
'

&

$

%

Lattice Basis Reduction
and the LLL Algorithm

Curtis Bright

May 21, 2009

1

'

&

$

%

Point Lattices

• A point lattice is a discrete additive subgroup of Rn.

• A basis for a lattice L ⊂ Rn is a set of linearly independent

vectors b1, . . . , bd ∈ Rn whose ‘integer span’ generates L:

L =

{

d
∑

i=1

xibi : xi ∈ Z

}

• In particular, we will be concerned about the case when

bi ∈ Zn, so L ⊆ Zn.

• d is the dimension of the lattice.

2

'

&

$

%

2D Example Lattice

• The lattice generated by b1 =
[

3 5
]

and b2 =
[

6 0
]

in Z2:

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b b b b b

b b b b b

b b b b b b

b b b b b

b b b b b b

b b b b b

b b b b b b

3

'

&

$

%

A Bad Basis

b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b b

4

'

&

$

%

Changing Bases

• The lattices in Z4 generated by the rows of

B =
[−32 27 99 92
−74 8 29 −31
−4 69 44 67

]

B′ =
[−4339936 −682927 −2330272 −6748685

268783718 42311760 144378994 418036006
47833660 7038229 23910075 72218282

]

are the same. This is shown by writing each row in B as a

Z-linear combination of the rows of B′, and vice versa.

• That is, there exist change-of-basis matrices U and U ′ with

integer entries such that B′ = UB and B = U ′B′.

• Since U and U ′ = U−1 both have integer entries, detU and

detU−1 = 1/detU are both integers.

• Therefore detU = ±1 (U is unimodular).

5

'

&

$

%

Lattice Volume

volL

b b b

b b

b b b

• We define the volume of a lattice L with basis B to be the

volume of the [0, 1)-span of its basis vectors.

• If B is square then vol L = |detB|, and in general

vol L =
√

det(BBT).

• This is well defined: if B′ is some other basis of L then
√

det(B′B′T) =
√

det(UBBT UT) =

√

det(BBT)

since U is unimodular.

6

'

&

$

%

Lattice Reduction

• Some bases are much easier to work with than others. This

suggests we try to find:

• A method of ranking the bases of a lattice in some desirable

order.

• An efficient way to find desirable bases of a lattice when

given one of its other bases.

7

'

&

$

%

The Best Basis

• The best possible basis b1, . . . , bd of L would have b1 the

shortest possible nonzero vector in L and in general bi the

shortest possible nonzero vector such that b1, . . . , bi are

linearly independent.

• Of course such vectors always exist, but perhaps surprisingly

for d ≥ 4 they do not necessarily form a basis of L.

8

'

&

$

%

• For example, the lattice generated by the following basis:














2
. . .

2

1 · · · 1 1















∈ Zn×n

• For n ≥ 5 the last vector is no longer the shortest possible

vector in the lattice; in this case the shortest possible vector

has norm 2 and there are exactly n vectors (up to sign) which

reach the minimum.

• These vectors are linearly independent but generate (2Z)n

instead.

9

'

&

$

%

Minkowski Reduction

• The next best thing:

Definition. A basis b1, . . . , bd of L is Minkowski reduced if bi

is the shortest possible vector such that b1, . . . , bi may be

extended into a basis of L for each 1 ≤ i ≤ d.

• This is a greedy definition: it may concede a large increase in

later bi for a small decrease in an early bi.

• Computationally, finding a Minkowski reduced basis leads to a

combinatorial problem with a search space exponential in d.

• Even just computing b1 (the Shortest Vector Problem) is

NP-hard when the maximum norm is used.

10

'

&

$

%

Lagrange Reduction

• Historically the first lattice reduction considered (by Lagrange

in 1773) was in two dimensions.

• It gives rise to a simple algorithm, rather similar in style to

Euclid’s famous gcd algorithm: the norms of the input vectors

are continually decreased by subtracting appropriate multiples

of one vector from the other.

• If ‖b1‖ ≤ ‖b2‖ then we want to replace b2 with b2 − vb1 for

some v such that ‖b2 − vb1‖ is minimized.

11

'

&

$

%

b1

b2

b2 − vb1

b b b b b b b b

b b b b b b b b

b b b b b b b b

• Optimally, the new value of ‖b2 − vb1‖ would be

∥

∥b2 − projb1
(b2)

∥

∥ =
∥

∥b2 − 〈b2,b1〉
‖b1‖2 b1

∥

∥ .

• But it is essential that v ∈ Z, so take

v :=
⌊

〈b2,b1〉
‖b1‖2

⌉

.

• In the case
∣

∣

〈b2,b1〉
‖b1‖2

∣

∣ ≤ 1
2 there is no multiplier we can use to

strictly decrease the norm.

Definition. A basis b1, b2 of L is Lagrange reduced if

‖b1‖ ≤ ‖b2‖ and
∣

∣

〈b2,b1〉
‖b1‖2

∣

∣ ≤ 1
2 .

12

'

&

$

%

• Repeatedly applying this form of reduction yields Algorithm

1.3.14 in Cohen’s text:

Input: A basis b1, b2 of a lattice L

Output: A Lagrange reduced basis of L

repeat

if ‖b1‖ > ‖b2‖ then swap b1 and b2

b2 := b2 −
⌊

〈b2,b1〉
‖b1‖2

⌉

b1

until ‖b1‖ ≤ ‖b2‖
return (b1, b2)

• ‖b2‖ decreases by at least a factor of
√

3 on every iteration

(except possibly the first and last).

• Since ‖b2‖ is always at least 1, there are O(log√3‖b2‖)
iterations.

• The arithmetic operations in each loop take O(log2‖b2‖), so

this algorithm runs in time O(log3‖b2‖).

13

'

&

$

%

• Equivalently, we may consider Lagrange’s algorithm as if it was

using a projected lattice:

b b b b b b

b b b b b

b b b b b b

b b b b b

b b b b b b

b b b b b

b b b b b b

b

b

b

b

b

b

b

14

'

&

$

%

• Let L′ be the lattice L projected orthogonally to b1. Then

d = 1, so L′ has only one basis up to sign:
b

b

b

b

b

b

b

b

15

'

&

$

%

• Now ‘lift’ the basis for L′ into L. Of course, there are an

infinite number ways to lift; we choose the shortest.

b

b

b

b

b

b

b

b b b b b b

b b b b b

b b b b b b

b b b b b

b b b b b b

b b b b b

b b b b b b

16

'

&

$

%

Korkin-Zolotarev Reduction

• The advantage to considering Lagrange’s algorithm this way is

that it generalizes to higher dimensions.

• Let b′
i be the component of bi orthogonal to b1, i.e.,

b′
i = projspan(b1)⊥(bi) = bi − 〈bi,b1〉

‖b1‖2 b1 = bi − µi,1b1.

Definition. A basis b1, . . . , bd of L is Korkin-Zolotarev

reduced if

• b1 is the shortest possible nonzero vector of L

• b′
2, . . . , b

′
d is a Korkin-Zolotarev reduced basis of L′

• b2, . . . , bd are lifted from L′ minimally: |µi,1| ≤ 1
2 for 2 ≤ i

• Once again, this reduction notion requires solving SVP to find

a Korkin-Zolotarev reduced basis—not good computationally.

17

'

&

$

%

• There are d recursive lattices in this definition:

L with basis b1, . . . , bd

L′ with basis b′
2, . . . , b

′
d

L(2) with basis b
(2)
3 , . . . , b

(2)
d

...

L(d−1) with basis b
(d−1)
d

• Denote b
(i−1)
i by b∗

i . By induction it may be shown

b∗
i = projspan(b∗

1
,...,b∗

i−1
)⊥(bi).

• These are the Gram-Schmidt orthogonalization vectors.

b∗
1, . . . , b

∗
i is an orthogonal basis for span(b1, . . . , bi).

18

'

&

$

%

Orthogonality Defect

• By the Gram-Schmidt orthogonalization,

vol L =
d
∏

i=1

‖b∗
i ‖ ≤

d
∏

i=1

‖bi‖

with equality if and only if the bi are orthogonal.

• The larger
∏d

i=1‖bi‖ is compared to vol L the less orthogonal

the bi are. So
∏d

i=1‖bi‖/vol L is known as the orthogonality

defect, and is a method of ranking the bases of a lattice.

• We would like a guarantee that the reductions we consider have

an orthogonality defect bounded by some function of d:

d
∏

i=1

‖bi‖ ≤ f(d) volL.

19

'

&

$

%

Hermite Reduction

• Historically, Hermite was the first to consider lattice reduction

in arbitrary dimension in two letters sent to Jacobi in 1845.

• Hermite reduction is weaker than Korkin-Zolotarev reduction,

but stronger than LLL reduction.

• Nevertheless, the properties we will show for Hermite reduced

bases also apply to LLL reduced bases (with small

modifications).

Definition. A basis b1, . . . , bd of L is Hermite reduced if

• ‖b1‖ ≤ ‖bi‖ for all i

• b′
2, . . . , b

′
d is a Hermite reduced basis of L′

• b2, . . . , bd are lifted from L′ minimally: |µi,1| ≤ 1
2 for 2 ≤ i

20

'

&

$

%

A Nice Bound

• Hermite reduced bases satisfy the following bound:

‖bi‖2 ≤ 4
3‖b

′
i‖2

• Intuitively this says that the projected vector b′
i isn’t that

much smaller than the original bi.

• Actually follows from the Pythagorean Theorem in d

dimensions and the fact ‖µi,1b1‖ ≤ 1
2‖bi‖.

b b b

b b b b

b′
2

µ2,1b1 b2 b1

21

'

&

$

%

• Using the Pythagorean Theorem,

‖bi‖2 = ‖b′
i‖2 + ‖µi,1b1‖2

≤ ‖b′
i‖2 + 1

4‖bi‖2

3
4‖bi‖2 ≤ ‖b′

i‖2

‖bi‖2 ≤ 4
3‖b

′
i‖2

≤
(

4
3

)2 ∥
∥b

(2)
i

∥

∥

2

...

≤
(

4
3

)i−1 ‖b∗
i ‖2

by repeated application of the bound.

• Intuitively, as i increases b∗
i is allowed to become increasingly

smaller than bi, but not arbitrarily smaller.

22

'

&

$

%

• From ‖bi‖ ≤
(

4
3

)(i−1)/2 ‖b∗
i ‖ we can bound the orthogonality

defect:

d
∏

i=1

‖bi‖ ≤
d
∏

i=1

(

4
3

)(i−1)/2 ‖b∗
i ‖

=
(

4
3

)

P

d

i=1
(i−1)/2

vol L

=
(

4
3

)d(d−1)/4
vol L

23

'

&

$

%

Approximate Shortest Vector Problem

• Hermite reduced bases can also be used to approximate a

solution to SVP.

• Let x =
∑k

i=1 ribi be a shortest nonzero vector in L (i.e., a

solution to SVP), where ri ∈ Z and rk 6= 0.

• It is difficult to bound a sum of bi directly since they are not

orthogonal. So we rewrite using Gram-Schmidt:

x =
k
∑

i=1

ri

(

b∗
i +

i−1
∑

j=1

µi,jb
∗
j

)

= rkb∗
k +

k−1
∑

i=1

sib
∗
i

for some si ∈ Q.

24

'

&

$

%

• Now we can use a generalization of the Pythagorean Theorem,

‖x‖2 = ‖rkb∗
k‖2 +

k−1
∑

i=1

‖sib
∗
i ‖2 ≥ r2

k‖b∗
k‖2 ≥ ‖b∗

k‖2.

• Using previous bounds on bi with i = k,

‖b1‖ ≤ ‖bk‖ ≤
(

4
3

)(k−1)/2 ‖b∗
k‖ ≤

(

4
3

)(d−1)/2 ‖x‖.

• So b1 is at most a factor of
(

4
3

)(d−1)/2
longer than the shortest

possible nonzero vector in L.

25

'

&

$

%

Optimal-LLL Reduction

• There is no algorithm known which can provably compute a

Hermite reduced basis efficiently (polynomial time in d). So,

we weaken the conditions again:

Definition. A basis b1, . . . , bd of L is optimal-LLL reduced if

• ‖b1‖ ≤ ‖b2‖
• b′

2, . . . , b
′
d is an optimal-LLL reduced basis of L′

• b2, . . . , bd are lifted from L′ minimally: |µi,1| ≤ 1
2 for 2 ≤ i

26

'

&

$

%

• Optimal-LLL reduced bases no longer satisfy the nice bound

‖bi‖2 ≤ 4
3‖b′

i‖2, but do satisfy a similar one,

‖b∗
i ‖2 ≤ 4

3‖b
∗
i+1‖2.

• In fact, with a little more work we can derive the same

properties as in the Hermite case:

‖bi‖ ≤
(

4
3

)(i−1)/2 ‖b∗
i ‖

d
∏

i=1

‖bi‖ ≤
(

4
3

)d(d−1)/4
volL

‖b1‖ ≤
(

4
3

)(d−1)/2 ‖x‖

• There is no algorithm known which can provably compute an

optimal-LLL reduced basis efficiently (polynomial time in d).

27

'

&

$

%

LLL Reduction

• We weaken optimal-LLL reduction by allowing some slack

room in the ‖b1‖ ≤ ‖b2‖ condition:

Definition. A basis b1, . . . , bd of L is LLL reduced with

quality parameter c ∈ (1, 4) if

• ‖b1‖ ≤ √
c ‖b2‖

• b′
2, . . . , b

′
d is an LLL reduced basis of L′ (with quality c)

• b2, . . . , bd are lifted from L′ minimally: |µi,1| ≤ 1
2 for 2 ≤ i

• The smaller c is, the less slack room and the better the

reduction.

28

'

&

$

%

• Define C = 4c
4−c ; note that C > 4

3 for c > 1 but we can set C

arbitrarily close to 4
3 .

• Analogously to the Hermite case, LLL reduced bases satisfy:

‖bi‖ ≤ C(i−1)/2‖b∗
i ‖

d
∏

i=1

‖bi‖ ≤ Cd(d−1)/4 vol L

‖b1‖ ≤ C(d−1)/2‖x‖

• In the original LLL paper c = 4
3 was used, so C = 2.

29

'

&

$

%

The Punchline

• The straightforward way of applying the definition of an LLL

reduced basis gives an algorithm for computing an LLL

reduced basis efficiently (polynomial time in d).

Input: A basis b1, . . . , bd of a lattice L; a quality parameter c

Output: An LLL reduced basis of L (with quality c)

if d = 1 then return (b1)

repeat

if ‖b1‖ >
√

c ‖b2‖ then swap b1 and b2

(b2, . . . , bd) := liftb1
(LLLReducec(b

′
2, . . . , b

′
d))

until ‖b1‖ ≤ √
c ‖b2‖

return (b1, . . . , bd)

30

'

&

$

%

The Iterative LLL Definition: Size Reduction

• The shortest-lift condition in the jth recursive lattice is
∣

∣µ
(j)
i

∣

∣ ≤ 1
2 for j + 1 < i, where:

µ
(j)
i =

〈

b
(j)
i , b

(j)
j+1

〉

∥

∥b
(j)
j+1

∥

∥

2 =

〈

bi −
∑j

k=1 µi,kb∗
k, b∗

j+1

〉

∥

∥b∗
j+1

∥

∥

2

=

〈

bi, b
∗
j+1

〉

∥

∥b∗
j+1

∥

∥

2

= µi,j+1

• So the shortest-lift condition implies |µi,j | ≤ 1
2 for j < i.

• This is called size-reduction.

31

'

&

$

%

The Iterative LLL Definition: Lovász Condition

• The ‖b1‖ ≤ √
c ‖b2‖ condition in the ith recursive lattice:

∥

∥b
(i)
i+1

∥

∥ ≤
√

c
∥

∥b
(i)
i+2

∥

∥

=
√

c
∥

∥

∥
bi+2 −

i
∑

j=1

µi+2,jb
∗
j

∥

∥

∥

=
√

c ‖b∗
i+2 + µi+2,i+1b

∗
i+1‖

• So the b1-bound condition implies ‖b∗
i ‖ ≤ √

c ‖b∗
i+1 + µi+1,ib

∗
i ‖

for i ≥ 1.

• This is called the Lovász condition.

32

'

&

$

%

Non-recursive LLL Reduction

• Putting these conditions together gives Definition 2.6.1 in

Cohen’s text:

Definition. A basis b1, . . . , bd is LLL reduced with quality

parameter c ∈ (1, 4) if

• |µi,j | ≤ 1
2 for 1 ≤ j < i ≤ d

• ‖b∗
i−1‖ ≤ √

c ‖b∗
i + µi,i−1b

∗
i−1‖ for 1 < i ≤ d

• Say we have some basis b1, . . . , bk such that the first k − 1

vectors form an LLL reduced basis. If

• bk is size-reduced against the first k − 1 vectors

• the Lovász condition holds for i = k

then b1, . . . , bk is also an LLL reduced basis.

33

'

&

$

%

The Iterative LLL Algorithm

Input: A basis b1, . . . , bd of a lattice L; a quality parameter c

Output: An LLL reduced basis of L (with quality c)

k := 2

while k ≤ d do

size-reduce bk against b1, . . . , bk−1

if ‖b∗
k−1‖ ≤ √

c ‖b∗
k + µk,k−1b

∗
k−1‖ then

k := k + 1

else

swap bk−1 and bk

k := max(k − 1, 2)

end if

end while

return (b1, . . . , bd)

• At the start of the loop, b1, . . . , bk−1 is an LLL reduced basis.

34

'

&

$

%

The Gram-Schmidt Vectors During LLL

• Size reduction does not change the b∗
i .

• If c∗i are the Gram-Schmidt vectors after a swap, then:

Before After

b1 ‖b∗
1‖ = ‖c∗1‖ b1

...
...

...

bk−1 ‖b∗
k−1‖ = ‖c∗k−1‖ bk−1

bk ‖b∗
k‖ >

√
c ‖c∗k‖ bk+1

bk+1 ‖b∗
k+1‖ <

√
c ‖c∗k+1‖ bk

bk+2 ‖b∗
k+2‖ = ‖c∗k+2‖ bk+2

...
...

...

bd ‖b∗
d‖ = ‖c∗d‖ bd

35

'

&

$

%

Bounding the Number of Swaps

• Let Bk be the basis consisting of the first k basis vectors, Lk

the lattice formed by the basis Bk, and

dk = (volLk)2 = det(BkBT
k) =

k
∏

i=1

‖b∗
i ‖2.

• If the bi are integer vectors then dk ∈ Z+.

• During LLL, a swap of bk and bk+1 decreases dk by a factor of

at least c, and doesn’t change di for i 6= k.

• Thus, if we define

D =
d
∏

i=1

di

then D decreases by a factor of at least c after every swap.

36

'

&

$

%

• Thus, there are at most logc(D) swaps. Since

D =
d
∏

i=1

‖b∗
i ‖2(d−i+1) ≤

d
∏

i=1

‖bi‖2(d−i+1) ≤ max
i

‖bi‖d(d+1)

there are O(log D) = O(d2 log B) swaps, where B = maxi‖bi‖
for the original bi.

• The size of the numbers involved remain reasonable throughout

the algorithm:

• ‖b∗
i ‖ ≤ B.

• The denominators of b∗
i and µi,j divide vol L.

• log‖bi‖ and log|µi,j | are O(d log B).

• Size-reduction requires O(n) arithmetic operations, and there

are O(d) vectors to size-reduce against.

• Total cost of LLL is therefore O(nd5(log B)3) without fast

arithmetic.

37

'

&

$

%

Factoring Polynomials over the Integers

• If f is an integer polynomial with an algebraic root, if we can

find the minimal polynomial of that root then we have an

irreducible factor of f .

• Let α ∈ C be an approximation to a algebraic root of f with a

minimal polynomial h of degree m.

38

'

&

$

%

• For some constant N let L be the lattice generated by the rows

of the following basis:





















b0

b1

b2

...

bm





















=





















1 N ℜ(α0) N ℑ(α0)

1 N ℜ(α1) N ℑ(α1)

1 N ℜ(α2) N ℑ(α2)

. . .
...

...

1 N ℜ(αm) N ℑ(αm)





















• Any x ∈ L has form x =
∑m

i=0 gibi for some gi ∈ Z.

• Can think of (g0, . . . , gm) as g ∈ Zm or an integer polynomial

g(x) =
∑m

i=0 gix
i.

39

'

&

$

%

• Any x ∈ L has the form

x =
[

gT N ℜ(g(α)) N ℑ(g(α))
]

,

and it follows ‖x‖2 = ‖g‖2 + N2|g(α)|2.

• We can make h(α) arbitrarily small by increasing the precision

of α.

• So by taking N large enough, we can make the shortest

nonzero vector in L be

s =
[

hT N ℜ(h(α)) N ℑ(h(α))
]

.

• And then increasing N by a factor ≈ 2m/2 ensures that any

vector x ∈ L not a multiple of s will have ‖x‖2 > 2m‖s‖2.

• LLL will always find a vector ‖b0‖2 ≤ 2m‖s‖2.

40

