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This report outlines a method of enumerating projective planes of order
nine. The enumeration was previously completed by Lam, Kolesova, and
Thiel using highly optimized and customized search code. Despite the im-
portance of this result in the classification of projective geometries, the
previous search relied on unverified code and has never been independently
verified until now. Our enumeration procedure uses a hybrid satisfiability
(SAT) solving and symbolic computation approach. SAT solving performs
an enumerative search, while symbolic computation removes symmetries
from the search space. Certificates are produced which demonstrate the
enumeration completed successfully.
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1 Introduction
In this report, we aim to verify the results of a previous search
by Lam et al. [1991] for all finite projective planes of order 9. We
do this by reducing the problem to that of Boolean satisfiability
(SAT), solving it using a computer program known as a SAT solver,
and verifying outputted proofs using a proof verifier. We first give
the relevant background and definitions on projective planes, latin
squares (which are related to projective planes), and SAT. We then
explain how to simplify the problem of searching for projective
planes of order 9. Finally, we detail the steps of our search and give
a summary of search times and results for each step, showing that
our results agree with those of Lam et al.

2 Background

2.1 Projective Planes
Projective planes can be thought of as an extension of the more
familiar Euclidean plane with the concept of points at infinity. The
result is a space in which every pair of lines intersect at least once,
and hence no parallel lines are possible. One can imagine a depiction
of railroad tracks on a canvas appearing to converge at the horizon,
despite the fact that they are parallel in 3D space. There are several
representations for projective planes, and we will provide two which
will be useful to us based on the definition below.

Definition 2.1. A projective plane of order n is a collection of
𝑛2 + 𝑛 + 1 points and 𝑛2 + 𝑛 + 1 lines such that

(1) every line contains 𝑛 + 1 points,
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Fig. 1. A projective plane of order 2 (the Fano Plane)

(2) every point is on 𝑛 + 1 lines,
(3) any two distinct lines intersect at exactly one point, and
(4) any two distinct points lie on exactly one line.

Interestingly, it is not possible to generate any projective planes
for some orders 𝑛 (e.g., 𝑛 = 6 [Bruck and Ryser 1949] and 𝑛 = 10
[Lam et al. 1989]). Furthermore, multiple distinct projective planes
exist for some orders 𝑛 (e.g., 𝑛 = 9 [Hall et al. 1959]).

The first alternate representation will be in the form of a bipartite
graph. We define two sets of vertices: the first contains a vertex
for each point, and the second contains a vertex for each line. We
connect point-vertex 𝑝 to line-vertex 𝑙 with an edge if and only if
the point corresponding to 𝑝 lies on the line corresponding to 𝑙 .

We can subsequently derive the second alternate representation
by creating an𝑛2+𝑛+1 by𝑛2+𝑛+1 incidence matrix from the graph
in which each row represents a point and each column represents a
line. A 1 in row 𝑖 and column 𝑗 indicates that point 𝑖 lies on line 𝑗 .
A pair of columns or a pair of rows intersect if their inner product
is exactly 1. A valid projective plane of order 𝑛 in this form must
satisfy the following properties:

(1) each column sum of the matrix is 𝑛 + 1,
(2) each row sum of the matrix is 𝑛 + 1,
(3) every pair of distinct columns of the matrix intersect exactly

once, and
(4) every pair of two distinct rows of the matrix intersect exactly

once.
We will primarily use this representation of projective planes for
the remainder of this report.

2.2 Latin Squares
Latin squares will play an important role in our search, so we define
them here.

Definition 2.2. A latin square of order 𝑘 is a 𝑘 ×𝑘 array consisting
of the integers 1, 2, . . . , 𝑘 such that

(1) each row contains each of the numbers 1, 2, . . . , 𝑘 exactly
once, and

(2) each column contains each of the numbers 1, 2, . . . , 𝑘 exactly
once.
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1 2 3 4
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3 4 1 2
4 1 2 3

Fig. 2. A latin square of order 4

As with projective planes, a latin square can be represented as a
graph. This is done by creating a vertex for each entry in the latin
square and creating an edge between any pair of vertices whose
entries lie in the same row, same column, or have the same numeric
value.

2.3 SAT
Given a list of clauses, where each clause can be made up of the
disjunction variables and their negations, the Boolean satisfiabil-
ity problem (SAT) asks whether it is possible to assign values of
true and false to each variable such that each clause evaluates to
true. Despite being a well-known NP-complete problem, heuristic
algorithms exist which can efficiently solve SAT instances in many
cases. Programs which perform this task, such as MapleSAT, are
called SAT solvers.

A useful feature of SAT solvers is their ability to produce proofs
or certificates which can be verified by a second program, a proof
verifier, to verify the results produced by the solver. By verifying
the SAT solver’s output, we do not have to rely on the correctness
of its programming; instead, if a proof is verified successfully by a
proof verifier, we only have to assume the correctness of the proof
verifier itself. Importantly, proof verifiers are typically simpler than
SAT solvers.

2.4 Structure of Planes of Order 9
Anaive search for the projective planes of order 9would be infeasible
due to the large search space of the problem. In order to reduce this
search space, it will prove useful to take advantage of the symmetry
of projective planes and fix certain values in our incidence matrix.
This will be done based on Kolesova’s standard form of planes of
order 9. The proof of correctness for this form is not provided here,
but it shows that any plane of order 9 can be rearranged into this
form using only column and row permutations. In other words, any
plane of order 9 will be isomorphic to a plane in this form.
We will first focus on the leading 27 columns of this standard

form. There are eight 8 × 8 blocks of missing values 𝐵1, 𝐵2, . . . , 𝐵8.
However, these blocks have a nice structure: it can be shown that
each of these blocks must be a distinct permutation matrix. This is
where we connect projective planes of order 9 to latin squares of
order 8: we can generate a distinct permutation matrix from each
row of a given latin square by treating the numbers in each row
as a reordering of the row indices of the identity matrix. In other
words, the set of all latin squares of order 8 can be reduced to the
set of all partial (up to column 27) projective planes of order 9. Due
to symmetry, isomorphic latin squares will reduce to isomorphic
projective planes, so we will want to identify and remove such
"duplicate" squares before performing the reduction. Our search for
the planes of order 9 will begin here.

Fig. 3. The standard form for projective planes of order 9 as shown by
Kolesova 1989.

3 Search Procedure
We perform our search for all projective planes of order 9 in 3 steps.
First we enumerate all latin squares of order 8. Then, for each latin
square, we generate a corresponding partial plane up to column 27
and attempt to extend it column 40. Finally, we attempt to extend
each remaining partial plane from column 40 to a full projective
plane (column 91).

The search component of each step is accomplished by reducing
the problem to SAT and performing an exhaustive search for so-
lutions using MapleSAT. Before moving to the next step, we also
perform isomorphism removal by reducing every solution to its
graph form and checking for isomorphism using nauty. Finally, we
verify all MapleSAT proofs using DRAT-trim and all isomorphism
removal using a custom Python script.

3.1 Latin Squares of Order 8
We begin by enumerating the latin squares of order 8. In order
to reduce the problem to SAT, we need to define an encoding in
Boolean logic for latin squares and for the conditions that determine
a valid latin square.
First we define an encoding for latin squares. Let (𝐴𝑖, 𝑗 ) be a

latin square of order 8. We encode 𝐴 into 83 Boolean variables
𝑙𝑖, 𝑗,𝑘 for 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 8 where 𝑙𝑖, 𝑗,𝑘 is true if 𝐴𝑖, 𝑗 = 𝑘 and false
otherwise. Since MapleSAT uses non-zero integers to represent
variables, in practice, we represent the variable 𝑙𝑖, 𝑗,𝑘 as the result of
the expression (𝑖×82+ 𝑗×8+𝑘) if 𝑙𝑖, 𝑗,𝑘 is true and −(𝑖×82+ 𝑗×8+𝑘)
otherwise.

Then, we define an encoding for the requirements of a latin square.
Namely, we must encode the fact the the numbers 1, 2, . . . , 8 must
each appear exactly once per row and once per column. This is
accomplished using two sets of clauses.
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The first set of clauses guarantees that each number appears at
least once per row and column. For 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 8 we define

𝑙1, 𝑗,𝑘 ∨ 𝑙2, 𝑗,𝑘 ∨ . . . ∨ 𝑙8, 𝑗,𝑘

and
𝑙𝑖,1,𝑘 ∨ 𝑙𝑖,2,𝑘 ∨ . . . ∨ 𝑙𝑖,8,𝑘

The second set of clauses guarantees that each number appears
at most once per row and column. For 1 ≤ 𝑖, 𝑖′, 𝑗, 𝑗 ′, 𝑘 ≤ 8 where
𝑖 ≠ 𝑖′ and 𝑗 ≠ 𝑗 ′ we have

¬𝑙𝑖, 𝑗,𝑘 ∨ ¬𝑙𝑖′, 𝑗,𝑘
and

¬𝑙𝑖, 𝑗,𝑘 ∨ ¬𝑙𝑖, 𝑗 ′,𝑘
Combining the above two sets of clauses allows us to generate the

set of all latin squares of order 8. However, as with projective planes,
we will exploit the symmetry of latin squares and perform the search
in several steps to reduce the search space. Bash and Python scripts
are used to generate clauses and manage the execution of MapleSAT,
DRAT-trim, nauty, and our custom isomorphism verification.
We start by fixing the entries of the first row of the latin square

as the numbers 1, 2, . . . , 8 in their natural order. We include these as
unit clauses with the rest of our SAT clauses. We then use MapleSAT
to extend from row one to row two and generate all partial 2 × 8
latin squares that can follow from the first row. After performing
isomorphism removal and proof verification, we repeat this process
to extend to rows three, four, and finally eight. After isomorphism
removal in the final step, we are left with 283,657 latin squares of
order 8.

3.2 Column 40
After enumerating the latin squares of order 8, we have a starting
point in our search for projective planes of order 9. In this step,
for each of the 283,657 latin squares, we generate a corresponding
partial projective plane up to column 27 and attempt to extend it to
column 40.
In order to generate a partial plane up to column 27, we embed

each latin square into the first 27 columns of the standard form
incidence matrix. We can generate a permutation matrix from each
row of a given latin square by treating the numbers in each row of
the square as a reoordering of the row indices of the identity matrix.
These permutation matrices are placed in the missing blocks of the
standard form in the same order as the rows. We are now almost
ready to extend to column 40; however, we must first define another
encoding into SAT, this time for projective planes of order 9 and
their properties.
An incidence matrix (𝐴𝑖, 𝑗 ) of a plane of order 9 can be encoded

as 92 + 9 + 1 = 91 Boolean variables by simply defining a variable
𝑎𝑖, 𝑗 for each entry in 𝐴 where 𝑎𝑖, 𝑗 is true if and only if 𝐴𝑖, 𝑗 = 1.

Encoding the definition of a projective plane is trickier. For our
approach, it is sufficient to encode only requirements (3) and (4):
that every pair of distinct columns (rows, respectively) intersect
exactly once. We accomplish this using two sets of clauses.
The first set of clauses, called the quad free clauses, guarantees

that no intersection happens more than once.

¬𝑎𝑖, 𝑗 ∨ ¬𝑎𝑖′, 𝑗 ∨ ¬𝑎𝑖, 𝑗 ′ ∨ ¬𝑎𝑖′, 𝑗 ′

for 𝑖 < 𝑖′ and 𝑗 < 𝑗 ′.
If one of these clauses were false, we would have a "quad," or a

rectangle in the incidence matrix whose corners are 1’s. This would
indicate multiple intersections of the same columns or rows and
violate conditions (3) and (4).

The second set of clauses, called the innerproduct clauses, guar-
antees that each of the missing columns intersects each of the
known columns exactly once. If column 𝑗 ≤ 27 has 1’s in the entries
(𝑖1, 𝑗), (𝑖2, 𝑗), . . . , (𝑖10, 𝑗), then for 𝑗 ′ > 27, we include the clause

𝑎𝑖1, 𝑗 ′ ∨ 𝑎𝑖2, 𝑗 ′ ∨ . . . ∨ 𝑎𝑖10, 𝑗 ′

which ensures that column 𝑗 ′ intersects column 𝑗 at least once. It
should be noted that a different set of innerproduct clauses need to
be generated for each plane because each has different entries in
the blocks determined by the latin squares.
Combining these clauses with the unit clauses of a given 27-

column partial plane allows us to use a SAT solver to find all possible
extensions of the give partial plane to column 40, if any exist. We
use a similar workflow to perform this extension as we did with
latin squares; however, in practice, the size of this part of the search
required the use of 568 CPU’s on a Compute Canada cluster, each
extending 500 of the 283,657 partial planes, in order to perform
the full search in a reasonable amount of time. After extending the
283,657 27-column partial planes, we were left with 7,869 40-column
partial planes. Only 3,057 remained after isomorphism removal.

3.3 Column 91
The same process used to extend from column 27 to column 40 is
used to extend from column 40 to column 91. Of the 3,057 partial
planes up to column 40, 107 full planes were found. Isomorphism
removal yielded 4 distinct projective planes of order 9. This agrees
with the result found by Lam et al.

4 Results
This section provides a brief summary of our results and timings
for each stage of the search.

Time Solutions Verification
Latin Squares 20 minutes 42,878,753 45 minutes
Column 40 0.93 years 7,869 3.87 years
Column 91 6 hours 107 18 hours

Table 1. Summary of solving SAT instances using MapleSAT and proof
verification using DRAT-trim.

Time Remaining Solutions
Latin Squares 80 hours 283,657
Column 40 1 minute 3,057
Column 91 5 minutes 4

Table 2. Summary of isomorphism removal using nauty.
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