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1 Introduction
A huge number of problems from theoretical and applied mathematics require
efficient techniques for searching through enormous spaces. My research has
focused on developing new efficient techniques for solving these problems. To
this end I’ve worked in the intersection of the fields of automated reasoning and
symbolic computation developing MathCheck, an award-winning system that
has resolved many open problems from a variety of fields of mathematics (see
uwaterloo.ca/mathcheck). The success of MathCheck has been achieved by
combining state-of-the-art tools for satisfiability checking (SAT solvers) with
computer algebra systems (CAS). This “SAT+CAS” approach has recently
received a significant amount of attention from academia and industry [1] and I
have been at the forefront of this movement, using the SAT+CAS paradigm to
solve problems deemed too large to solve just a few years ago.

The SAT+CAS approach is particularly exciting because of the huge number
of applications that could benefit from efficient combinatorial search routines.
For example, given the enormous number of digital electronic circuits produced
every year, a search tool that could find more efficient ways of designing Boolean
circuits would be worth hundreds of millions of dollars to the world’s economy.
The problem of “minimizing” a Boolean circuit is so difficult that it is often
dismissed out of hand but recently SAT solvers have made progress on this
important problem [35]. As our search techniques become more powerful it
excites me to think that one day when designing a electronic circuit a computer
engineer may well use a SAT+CAS solver to find a more efficient implementation
of that circuit.
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2 MathCheck Results
I am the lead developer of the SAT+CAS system MathCheck and have used
it to solve many open conjectures from combinatorial design theory, number
theory, and graph theory. In the process of solving these conjectures a number
of interesting new combinatorial objects were explicitly constructed. Even more
interestingly, my examination of these new objects revealed new properties and
conjectures that were previously unknown.

2.1 Hadamard Matrices

As an example, consider the problem of finding Hadamard matrices—square
matrices whose entries are 1 or −1 and whose rows are pairwise orthogonal. Such
matrices have been studied for over 150 years we still don’t know of a guaranteed
practical method that can construct a Hadamard matrix of a given size. Not
for a lack of trying; such an algorithm would be extremely useful as Hadamard
matrices have applications to error-correcting codes [44], image coding [47],
and techniques for statistical estimation [48]. As a part of my research I’ve
constructed over 100,000 new Hadamard matrices of various kinds [15], including
many constructed from Williamson, good, and best matrices (see below).

2.2 Williamson Matrices

In 1944, JohnWilliamson defined a class of matrices that can be used to construct
Hadamard matrices [59]. They are now known as Williamson matrices and have
since been studied for many applications, including by NASA scientists in the
early 1960s when developing codes for communicating with space probes [29].
These scientists successfully constructed Williamson matrices in many small
orders and conjectured that Williamson matrices exist in each order n. This
conjecture was disproven in 1993 when the counterexample n = 35 was found [22]
but it was unknown if this was the smallest counterexample until MathCheck
verified it in 2016 [12, 60]. I also showed for the first time that a generalization
of Williamson matrices known as 8-Williamson matrices do exist for n = 35 [14].

Prior to my work, Williamson matrices had only been enumerated in the
odd orders n ≤ 61 [32, 40] and the even orders n ≤ 18 [37]. Using MathCheck I
increased the orders that have been enumerated to all n ≤ 70 except n = 65 and
n = 67 [14]. I found that Williamson matrices exist in all even orders n ≤ 70,
leading to the new conjecture that Williamson matrices exist in all even orders.

These new results were made possible not only because of the power of Math-
Check but new theoretical properties of Williamson matrices that I discovered



while studying the structure of Williamson matrices. For example, I proved a
product theorem that the entries of Williamson matrices of even order must
satisfy [6]. Such a theorem was proven by Williamson in the odd order case in
1944, but the theorem had never been generalized to even orders. Additionally, I
found a simple construction from which one can construct Williamson matrices
of order 2n using Williamson matrices of odd order n [7] and a construction for
8-Williamson matrices of odd order n from Williamson matrices of order 2n [13].

2.3 Good and Best Matrices

The classes of matrices known as good and best matrices were defined in 1970
and 2001 respectively [54, 27] in order to construct Hadamard matrices whose
off-diagonal entries are anti-symmetric. It is known that if good matrices exist
in order n then n must be odd and if best matrices exist in order n then n must
be of the form r2 + r + 1. Both of these necessary conditions were conjectured
to be sufficient and an enumeration performed in 2018 [23] for orders n ≤ 49
showed that the best matrix conjecture holds for all r ≤ 6 but the good matrix
conjecture fails for n = 41, 47, and 49.

Using MathCheck, I found three new counterexamples (n = 51, 63, and 69)
to the good matrix conjecture and found new examples of good matrices in
the orders n = 27 and 57 [10]. I also showed that the best matrix conjecture
holds for r = 7 for the first time by constructing three sets of best matrices of
order 57—the largest best matrices that are currently known [11].

2.4 Complex Golay Pairs

Complex Golay pairs are a pair (A,B) of polynomials with coefficients in
{±1,±i} and of degree n − 1 such that |A(z)|2 + |B(z)|2 = 2n for all z on
the unit circle. These polynomials (with real coefficients) were first used by
Golay to solve a problem in infrared multislit spectrometry [28] and have since
been applied to an enormous number of engineering applications such as in
communications [52]. They also provide extremal examples for various problems
in number theory [3]. Based on a partial search they were conjectured to not
exist for n = 23 [20]. Using MathCheck I independently verified the confirmation
of this conjecture by [25] and made available a complete enumeration of complex
Golay pairs for n ≤ 28 for the first time [16, 17].



3 Other Results
Despite the success of the SAT+CAS paradigm it is not appropriate for all
kinds of problems. Given this, I have solved other problems using techniques
more appropriate to the problem at hand.

3.1 Minimal Prime Numbers

In 2000, Jeff Shallit proved the amazing fact [50] that every prime number when
expressed in base 10 contains one of the following primes as a subword:

{2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001,
9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049}

For example, the prime 4909 contains 409 as a subword. This set is known as
the minimal primes in base 10 because these primes form the smallest set of
primes that have this magical property. However, the set of minimal primes is
dependent on the base that the primes are represented in and he left open the
problem of determining the minimal primes in bases other than 10.

This problem is especially difficult because although the set of minimal
primes is known to be finite there is no known upper bound on its size, i.e., the
search space is infinite. Despite this, I wrote a special-purpose solver (using
sophisticated search and filtering algorithms) that solved the problem in many
small bases including all bases up to 16. The numbers involved became enormous,
requiring the usage of special-purpose primality checking programs—in fact,
the numbers were so large that probable primality tests had to be used. For
example, my program solved the problem in base 23 and the largest minimal
prime in base 23 has over a million digits when written in base 10. It was the
tenth largest known probable prime ever discovered at the time it was found [9].

3.2 Vector Rational Reconstruction

I have also worked on developing new number theoretic algorithms. In partic-
ular, I developed a new algorithm for solving a vector version of the rational
reconstruction problem from computational number theory. In other words the
problem of finding small solutions x1, . . . , xn, y to the simultaneous congruences

yci ≡ xi (mod M) for i = 1, . . . , n

where c1, . . . , cn, M are given.
It is known from elementary number theory that if the entries in the solution

are absolutely bounded by N and M > 2N2 then there is a simple efficient



algorithm for solving this problem and the solution is unique if it exists. However,
in many applications of interest (such as when linear system solving using a
modular algorithm [45]) the solution will be unique even when M is much
smaller than 2N2—but the simple algorithm cannot be used in these cases
because it requires that M > 2N2. I developed an efficient algorithm that
finds the solution with weaker bounds on M . In particular, my algorithm only
requires that M > 4N4/3 [18].

3.3 Industrial Collaboration

As a postdoctoral researcher I have had two research internships with Maplesoft,
the distributors of the computer algebra system Maple. During these intern-
ships I improved the performance of Maple’s Satisfy, ChromaticNumber, and
MaximumClique commands. Satisfy solves a SAT instance, ChromaticNumber
computes the chromatic number of a graph and MaximumClique computes the
maximum clique in a graph.

Satisfy was improved by updating the variable branching heuristic used by
the SAT solver [42] and eliminating overhead in the CAS–SAT interface. These
improvements meant that SAT solving was now fast enough to be used as a
subroutine in other commands. I used my experience developing MathCheck
to reduce the chromatic number and maximum clique problems to SAT and
then solved them using Satisfy. In each case this approach performed better
on average than the previous approach used by Maple. In fact, a number of
benchmarks that could not be solved using the previous version of Maple in
hours can now be solved in seconds [55].

Additionally, I wrote a number of reports explaining in detail how many
interesting mathematical problems can be solved by reducing them to a SAT
problem. These worksheets have been published by Maplesoft as a collection of
Maple worksheets [56].

4 Future Work
Although it is necessarily difficult to predict where research will lead there are
a number of possible extensions of my work that I am currently exploring and
interested in pursuing in more depth.

4.1 Finite Projective Planes

Projective geometry has been studied by mathematics, engineers, and artists
for over 500 years. A geometry is projective if any two lines intersect in some



point, i.e., if parallel lines do not exist. A geometry is finite if a finite number
of points exist. For many years it has been known that finite geometries exist
in all orders that are prime powers but it is still unknown if finite projective
planes exist in other orders.

In 1782 Euler studied Eulerian squares that are a necessary substructure of
any finite projective plane [24]. Euler found a way to construct these squares in
any order that is not of the form 4k + 2. It is not possible to construct them in
order two and he could not construct them in orders six or ten, leading him to
conjecture that Eulerian squares, and hence projective planes, do not exist in
orders of the form 4k + 2.

Euler’s conjecture became famous as Euler was not able to resolve it during
his life. The first progress on the conjecture did not come until 1900 when Tarry
showed Eulerian squares do not exist in order six [53]. This gave evidence to
Euler’s conjecture and subsequently Peterson (1901) [46], Wernicke (1910) [57],
and MacNeish (1922) [43] published erroneous proofs of the conjecture. Then,
in 1959–1960 Bose, Shrikhande, and Parker published spectacular papers [4, 5]
showing that Eulerian squares exist for all orders of the form 4k + 2 except for
two and six.

This raised the possibility that projective planes could also exist in those
orders. A theorem of Bruck and Ryser from 1949 showed that certain orders
were impossible, but left open other orders like ten and twelve. In the 1970s
coding theory shed light on the structure that a projective plane of order
ten must satisfy but mathematicians were still unable to construct them. In
the 1980s, Prof. Clement Lam of Concordia University realized that with the
advancements in coding theory and computing power it was just feasible for a
supercomputer to complete a search for a projective plane of order ten. After
about a decade of work, in 1991 Lam finally announced [39] that his search had
determined that no projective planes exist in order ten.

In 2002, Dominque Roy started a verification of Lam’s search using off-the-
shelf computers and began a parallel verification [49]. Even with the advances
in technology it required 8 years for the computers to complete the search.
However, neither search produced either a formal verification or certificate of
the non-existence result.

Although such a task is a formidable challenge I have used SAT solvers to
efficiently produce a certificate for a subcase of the non-existence result [8].
Solving the remaining cases will likely require sophisticated symmetry detection
which is difficult for SAT solvers—fortunately, computer algebra systems excel
at this task making the SAT+CAS paradigm perfectly suited to produce a
non-existence certificate.

A formal verification would be much more difficult but the certificate pro-



duced by the SAT solver could be used as a first step. This approach has
recently successfully solved the Boolean Pythagorean triples problem [31]. A
formal verification was achieved by formally reducing the problem to SAT, using
a SAT solver to produce a non-existence certificate, and then formally verifying
the certificate in a theorem prover [21].

The SAT encoding is more straightforward in the Boolean Pythagorean
triples problem but the same approach could be used to formally verify the
non-existence of a projective plane of order ten. Even just generating a non-
existence certificate using a SAT solver would be useful—then only the code
that generates an encoding needs to be trusted, instead of code that performs a
search. This is particularly important considering that search code usually has
to be written in a convoluted way to achieve optimal performance.

The verification work in order ten should also be useful when solving larger
orders—in particular, the projective planes of order eleven have not been
characterized and it is unknown if any projective planes of order twelve exist.
This problem is expected to be much harder than the order ten case. For
example, there are three essential subcases in the order ten case but sixteen
subcases in the order twelve case [30]. These subcases could each be orders
of magnitude harder to solve than the order ten case but it is at least worth
attempting to see how many (if any) can be solved.

Additionally, there is still the possibility of getting lucky and finding a
projective plane of order twelve. Such a result would be explosive news and
of interest even to non-mathematicians. For example, when Bose, Shrikhande,
and Parker found a Eulerian square of order ten (thereby disproving Euler’s
1782 conjecture) their result appeared on the front page of the New York Times.
Similarly, Lam’s result on the non-existence of projective planes of order ten
was also covered by the New York Times.

4.2 Combinatorial Matrices and Sequences

As shown in Section 2 the SAT+CAS paradigm has solved a number of open
problems in combinatorial design theory and constructed a number of new
Hadamard matrices using Williamson, good, and best matrices. There are a
number of directions in which this work could be extended.

Firstly, the SAT+CAS paradigm can be applied to verify (or counterexample)
other conjectures and to construct other kinds of combinatorial matrices—there
is no shortage of alternate constructions. Some of the matrices from the
combinatorial literature that I’ve studied and where the SAT+CAS paradigm
has a reasonable chance of producing new results include weighing matrices,
G-matrices, propus matrices, Hadamard matrices with 2 circulant cores, and



Turyn sequences.
Secondly, we could extend our previous method and apply it to larger

orders. For example, n = 65 is currently the smallest order for which it is
unknown if Williamson matrices of order n exist or not. During some preliminary
experimentation I split the search space for this order into about half a billion
subcases such that each case can be solved in about a minute. In principle this
could be solved with enough computing horsepower but it would also be prudent
to examine the subcases in detail to see if some can be simplified further and to
examine if alternate ways of splitting the search space yield even better search
performance.

Thirdly, we can examine the combinatorial objects that we found to look for
properties that could then be exploited to construct larger examples of these
objects. For example, recently Acevedo and Dietrich discovered a link between
Williamson matrices and perfect quaternionic sequences [2]. Their construction
is very powerful and can be used to construct Williamson matrices of order 70.
A year prior this would have solved an open problem, but MathCheck had
already successfully completed a search for Williamson matrices of order 70 [15].
Their method also only produces some of the Williamson matrices of order 70
found by MathCheck. It would be interesting to see if their method could be
extended to produce all Williamson matrices of order 70.

4.3 Improving Matrix Multiplication

On at least four occasions after presenting my work on SAT+CAS someone
has approached me to suggest that I try to use MathCheck to find better
matrix multiplication algorithms. This problem has a long history dating back
to Strassen in 1969 who found an algorithm for multiplying 2 × 2 matrices
using seven multiplications [51] and it was quickly shown that this result was
optimal [33]. In the 1970s algorithms for multiplying 3 × 3 matrices were
found that used twenty-five [26], twenty-four [34], and finally twenty-three [38]
multiplications.

For 35 years no further improvements in the 3× 3 case were made but in
2012 a second algorithm also using twenty-three multiplications was found by
reducing the problem to a SAT instance [19]. This approach appears to have
reached a limit, however, as the SAT instances generated through this reduction
are known to be extremely difficult to solve and much computation time has
already been spent trying to solve them [36]. The SAT+CAS paradigm, with
its powerful ability to detect symmetries and remove isomorphisms (symmetry
breaking) has the potential to push the state-of-the-art and either find a better
3× 3 matrix multiplication algorithm or show that one does not exist.



In general n× n matrix multiplication is said to be solvable in O(nω) time
where ω < 2.3729 and much effort has been spent trying to reduce this bound [41].
Williams points out [58] that one reason why determining the complexity of
matrix multiplication is difficult is because optimal algorithms for multiplying
small matrices are still unknown. Algorithms for general matrix multiplication
rely on a divide and conquer approach so a better algorithm for multiplying
small matrices has the potential to improve general matrix multiplication as
well.
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