAT solver with two programmatic SAT solvers. CaDiCaL/P represents bitsliced and
wordwise propagation. CaDiCaL/P+IB represents bitsliced and wordwise propagation
along with inconsistency blocking. The lack of a data point indicates no collisions
were found within 86,400 seconds.

The characteristics with the lowest Hamming weights HW , HA, and HE that

we found were 77, 13, and 140 respectively. The lowest Hamming weight HW that

we proved to have no valid characteristics is 55, meaning that there might exist

characteristics with a lower HW for 55 < HW < 77. However, we couldn’t find a

characteristic for HW < 77, and none of the found characteristics could be extended to

an SFS collision, meaning that no message pair confirming to an SFS collision exists

for these characteristics and the solver returned UNSAT.

We’ve also tried constraining the Hamming weight for the last active message word

∇W30 to be 1 on top of constraining HW . This idea is based on the fact that most of

the solutions for SFS collisions with 38 and 39 steps also had a Hamming weight of 1

for the last active message word. With this approach, the lowest Hamming weights

that we found were HW = 83, HA = 20, and HE = 155. On the other side, the highest

HW that we could be proved to have no valid characteristics is 74, leaving a range for

the possible valid characteristics between 74 < HW < 83. However, none of the found

characteristics could be extended to an SFS collision, just like in the previous case

without the cardinality constraint on ∇W30.
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Fig. 5.3.4: Running times for finding a SFS collision using the characteristic found
with Li et al. [33]’s encoding for step-reduced SHA-256 for a varying number of steps.
The lack of a data point indicates no collision exists for the characteristic.
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Fig. 5.3.5: Running times for finding a SFS characteristic using Li et al. [33]’s technique
for step-reduced SHA-256 for a varying number of steps. The plot compares solving
with and without native cardinality constraints support. The lack of a data point
indicates no collisions were found within 86,400 seconds.

39



CHAPTER 6

Conclusion

In this work we combine the programmatic SAT+CAS paradigm with the differential

cryptanalysis techniques used in previous collision attacks on SHA-256. In the process,

we demonstrate that these computer algebraic techniques can dramatically improve the

performance of the SAT solver, enabling the SAT+CAS solver to find a semi-free-start

collision of SHA-256 with 38 steps, while a plain SAT solver could go no further than

28 steps. Moreover, previous 38-step SFS collisions [40] were found with a highly

sophisticated search tool specifically written to find SHA-256 collisions, while our

work used the general purpose SAT solver CaDiCaL coupled with the IPASIR-UP

interface [25] for custom propagation, branching, and learning. Thus, we were able to

exploit the power of modern SAT solvers without needing to write a search tool from

scratch.

A few months before this thesis was written, the current best SFS collision for

SHA-256, involving up to 39 steps, was found by Li et al. [33]. This approach, based on

an SMT/SAT methodology, employs a significantly different encoding. Our SAT+CAS

approach wasn’t found to be useful with this alternate encoding for reasons that are

currently unclear. Determining other programmatic techniques or modifying our

current techniques to improve the solver’s performance with this new encoding is

potential future work.

It’s possible that the cardinality constraints in Li et al.’s encodings may be limiting

the performance of our SAT+CAS approach. If this is indeed the case, we could adapt

our programmatic techniques to work better with these constraints. Additionally,

instead of strictly enforcing minimum Hamming weights (see Section 5.3.2), we might

consider allowing slightly higher Hamming weights to provide greater flexibility for

our programmatic techniques, as long as we can still obtain a valid characteristic for

which there exists a message pair conforming to an SFS collision. We’ve already seen

that minimum Hamming weights do not always lead to optimal solve times, nor do

they consistently result in characteristics that can be extended to an SFS collision.
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[1] Ábrahám, E. (2015). Building bridges between symbolic computation and satisfia-

bility checking. In Proceedings of the 2015 ACM on International Symposium on

Symbolic and Algebraic Computation, pages 1–6.
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APPENDIX A

SFS Collisions

In this appendix we provide an example of a 38-step semi-free-start SHA-256 collision

that we found (Table A.0.1).

Table A.0.1: SFS collision for 38 steps found with programmatic propagation and
inconsistency blocking. h0 is the chaining value, (M,M ′) is the colliding message pair,
and h1 is the hash of M and M ′. Word pairs in M and M ′ that have differences are
enclosed in a box.

h0 afea2566 1e0a73e2 da747de7 34381a7f 06f4c0d9 8897dd98 c592ba6a

d2aa5e80

M 5b5058d2 901f87fb 254bcfa2 5f8d7dc1 fb1053be 0622e1f8 da8801c2

a951cfbb 5db42ffd 683b4391 f87eabbd e928b976 3675cc55 6ebe78be

e3031536 c2de906f

M ′ 5b5058d2 901f87fb 254bcfa2 5f8d7dc1 fb1053be 0622e1f8 da8801c2

9737d17b 5db43001 683b4391 f8812bbd e928b976 3675cc55 6ebe78be

e3031536 c2de906b

h1 d0e019f7 408269d3 24296a7b 30df8e7f 95d2bff8 34e2bca6 6c50a294

ddb4254a
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A. SFS COLLISIONS

Table A.0.2: The differential characteristic for the 38-step semi-free-start collision
presented in Table A.0.1. The words with a nonzero difference (i.e., including a
‘u’ or ‘n’ differential) are enclosed in a box. Interestingly, compared to the 38-step
semi-free-start collision presented by Mendel et al. [40], an additional two words (∇A8

and ∇E10) have a zero difference.

i ∇Ai ∇Ei ∇Wi

−4 00110100001110000001101001111111 11010010101010100101111010000000

−3 11011010011101000111110111100111 11000101100100101011101001101010

−2 00011110000010100111001111100010 10001000100101111101110110011000

−1 10101111111010100010010101100110 00000110111101001100000011011001

0 11111110001111000010010101011001 01101011101011110101110100111011 01011011010100000101100011010010

1 01001011000010110110000101101010 11000001100000000001101010100000 10010000000111111000011111111011

2 01100101111011000011000000100010 11100000101101110101010101101101 00100101010010111100111110100010

3 01110101001010010111110000101000 00001101001111101101010100100110 01011111100011010111110111000001

4 11000011100011110110101000111111 00000010101010001100011111011001 11111011000100000101001110111110

5 11001111011111111011000001010111 00011000001010000101111110011101 00000110001000101110000111111000

6 00111101011110100100110110011011 01001100100101100011110010101001 11011010100010000000000111000010

7 nnn0nnnunnnnu01uuuuuuuu0un000010 010u1u0nnnn0nunnuuuuuuu00u001010 10ununn10un10nn1110nuuu1un111011

8 11001111111110101001001011100001 001nu010011001010000000010010010 0101110110110100001nuuuuuuuuuu01

9 01u001n0n0unnnnn00n0nuunuu10nu11 00010111011010010111110001101n00 01101000001110110100001110010001

10 00000000111000001100000100000111 10001011000001111011101010010110 11111000nuuuuuunu010101110111101

11 11011000101000000101000100000110 0unnun011u0n0u1110100n0un1nuuu01 11101001001010001011100101110110

12 10110000001000101011101010001100 10000000001000100100001001000101 00110110011101011100110001010101

13 01100100110001111111110111111000 1un0nu0uuunnnnnn00n1nuu0nu100n11 01101110101111100111100010111110

14 00001110111110110011010111100111 00110110001100111100010010010000 11100011000000110001010100110110

15 1100n0101011001u0100111101111101 1111n110000111un1011101111111100 11000010110111101001000001101u11

16 11011101100011000101110010100u10 unnnnnn0001111000110011111u0nu10 10110000011011100011010101111110

17 11101100000110000000111011010101 0001111nuuu111nu0unn1110101010nu 11010101101101000100100110000001

18 00110001010011100101110110001111 00000110000111110000111110111100 11000000111100000000000101101111

19 01111001001101010100100010010001 0010n101unnnnnnn0001100110110011 10111010010001001001101110101000

20 00000011110100011000001001011001 100110000101110010110unnnnnnnn00 10110011001011110000100101010110

21 11000111011100100100001111011010 01101101111111111111000000000001 01100110010010100111100100010011

22 00100011101011111111110111000001 10101011100001110101011111111110 00010100101010100100011010011101

23 10000010100110001101110100111111 11011110110001000111101101110110 1100u000011001nu0000110101111000

24 01000000000101011100011011111110 01010101111111011000110111111001 10011110001100111100000011001n10

25 11001011100110110010110011011100 10011111100000110000101010100110 00011110010111001111111110111100

26 11100101100100000010111000100010 00001101111100100111101000100101 00101001110010011101001110101010

27 11001011111100101100101000101100 00000100001011101100101111001110 01011100001111001111111000110101

28 11100111000010101101101110111100 10110010110111000001011001011100 01011111100011111001000101011010

29 00101001101011001111100101111010 00111110011010011101111100000101 00011001000111111010011001001101

30 00101111100001101001111000010001 00110111000011000101010101011000 01001001101111110100101000011010

31 11011100111011101011001110011111 11011000010000100000001110000101 11101111001011100111000001011100

32 01111100111101110111110011000001 01100101010010000110100010000001 00100110101001001100110001000010

33 00001111011000110010100101101000 01010111011001000010011011011001 10111101011000000100111100101100

34 11111100101001110111010000000000 00001011000010011100011011001010 01111101101001000011001100101100

35 01001001101101001110110010010100 10100110101111011110100000101010 11000001100001101101001000000100

36 00100010011101111111010111110001 10101100010010101101111100001110 00100000011111001000101001001111

37 00100000111101011111010010010001 10001110110111011111111100011111 00001100100101111011010111101000
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APPENDIX B

Starting Points

This appendix presents the explicit starting points that we used in our search. The

21-step starting point (Table B.0.1) is taken from the work of Prokop [46]. The

starting point for 25 steps (Table B.0.2) is an extended version of the 24-step starting

point provided by Prokop [46]. The 28-step starting point (Table B.0.3) is a slightly

modified version of the starting point used by Mendel et al. [40]. The 39-step starting

point (Table B.0.5) is taken from the work of Li et al. [33]. Li et al. [33]’s starting

point is a modified version of the 39-step starting point for SHA-512 in Eichlseder [23].

The 40-step starting point (Table B.0.6) has been provided to us by Maria Eichlseder.

The 38-step starting point (Table B.0.4) is constructed based on the 38-step

differential characteristic provided by Mendel et al. [40]—in particular the differential

words ∇W15, ∇W23, ∇W24, ∇A15, and ∇A16. The ‘x’s in these words are placed

under the heuristic assumption that these words have a low (but nonzero) Hamming

weight. The differential word ∇W24 (with a Hamming weight of 1 and an ‘x’ in

position 2) was taken from their starting point. This propagates to the ‘x’s in ∇W15

and ∇A16 (and both those words were assumed to have a Hamming weight of 1 as

well) as well as the ‘x’ in position 16 of ∇W23. Then setting position 16 of ∇A15 to ‘x’

causes it to propagate to ∇E19[16] and cancel out with ∇W23[16] in the state update

transformation equation of T23 (and similarly for position 27 of ∇A15). ∇W23[27] is

set to ‘x’ to cancel out with σ0(W15) in step 30 of the message expansion equation.

More details related to the collisions are available in the data repository in the

GitHub repository.1

1https://github.com/nahiyan/sha256-data
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B. STARTING POINTS

Table B.0.1: Starting point for a 21-step semi-free-start collision.

i ∇Ai ∇Ei ∇Wi

−4 -------------------------------- --------------------------------

−3 -------------------------------- --------------------------------

−2 -------------------------------- --------------------------------

−1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 x??????????????????????????????? ???????????????????????????????? ????????????????????????????????

6 -------------------------------- ???????????????????????????????? ????????????????????????????????

7 -------------------------------- ???????????????????????????????? ????????????????????????????????

8 -------------------------------- ???????????????????????????????? ????????????????????????????????

9 -------------------------------- ???????????????????????????????? --------------------------------

10 -------------------------------- -------------------------------- --------------------------------

11 -------------------------------- -------------------------------- --------------------------------

12 -------------------------------- -------------------------------- --------------------------------

13 -------------------------------- -------------------------------- ????????????????????????????????

14 -------------------------------- -------------------------------- --------------------------------

15 -------------------------------- -------------------------------- --------------------------------

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- --------------------------------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

Table B.0.2: Starting point for a 25-step semi-free-start collision.

i ∇Ai ∇Ei ∇Wi

−4 -------------------------------- --------------------------------

−3 -------------------------------- --------------------------------

−2 -------------------------------- --------------------------------

−1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- -------------------------------- --------------------------------

6 -------------------------------- -------------------------------- --------------------------------

7 -------------------------------- -------------------------------- --------------------------------

8 x??????????????????????????????? ???????????????????????????????? ????????????????????????????????

9 -------------------------------- ???????????????????????????????? ????????????????????????????????

10 -------------------------------- ???????????????????????????????? --------------------------------

11 -------------------------------- ???????????????????????????????? ????????????????????????????????

12 -------------------------------- ???????????????????????????????? --------------------------------

13 -------------------------------- -------------------------------- --------------------------------

14 -------------------------------- -------------------------------- --------------------------------

15 -------------------------------- -------------------------------- --------------------------------

16 -------------------------------- -------------------------------- ????????????????????????????????

17 -------------------------------- -------------------------------- --------------------------------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 -------------------------------- -------------------------------- --------------------------------
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B. STARTING POINTS

Table B.0.3: Starting point for a 28-step semi-free-start collision.

i ∇Ai ∇Ei ∇Wi

−4 -------------------------------- --------------------------------

−3 -------------------------------- --------------------------------

−2 -------------------------------- --------------------------------

−1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- -------------------------------- --------------------------------

6 -------------------------------- -------------------------------- --------------------------------

7 -------------------------------- -------------------------------- --------------------------------

8 ???????????????????????????????? ???????????????????????????????? x???????????????????????????????

9 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

10 ???????????????????????????????? ???????????????????????????????? --------------------------------

11 -------------------------------- ???????????????????????????????? --------------------------------

12 -------------------------------- ???????????????????????????????? --------------------------------

13 -------------------------------- ???????????????????????????????? ????????????????????????????????

14 -------------------------------- ???????????????????????????????? --------------------------------

15 -------------------------------- -------------------------------- --------------------------------

16 -------------------------------- -------------------------------- ????????????????????????????????

17 -------------------------------- -------------------------------- --------------------------------

18 -------------------------------- -------------------------------- ????????????????????????????????

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 -------------------------------- -------------------------------- --------------------------------

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- --------------------------------

27 -------------------------------- -------------------------------- --------------------------------
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B. STARTING POINTS

Table B.0.4: Starting point for a 38-step semi-free-start collision.

i ∇Ai ∇Ei ∇Wi

−4 -------------------------------- --------------------------------

−3 -------------------------------- --------------------------------

−2 -------------------------------- --------------------------------

−1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- -------------------------------- --------------------------------

6 -------------------------------- -------------------------------- --------------------------------

7 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

8 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

9 ???????????????????????????????? ???????????????????????????????? --------------------------------

10 -------------------------------- ???????????????????????????????? ????????????????????????????????

11 -------------------------------- ???????????????????????????????? --------------------------------

12 -------------------------------- ???????????????????????????????? --------------------------------

13 -------------------------------- ???????????????????????????????? --------------------------------

14 -------------------------------- ???????????????????????????????? --------------------------------

15 ----x----------x---------------- ???????????????????????????????? -----------------------------x--

16 -----------------------------x-- ???????????????????????????????? --------------------------------

17 -------------------------------- ???????????????????????????????? --------------------------------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- ???????????????????????????????? --------------------------------

20 -------------------------------- ???????????????????????????????? --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- ----x---------xx----------------

24 -------------------------------- -------------------------------- -----------------------------x--

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- --------------------------------

27 -------------------------------- -------------------------------- --------------------------------

28 -------------------------------- -------------------------------- --------------------------------

29 -------------------------------- -------------------------------- --------------------------------

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------

32 -------------------------------- -------------------------------- --------------------------------

33 -------------------------------- -------------------------------- --------------------------------

34 -------------------------------- -------------------------------- --------------------------------

35 -------------------------------- -------------------------------- --------------------------------

36 -------------------------------- -------------------------------- --------------------------------

37 -------------------------------- -------------------------------- --------------------------------
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B. STARTING POINTS

Table B.0.5: Starting point for a 39-step semi-free-start collision. Note that there
is no difference constraint unlike the other starting points. Instead, we rely on the
cardinality constraints to impose a difference.

i ∇Ai ∇Ei ∇Wi

−4 -------------------------------- --------------------------------

−3 -------------------------------- --------------------------------

−2 -------------------------------- --------------------------------

−1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- -------------------------------- --------------------------------

6 -------------------------------- -------------------------------- --------------------------------

7 -------------------------------- -------------------------------- --------------------------------

8 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

9 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

10 -------------------------------- ???????????????????????????????? ????????????????????????????????

11 -------------------------------- ???????????????????????????????? ????????????????????????????????

12 -------------------------------- ???????????????????????????????? ????????????????????????????????

13 -------------------------------- ???????????????????????????????? --------------------------------

14 -------------------------------- ???????????????????????????????? --------------------------------

15 ???????????????????????????????? ???????????????????????????????? --------------------------------

16 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

17 -------------------------------- ???????????????????????????????? ????????????????????????????????

18 ???????????????????????????????? ???????????????????????????????? --------------------------------

19 -------------------------------- ???????????????????????????????? --------------------------------

20 -------------------------------- ???????????????????????????????? --------------------------------

21 -------------------------------- ???????????????????????????????? --------------------------------

22 -------------------------------- ???????????????????????????????? --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 -------------------------------- -------------------------------- ????????????????????????????????

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- ????????????????????????????????

27 -------------------------------- -------------------------------- --------------------------------

28 -------------------------------- -------------------------------- --------------------------------

29 -------------------------------- -------------------------------- --------------------------------

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------

32 -------------------------------- -------------------------------- --------------------------------

33 -------------------------------- -------------------------------- --------------------------------

34 -------------------------------- -------------------------------- --------------------------------

35 -------------------------------- -------------------------------- --------------------------------

36 -------------------------------- -------------------------------- --------------------------------

37 -------------------------------- -------------------------------- --------------------------------

38 -------------------------------- -------------------------------- --------------------------------
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B. STARTING POINTS

Table B.0.6: Starting point for a 40-step semi-free-start collision. Note that there
is no difference constraint unlike the other starting points. Instead, we rely on the
cardinality constraints to impose a difference.

i ∇Ai ∇Ei ∇Wi

−4 -------------------------------- --------------------------------

−3 -------------------------------- --------------------------------

−2 -------------------------------- --------------------------------

−1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- -------------------------------- --------------------------------

6 -------------------------------- -------------------------------- --------------------------------

7 -------------------------------- -------------------------------- --------------------------------

8 -------------------------------- -------------------------------- --------------------------------

9 -------------------------------- -------------------------------- --------------------------------

10 -------------------------------- -------------------------------- --------------------------------

11 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

12 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

13 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

14 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

15 ???????????????????????????????? ???????????????????????????????? --------------------------------

16 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

17 ???????????????????????????????? ???????????????????????????????? --------------------------------

18 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

19 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

20 ???????????????????????????????? ???????????????????????????????? --------------------------------

21 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

22 ???????????????????????????????? ???????????????????????????????? --------------------------------

23 -------------------------------- ???????????????????????????????? --------------------------------

24 -------------------------------- ???????????????????????????????? --------------------------------

25 -------------------------------- ???????????????????????????????? ????????????????????????????????

26 -------------------------------- ???????????????????????????????? ????????????????????????????????

27 -------------------------------- -------------------------------- --------------------------------

28 -------------------------------- -------------------------------- ????????????????????????????????

29 -------------------------------- -------------------------------- ????????????????????????????????

30 -------------------------------- -------------------------------- ????????????????????????????????

31 -------------------------------- -------------------------------- --------------------------------

32 -------------------------------- -------------------------------- --------------------------------

33 -------------------------------- -------------------------------- --------------------------------

34 -------------------------------- -------------------------------- --------------------------------

35 -------------------------------- -------------------------------- --------------------------------

36 -------------------------------- -------------------------------- --------------------------------

37 -------------------------------- -------------------------------- --------------------------------

38 -------------------------------- -------------------------------- --------------------------------

39 -------------------------------- -------------------------------- --------------------------------
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