CS 115 Spring 2015

Assignment: 6
Due: Thursday, July 2 at 9:00 am
Language level: Beginning Student with List Abbreviations
Coverage: Modules 1-7

For this and all subsequent assignments, to receive full marks you are required to use the design
recipe for every function you write. You may include the examples given in the assignment in
your submissions, but they will be ignored by the markers—you must develop a complete suite of
examples and tests on your own. For your convenience, an interface file which contains the headers
of the required functions is available on the course webpage.

Do not send any code files to course staff; they will not be accepted. Submissions must be made
via MarkUs as described on the course webpage. After submission, check your basic test results to
ensure your files were properly submitted. Solutions that do not pass the basic tests are unlikely to
receive any correctness marks.

Remember, the solutions you submit must be entirely your own work.

1. Write a Racket function divisors which consumes a nonzero natural number n and a symbol
order which is either ’countup or ’countdown and produces a list containing the natural
numbers which divide n. If order is ’countup the list of numbers should be sorted in increasing
order and if order is *countdown the list of numbers should be sorted in decreasing order.

For example, (divisors 12 *countup) should produce (list 1 2 3 4 6 12) and (divisors 12
’countdown) should produce (list 12 6 4 3 2 1). Your solution should use both of the countup
and countdown templates discussed in class (don’t only use one of the two and use reverse to
produce the other ordering).

2. Recall from class that an association (As) is a (list Num Str), where the first element is known
as the key and the second element is known as the value, and an association list (AL) is a
(listof As) whose keys are all distinct.

One of the common things done with an association list is to add a new association to the list.
Since the keys of an association list must be distinct, the key to add must not appear in the
association list it is being added to.

It is sometimes useful to drop this restriction, but in this case some method must be used
to keep the keys distinct when there is a key clash, i.e., when the key of the association
being added already appears in the association list. In this question, we will demonstrate four
possible methods for handling key clashes.

CS 115 — Spring 2015 Assignment 6 1



Write a Racket function update-al which consumes a symbol method, an association assoc,
and an association list alst (in that order) and produces a new association list containing assoc
along with all of the associations in alst, unless there is a clash. If a clash occurs, the method
of handling the clash should be determined by the value of method:

e If method is ’fail the function should produce false.

e If method is 'new, assoc should take precedence and be included in the produced
association list.

e If method is ’old, the association in alst with the clash should take precedence and be
included in the produced association list.

e If method is ’compare the values associated to the keys which clash should be compared
and the association which has the larger value when ordered lexicographically (compare
the values with string>="7) should take precedence and be included in the produced
association list.

For example, if al was defined to be the association list (/ist (list 1 "abc")):

o (update-al *fail (list 1 "def") al) should produce false.

o (update-al "new (list 1 "def") al) should produce (list (list 1 "def")).

e (update-al ’old (list 1 "def") al) should produce (list (list 1 "abc™")).

e (update-al *compare (list 1 "def") al) should produce (list (list 1 "def")).

3. In this question, you will write functions which consume two arbitrary lists. For convenience,
you may assume that the lists only contain numbers (so that the items in the lists may be
compared with = instead of equal?).

(a) Write a Racket function sublist? which consumes two lists, Ist/ and Ist2, and determines
if the first list is a sublist of the second list or not, producing true in the former case
and false in the latter case. The list Ist/ is a sublist of /sz2 if and only if all the elements
of Istl appear somewhere in [st2 in the exact same order, with no additional elements
between them.

For example, (sublist? (list 1 2) (list 0 1 2 3 4)) and (sublist? (list 23 4) (list 012 3 4))
should produce true, but (sublist? (list 1 2 4) (list 0 1 2 3 4)) should produce false.

(b) Write a Racket function subseq? which does the same thing as sublist? except determines
if Ist1 is a subsequence of Isz2. The definition of a subsequence is the same as a sublist
except that the elements of st/ may appear in [s2 with additional elements between
them. In other words, Ist/ is a subsequence of Ist2 if and only if /sz/ can be obtained by
removing elements from /sz2.

For example, (subseq? (list 1 2) (list 0 12 3 4)) and (subseq? (list 12 4) (list0 12 3 4))
should produce true, but (subseq? (list 2 1 4) (list 0 1 2 3 4)) should produce false.

CS 115 — Spring 2015 Assignment 6 2



