Lattice Basis Reduction and the LLL Algorithm

Curtis Bright

May 21, 2009

Point Lattices

- A point lattice is a discrete additive subgroup of \mathbb{R}^{n}.
- A basis for a lattice $L \subset \mathbb{R}^{n}$ is a set of linearly independent vectors $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d} \in \mathbb{R}^{n}$ whose 'integer span' generates L :

$$
L=\left\{\sum_{i=1}^{d} x_{i} \boldsymbol{b}_{i}: x_{i} \in \mathbb{Z}\right\}
$$

- In particular, we will be concerned about the case when $\boldsymbol{b}_{i} \in \mathbb{Z}^{n}$, so $L \subseteq \mathbb{Z}^{n}$.
- d is the dimension of the lattice.

2D Example Lattice

- The lattice generated by $\boldsymbol{b}_{1}=\left[\begin{array}{ll}3 & 5\end{array}\right]$ and $\boldsymbol{b}_{2}=\left[\begin{array}{ll}6 & 0\end{array}\right]$ in \mathbb{Z}^{2} :

Changing Bases

- The lattices in \mathbb{Z}^{4} generated by the rows of

$$
\begin{gathered}
B=\left[\begin{array}{cccc}
-32 & 27 & 99 & 92 \\
-74 & 8 & 29 & -31 \\
-4 & 69 & 44 & 67
\end{array}\right] \\
B^{\prime}=\left[\begin{array}{cccc}
-4339936 & -682927 & -2330272 & -6748685 \\
268783718 & 42311760 & 144378994 & 418036006 \\
47833660 & 7038229 & 23910075 & 72218282
\end{array}\right]
\end{gathered}
$$

are the same. This is shown by writing each row in B as a \mathbb{Z}-linear combination of the rows of B^{\prime}, and vice versa.

- That is, there exist change-of-basis matrices U and U^{\prime} with integer entries such that $B^{\prime}=U B$ and $B=U^{\prime} B^{\prime}$.
- Since U and $U^{\prime}=U^{-1}$ both have integer entries, det U and $\operatorname{det} U^{-1}=1 / \operatorname{det} U$ are both integers.
- Therefore $\operatorname{det} U= \pm 1$ (U is unimodular).

- We define the volume of a lattice L with basis B to be the volume of the $[0,1)$-span of its basis vectors.
- If B is square then $\operatorname{vol} L=|\operatorname{det} B|$, and in general $\operatorname{vol} L=\sqrt{\operatorname{det}\left(B B^{T}\right)}$.
- This is well defined: if B^{\prime} is some other basis of L then

$$
\sqrt{\operatorname{det}\left(B^{\prime} B^{\prime T}\right)}=\sqrt{\operatorname{det}\left(U B B^{T} U^{T}\right)}=\sqrt{\operatorname{det}\left(B B^{T}\right)}
$$

since U is unimodular.

Lattice Reduction

- Some bases are much easier to work with than others. This suggests we try to find:
- A method of ranking the bases of a lattice in some desirable order.
- An efficient way to find desirable bases of a lattice when given one of its other bases.

The Best Basis

- The best possible basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ of L would have \boldsymbol{b}_{1} the shortest possible nonzero vector in L and in general \boldsymbol{b}_{i} the shortest possible nonzero vector such that $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{i}$ are linearly independent.
- Of course such vectors always exist, but perhaps surprisingly for $d \geq 4$ they do not necessarily form a basis of L.
- For example, the lattice generated by the following basis:

$$
\left[\begin{array}{cccc}
2 & & & \\
& \ddots & & \\
& & 2 & \\
1 & \cdots & 1 & 1
\end{array}\right] \in \mathbb{Z}^{n \times n}
$$

- For $n \geq 5$ the last vector is no longer the shortest possible vector in the lattice; in this case the shortest possible vector has norm 2 and there are exactly n vectors (up to sign) which reach the minimum.
- These vectors are linearly independent but generate $(2 \mathbb{Z})^{n}$ instead.

Minkowski Reduction

- The next best thing:

Definition. A basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ of L is Minkowski reduced if \boldsymbol{b}_{i} is the shortest possible vector such that $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{i}$ may be extended into a basis of L for each $1 \leq i \leq d$.

- This is a greedy definition: it may concede a large increase in later \boldsymbol{b}_{i} for a small decrease in an early \boldsymbol{b}_{i}.
- Computationally, finding a Minkowski reduced basis leads to a combinatorial problem with a search space exponential in d.
- Even just computing \boldsymbol{b}_{1} (the Shortest Vector Problem) is NP-hard when the maximum norm is used.

Lagrange Reduction

- Historically the first lattice reduction considered (by Lagrange in 1773) was in two dimensions.
- It gives rise to a simple algorithm, rather similar in style to Euclid's famous gcd algorithm: the norms of the input vectors are continually decreased by subtracting appropriate multiples of one vector from the other.
- If $\left\|\boldsymbol{b}_{1}\right\| \leq\left\|\boldsymbol{b}_{2}\right\|$ then we want to replace \boldsymbol{b}_{2} with $\boldsymbol{b}_{2}-v \boldsymbol{b}_{1}$ for some v such that $\left\|\boldsymbol{b}_{2}-v \boldsymbol{b}_{1}\right\|$ is minimized.

- Optimally, the new value of $\left\|\boldsymbol{b}_{2}-v \boldsymbol{b}_{1}\right\|$ would be

$$
\left\|\boldsymbol{b}_{2}-\operatorname{proj}_{\boldsymbol{b}_{1}}\left(\boldsymbol{b}_{2}\right)\right\|=\left\|\boldsymbol{b}_{2}-\frac{\left\langle\boldsymbol{b}_{2}, \boldsymbol{b}_{1}\right\rangle}{\left\|\boldsymbol{b}_{1}\right\|^{2}} \boldsymbol{b}_{1}\right\| .
$$

- But it is essential that $v \in \mathbb{Z}$, so take

$$
v:=\left\lfloor\frac{\left\langle\boldsymbol{b}_{2}, \boldsymbol{b}_{1}\right\rangle}{\left\|\boldsymbol{b}_{1}\right\|^{2}}\right\rceil .
$$

- In the case $\left|\frac{\left\langle\boldsymbol{b}_{2}, \boldsymbol{b}_{1}\right\rangle}{\left\|\boldsymbol{b}_{1}\right\|^{2}}\right| \leq \frac{1}{2}$ there is no multiplier we can use to strictly decrease the norm.

Definition. A basis $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$ of L is Lagrange reduced if $\left\|\boldsymbol{b}_{1}\right\| \leq\left\|\boldsymbol{b}_{2}\right\|$ and $\left|\frac{\left\langle\boldsymbol{b}_{2}, \boldsymbol{b}_{1}\right\rangle}{\left\|\boldsymbol{b}_{1}\right\|^{2}}\right| \leq \frac{1}{2}$.

- Repeatedly applying this form of reduction yields Algorithm 1.3.14 in Cohen's text:

Input: A basis $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$ of a lattice L
Output: A Lagrange reduced basis of L repeat
if $\left\|\boldsymbol{b}_{1}\right\|>\left\|\boldsymbol{b}_{2}\right\|$ then swap \boldsymbol{b}_{1} and \boldsymbol{b}_{2} $\boldsymbol{b}_{2}:=\boldsymbol{b}_{2}-\left\lfloor\frac{\left\langle\boldsymbol{b}_{2}, \boldsymbol{b}_{1}\right\rangle}{\left\|\boldsymbol{b}_{1}\right\|^{2}}\right\rceil \boldsymbol{b}_{1}$
until $\left\|\boldsymbol{b}_{1}\right\| \leq\left\|\boldsymbol{b}_{2}\right\|$
return $\left(b_{1}, b_{2}\right)$

- $\left\|\boldsymbol{b}_{2}\right\|$ decreases by at least a factor of $\sqrt{3}$ on every iteration (except possibly the first and last).
- Since $\left\|\boldsymbol{b}_{2}\right\|$ is always at least 1 , there are $O\left(\log _{\sqrt{3}}\left\|\boldsymbol{b}_{2}\right\|\right)$ iterations.
- The arithmetic operations in each loop take $O\left(\log ^{2}\left\|\boldsymbol{b}_{2}\right\|\right)$, so this algorithm runs in time $O\left(\log ^{3}\left\|\boldsymbol{b}_{2}\right\|\right)$.
- Equivalently, we may consider Lagrange's algorithm as if it was using a projected lattice:

- Let L^{\prime} be the lattice L projected orthogonally to \boldsymbol{b}_{1}. Then $d=1$, so L^{\prime} has only one basis up to sign:

- Now 'lift' the basis for L ' into L. Of course, there are an infinite number ways to lift; we choose the shortest.

Korkin-Zolotarev Reduction

- The advantage to considering Lagrange's algorithm this way is that it generalizes to higher dimensions.
- Let $\boldsymbol{b}_{i}^{\prime}$ be the component of \boldsymbol{b}_{i} orthogonal to \boldsymbol{b}_{1}, i.e.,

$$
\boldsymbol{b}_{i}^{\prime}=\operatorname{proj}_{\operatorname{span}\left(\boldsymbol{b}_{1}\right)^{\perp}}\left(\boldsymbol{b}_{i}\right)=\boldsymbol{b}_{i}-\frac{\left\langle\boldsymbol{b}_{i}, \boldsymbol{b}_{1}\right\rangle}{\left\|\boldsymbol{b}_{1}\right\|^{2}} \boldsymbol{b}_{1}=\boldsymbol{b}_{i}-\mu_{i, 1} \boldsymbol{b}_{1} .
$$

Definition. A basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ of L is Korkin-Zolotarev reduced if

- \boldsymbol{b}_{1} is the shortest possible nonzero vector of L
- $\boldsymbol{b}_{2}^{\prime}, \ldots, \boldsymbol{b}_{d}^{\prime}$ is a Korkin-Zolotarev reduced basis of L^{\prime}
- $\boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{d}$ are lifted from L^{\prime} minimally: $\left|\mu_{i, 1}\right| \leq \frac{1}{2}$ for $2 \leq i$
- Once again, this reduction notion requires solving SVP to find a Korkin-Zolotarev reduced basis-not good computationally.
- There are d recursive lattices in this definition:

$$
\begin{gathered}
L \text { with basis } \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d} \\
L^{\prime} \text { with basis } \boldsymbol{b}_{2}^{\prime}, \ldots, \boldsymbol{b}_{d}^{\prime} \\
L^{(2)} \text { with basis } \boldsymbol{b}_{3}^{(2)}, \ldots, \boldsymbol{b}_{d}^{(2)} \\
\vdots \\
L^{(d-1)} \text { with basis } \boldsymbol{b}_{d}^{(d-1)}
\end{gathered}
$$

- Denote $\boldsymbol{b}_{i}^{(i-1)}$ by \boldsymbol{b}_{i}^{*}. By induction it may be shown

$$
\boldsymbol{b}_{i}^{*}=\operatorname{proj}_{\operatorname{span}\left(\boldsymbol{b}_{1}^{*}, \ldots, \boldsymbol{b}_{i-1}^{*}\right)^{\perp}}\left(\boldsymbol{b}_{i}\right)
$$

- These are the Gram-Schmidt orthogonalization vectors. $\boldsymbol{b}_{1}^{*}, \ldots, \boldsymbol{b}_{i}^{*}$ is an orthogonal basis for $\operatorname{span}\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{i}\right)$.

Orthogonality Defect

- By the Gram-Schmidt orthogonalization,

$$
\operatorname{vol} L=\prod_{i=1}^{d}\left\|\boldsymbol{b}_{i}^{*}\right\| \leq \prod_{i=1}^{d}\left\|\boldsymbol{b}_{i}\right\|
$$

with equality if and only if the \boldsymbol{b}_{i} are orthogonal.

- The larger $\prod_{i=1}^{d}\left\|\boldsymbol{b}_{i}\right\|$ is compared to vol L the less orthogonal the \boldsymbol{b}_{i} are. So $\prod_{i=1}^{d}\left\|\boldsymbol{b}_{i}\right\| / \mathrm{vol} L$ is known as the orthogonality defect, and is a method of ranking the bases of a lattice.
- We would like a guarantee that the reductions we consider have an orthogonality defect bounded by some function of d :

$$
\prod_{i=1}^{d}\left\|\boldsymbol{b}_{i}\right\| \leq f(d) \operatorname{vol} L
$$

Hermite Reduction

- Historically, Hermite was the first to consider lattice reduction in arbitrary dimension in two letters sent to Jacobi in 1845.
- Hermite reduction is weaker than Korkin-Zolotarev reduction, but stronger than LLL reduction.
- Nevertheless, the properties we will show for Hermite reduced bases also apply to LLL reduced bases (with small modifications).

Definition. A basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ of L is Hermite reduced if

- $\left\|\boldsymbol{b}_{1}\right\| \leq\left\|\boldsymbol{b}_{i}\right\|$ for all i
- $\boldsymbol{b}_{2}^{\prime}, \ldots, \boldsymbol{b}_{d}^{\prime}$ is a Hermite reduced basis of L^{\prime}
- $\boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{d}$ are lifted from L^{\prime} minimally: $\left|\mu_{i, 1}\right| \leq \frac{1}{2}$ for $2 \leq i$

A Nice Bound

- Hermite reduced bases satisfy the following bound:

$$
\left\|\boldsymbol{b}_{i}\right\|^{2} \leq \frac{4}{3}\left\|\boldsymbol{b}_{i}^{\prime}\right\|^{2}
$$

- Intuitively this says that the projected vector $\boldsymbol{b}_{i}^{\prime}$ isn't that much smaller than the original \boldsymbol{b}_{i}.
- Actually follows from the Pythagorean Theorem in d dimensions and the fact $\left\|\mu_{i, 1} \boldsymbol{b}_{1}\right\| \leq \frac{1}{2}\left\|\boldsymbol{b}_{i}\right\|$.

- Using the Pythagorean Theorem,

$$
\begin{aligned}
\left\|\boldsymbol{b}_{i}\right\|^{2} & =\left\|\boldsymbol{b}_{i}^{\prime}\right\|^{2}+\left\|\mu_{i, 1} \boldsymbol{b}_{1}\right\|^{2} \\
& \leq\left\|\boldsymbol{b}_{i}^{\prime}\right\|^{2}+\frac{1}{4}\left\|\boldsymbol{b}_{i}\right\|^{2} \\
\frac{3}{4}\left\|\boldsymbol{b}_{i}\right\|^{2} & \leq\left\|\boldsymbol{b}_{i}^{\prime}\right\|^{2} \\
\left\|\boldsymbol{b}_{i}\right\|^{2} & \leq \frac{4}{3}\left\|\boldsymbol{b}_{i}^{\prime}\right\|^{2} \\
& \leq\left(\frac{4}{3}\right)^{2}\left\|\boldsymbol{b}_{i}^{(2)}\right\|^{2} \\
& \vdots \\
& \leq\left(\frac{4}{3}\right)^{i-1}\left\|\boldsymbol{b}_{i}^{*}\right\|^{2}
\end{aligned}
$$

by repeated application of the bound.

- Intuitively, as i increases \boldsymbol{b}_{i}^{*} is allowed to become increasingly smaller than \boldsymbol{b}_{i}, but not arbitrarily smaller.
- From $\left\|\boldsymbol{b}_{i}\right\| \leq\left(\frac{4}{3}\right)^{(i-1) / 2}\left\|\boldsymbol{b}_{i}^{*}\right\|$ we can bound the orthogonality defect:

$$
\begin{aligned}
\prod_{i=1}^{d}\left\|\boldsymbol{b}_{i}\right\| & \leq \prod_{i=1}^{d}\left(\frac{4}{3}\right)^{(i-1) / 2}\left\|\boldsymbol{b}_{i}^{*}\right\| \\
& =\left(\frac{4}{3}\right)^{\sum_{i=1}^{d}(i-1) / 2} \operatorname{vol} L \\
& =\left(\frac{4}{3}\right)^{d(d-1) / 4} \operatorname{vol} L
\end{aligned}
$$

Approximate Shortest Vector Problem

- Hermite reduced bases can also be used to approximate a solution to SVP.
- Let $\boldsymbol{x}=\sum_{i=1}^{k} r_{i} \boldsymbol{b}_{i}$ be a shortest nonzero vector in L (i.e., a solution to SVP), where $r_{i} \in \mathbb{Z}$ and $r_{k} \neq 0$.
- It is difficult to bound a sum of \boldsymbol{b}_{i} directly since they are not orthogonal. So we rewrite using Gram-Schmidt:

$$
\boldsymbol{x}=\sum_{i=1}^{k} r_{i}\left(\boldsymbol{b}_{i}^{*}+\sum_{j=1}^{i-1} \mu_{i, j} \boldsymbol{b}_{j}^{*}\right)=r_{k} \boldsymbol{b}_{k}^{*}+\sum_{i=1}^{k-1} s_{i} \boldsymbol{b}_{i}^{*}
$$

for some $s_{i} \in \mathbb{Q}$.

- Now we can use a generalization of the Pythagorean Theorem,

$$
\|\boldsymbol{x}\|^{2}=\left\|r_{k} \boldsymbol{b}_{k}^{*}\right\|^{2}+\sum_{i=1}^{k-1}\left\|s_{i} \boldsymbol{b}_{i}^{*}\right\|^{2} \geq r_{k}^{2}\left\|\boldsymbol{b}_{k}^{*}\right\|^{2} \geq\left\|\boldsymbol{b}_{k}^{*}\right\|^{2}
$$

- Using previous bounds on \boldsymbol{b}_{i} with $i=k$,

$$
\left\|\boldsymbol{b}_{1}\right\| \leq\left\|\boldsymbol{b}_{k}\right\| \leq\left(\frac{4}{3}\right)^{(k-1) / 2}\left\|\boldsymbol{b}_{k}^{*}\right\| \leq\left(\frac{4}{3}\right)^{(d-1) / 2}\|\boldsymbol{x}\| .
$$

- So \boldsymbol{b}_{1} is at most a factor of $\left(\frac{4}{3}\right)^{(d-1) / 2}$ longer than the shortest possible nonzero vector in L.

Optimal-LLL Reduction

- There is no algorithm known which can provably compute a Hermite reduced basis efficiently (polynomial time in d). So, we weaken the conditions again:

Definition. A basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ of L is optimal-LLL reduced if

- $\left\|\boldsymbol{b}_{1}\right\| \leq\left\|\boldsymbol{b}_{2}\right\|$
- $\boldsymbol{b}_{2}^{\prime}, \ldots, \boldsymbol{b}_{d}^{\prime}$ is an optimal-LLL reduced basis of L^{\prime}
- $\boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{d}$ are lifted from L^{\prime} minimally: $\left|\mu_{i, 1}\right| \leq \frac{1}{2}$ for $2 \leq i$
- Optimal-LLL reduced bases no longer satisfy the nice bound $\left\|\boldsymbol{b}_{i}\right\|^{2} \leq \frac{4}{3}\left\|\boldsymbol{b}_{i}^{\prime}\right\|^{2}$, but do satisfy a similar one,

$$
\left\|\boldsymbol{b}_{i}^{*}\right\|^{2} \leq \frac{4}{3}\left\|\boldsymbol{b}_{i+1}^{*}\right\|^{2}
$$

- In fact, with a little more work we can derive the same properties as in the Hermite case:

$$
\begin{aligned}
\left\|\boldsymbol{b}_{i}\right\| & \leq\left(\frac{4}{3}\right)^{(i-1) / 2}\left\|\boldsymbol{b}_{i}^{*}\right\| \\
\prod_{i=1}^{d}\left\|\boldsymbol{b}_{i}\right\| & \leq\left(\frac{4}{3}\right)^{d(d-1) / 4} \operatorname{vol} L \\
\left\|\boldsymbol{b}_{1}\right\| & \leq\left(\frac{4}{3}\right)^{(d-1) / 2}\|\boldsymbol{x}\|
\end{aligned}
$$

- There is no algorithm known which can provably compute an optimal-LLL reduced basis efficiently (polynomial time in d).

LLL Reduction

- We weaken optimal-LLL reduction by allowing some slack room in the $\left\|\boldsymbol{b}_{1}\right\| \leq\left\|\boldsymbol{b}_{2}\right\|$ condition:

Definition. A basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ of L is $L L L$ reduced with quality parameter $c \in(1,4)$ if

- $\left\|\boldsymbol{b}_{1}\right\| \leq \sqrt{c}\left\|\boldsymbol{b}_{2}\right\|$
- $\boldsymbol{b}_{2}^{\prime}, \ldots, \boldsymbol{b}_{d}^{\prime}$ is an $L L L$ reduced basis of L^{\prime} (with quality c)
- $\boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{d}$ are lifted from L^{\prime} minimally: $\left|\mu_{i, 1}\right| \leq \frac{1}{2}$ for $2 \leq i$
- The smaller c is, the less slack room and the better the reduction.
- Define $C=\frac{4 c}{4-c}$; note that $C>\frac{4}{3}$ for $c>1$ but we can set C arbitrarily close to $\frac{4}{3}$.
- Analogously to the Hermite case, LLL reduced bases satisfy:

$$
\begin{aligned}
\left\|\boldsymbol{b}_{i}\right\| & \leq C^{(i-1) / 2}\left\|\boldsymbol{b}_{i}^{*}\right\| \\
\prod_{i=1}^{d}\left\|\boldsymbol{b}_{i}\right\| & \leq C^{d(d-1) / 4} \operatorname{vol} L \\
\left\|\boldsymbol{b}_{1}\right\| & \leq C^{(d-1) / 2}\|\boldsymbol{x}\|
\end{aligned}
$$

- In the original LLL paper $c=\frac{4}{3}$ was used, so $C=2$.

The Punchline

- The straightforward way of applying the definition of an LLL reduced basis gives an algorithm for computing an LLL reduced basis efficiently (polynomial time in d).

Input: A basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ of a lattice L; a quality parameter c
Output: An LLL reduced basis of L (with quality c) if $d=1$ then return $\left(\boldsymbol{b}_{1}\right)$
repeat

$$
\left.\begin{array}{l}
\qquad \text { if }\left\|\boldsymbol{b}_{1}\right\|>\sqrt{c}\left\|\boldsymbol{b}_{2}\right\| \text { then swap } \boldsymbol{b}_{1} \text { and } \boldsymbol{b}_{2} \\
\qquad\left(\boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{d}\right):=\operatorname{lift}_{\boldsymbol{b}_{1}}(\operatorname{LLLREDUCE} \\
c
\end{array}\left(\boldsymbol{b}_{2}^{\prime}, \ldots, \boldsymbol{b}_{d}^{\prime}\right)\right) \text {) }
$$

The Iterative LLL Definition: Size Reduction

- The shortest-lift condition in the j th recursive lattice is $\left|\mu_{i}^{(j)}\right| \leq \frac{1}{2}$ for $j+1<i$, where:

$$
\begin{aligned}
\mu_{i}^{(j)}=\frac{\left\langle\boldsymbol{b}_{i}^{(j)}, \boldsymbol{b}_{j+1}^{(j)}\right\rangle}{\left\|\boldsymbol{b}_{j+1}^{(j)}\right\|^{2}} & =\frac{\left\langle\boldsymbol{b}_{i}-\sum_{k=1}^{j} \mu_{i, k} \boldsymbol{b}_{k}^{*}, \boldsymbol{b}_{j+1}^{*}\right\rangle}{\left\|\boldsymbol{b}_{j+1}^{*}\right\|^{2}} \\
& =\frac{\left\langle\boldsymbol{b}_{i}, \boldsymbol{b}_{j+1}^{*}\right\rangle}{\left\|\boldsymbol{b}_{j+1}^{*}\right\|^{2}} \\
& =\mu_{i, j+1}
\end{aligned}
$$

- So the shortest-lift condition implies $\left|\mu_{i, j}\right| \leq \frac{1}{2}$ for $j<i$.
- This is called size-reduction.

The Iterative LLL Definition: Lovász Condition

- The $\left\|\boldsymbol{b}_{1}\right\| \leq \sqrt{c}\left\|\boldsymbol{b}_{2}\right\|$ condition in the i th recursive lattice:

$$
\begin{aligned}
\left\|\boldsymbol{b}_{i+1}^{(i)}\right\| & \leq \sqrt{c}\left\|\boldsymbol{b}_{i+2}^{(i)}\right\| \\
& =\sqrt{c}\left\|\boldsymbol{b}_{i+2}-\sum_{j=1}^{i} \mu_{i+2, j} \boldsymbol{b}_{j}^{*}\right\| \\
& =\sqrt{c}\left\|\boldsymbol{b}_{i+2}^{*}+\mu_{i+2, i+1} \boldsymbol{b}_{i+1}^{*}\right\|
\end{aligned}
$$

- So the \boldsymbol{b}_{1}-bound condition implies $\left\|\boldsymbol{b}_{i}^{*}\right\| \leq \sqrt{c}\left\|\boldsymbol{b}_{i+1}^{*}+\mu_{i+1, i} \boldsymbol{b}_{i}^{*}\right\|$ for $i \geq 1$.
- This is called the Lovász condition.

Non-recursive LLL Reduction

- Putting these conditions together gives Definition 2.6.1 in Cohen's text:

Definition. A basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ is LLL reduced with quality parameter $c \in(1,4)$ if

- $\left|\mu_{i, j}\right| \leq \frac{1}{2}$ for $1 \leq j<i \leq d$
- $\left\|\boldsymbol{b}_{i-1}^{*}\right\| \leq \sqrt{c}\left\|\boldsymbol{b}_{i}^{*}+\mu_{i, i-1} \boldsymbol{b}_{i-1}^{*}\right\|$ for $1<i \leq d$
- Say we have some basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{k}$ such that the first $k-1$ vectors form an LLL reduced basis. If
- \boldsymbol{b}_{k} is size-reduced against the first $k-1$ vectors
- the Lovász condition holds for $i=k$
then $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{k}$ is also an LLL reduced basis.

The Iterative LLL Algorithm

Input: A basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}$ of a lattice L; a quality parameter c
Output: An LLL reduced basis of L (with quality c)
$k:=2$
while $k \leq d$ do
size-reduce \boldsymbol{b}_{k} against $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{k-1}$
if $\left\|\boldsymbol{b}_{k-1}^{*}\right\| \leq \sqrt{c}\left\|\boldsymbol{b}_{k}^{*}+\mu_{k, k-1} \boldsymbol{b}_{k-1}^{*}\right\|$ then $k:=k+1$
else
swap \boldsymbol{b}_{k-1} and \boldsymbol{b}_{k}
$k:=\max (k-1,2)$
end if
end while
return $\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}\right)$

- At the start of the loop, $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{k-1}$ is an LLL reduced basis.

The Gram-Schmidt Vectors During LLL

- Size reduction does not change the \boldsymbol{b}_{i}^{*}.
- If \boldsymbol{c}_{i}^{*} are the Gram-Schmidt vectors after a swap, then:

Before		After				
\boldsymbol{b}_{1}	$\left\\|\boldsymbol{b}_{1}^{*}\right\\|=\left\\|\boldsymbol{c}_{1}^{*}\right\\|$	\boldsymbol{b}_{1}				
\vdots	\vdots	\vdots				
\boldsymbol{b}_{k-1}	$\left\\|\boldsymbol{b}_{k-1}^{*}\right\\|=\left\\|\boldsymbol{c}_{k-1}^{*}\right\\|$	\boldsymbol{b}_{k-1}				
\boldsymbol{b}_{k}	$\left\\|\boldsymbol{b}_{k}^{*}\right\\|>\sqrt{c}\left\\|\boldsymbol{c}_{k}^{*}\right\\|$	\boldsymbol{b}_{k+1}				
\boldsymbol{b}_{k+1}	$\left\\|\boldsymbol{b}_{k+1}^{*}\right\\|<\sqrt{c}\left\\|\boldsymbol{c}_{k+1}^{*}\right\\|$	\boldsymbol{b}_{k}				
\boldsymbol{b}_{k+2}	$\left\\|\boldsymbol{b}_{k+2}^{*}\right\\|=\left\\|\boldsymbol{c}_{k+2}^{*}\right\\|$	\boldsymbol{b}_{k+2}				
\vdots	\vdots	\vdots				
\boldsymbol{b}_{d}	$\left\\|\boldsymbol{b}_{d}^{*}\right\\|=\left\\|\boldsymbol{c}_{d}^{*}\right\\|$	\boldsymbol{b}_{d}				

Bounding the Number of Swaps

- Let B_{k} be the basis consisting of the first k basis vectors, L_{k} the lattice formed by the basis B_{k}, and

$$
d_{k}=\left(\operatorname{vol} L_{k}\right)^{2}=\operatorname{det}\left(B_{k} B_{k}^{T}\right)=\prod_{i=1}^{k}\left\|\boldsymbol{b}_{i}^{*}\right\|^{2}
$$

- If the \boldsymbol{b}_{i} are integer vectors then $d_{k} \in \mathbb{Z}^{+}$.
- During LLL, a swap of \boldsymbol{b}_{k} and \boldsymbol{b}_{k+1} decreases d_{k} by a factor of at least c, and doesn't change d_{i} for $i \neq k$.
- Thus, if we define

$$
D=\prod_{i=1}^{d} d_{i}
$$

then D decreases by a factor of at least c after every swap.

- Thus, there are at most $\log _{c}(D)$ swaps. Since

$$
D=\prod_{i=1}^{d}\left\|\boldsymbol{b}_{i}^{*}\right\|^{2(d-i+1)} \leq \prod_{i=1}^{d}\left\|\boldsymbol{b}_{i}\right\|^{2(d-i+1)} \leq \max _{i}\left\|\boldsymbol{b}_{i}\right\|^{d(d+1)}
$$

there are $O(\log D)=O\left(d^{2} \log B\right)$ swaps, where $B=\max _{i}\left\|\boldsymbol{b}_{i}\right\|$ for the original \boldsymbol{b}_{i}.

- The size of the numbers involved remain reasonable throughout the algorithm:
- $\left\|\boldsymbol{b}_{i}^{*}\right\| \leq B$.
- The denominators of \boldsymbol{b}_{i}^{*} and $\mu_{i, j}$ divide vol L.
- $\log \left\|\boldsymbol{b}_{i}\right\|$ and $\log \left|\mu_{i, j}\right|$ are $O(d \log B)$.
- Size-reduction requires $O(n)$ arithmetic operations, and there are $O(d)$ vectors to size-reduce against.
- Total cost of LLL is therefore $O\left(n d^{5}(\log B)^{3}\right)$ without fast arithmetic.

Factoring Polynomials over the Integers

- If f is an integer polynomial with an algebraic root, if we can find the minimal polynomial of that root then we have an irreducible factor of f.
- Let $\alpha \in \mathbb{C}$ be an approximation to a algebraic root of f with a minimal polynomial h of degree m.
- For some constant N let L be the lattice generated by the rows of the following basis:

$$
\left.\left[\begin{array}{c}
\boldsymbol{b}_{0} \\
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2} \\
\vdots \\
\boldsymbol{b}_{m}
\end{array}\right]=\left[\begin{array}{cccccc}
1 & & & & & N \Re\left(\alpha^{0}\right) \\
& 1 & & & & N \Im\left(\alpha^{0}\right) \\
& & 1 & & & N \Re\left(\alpha^{1}\right) \\
& & & \ddots & N\left(\alpha^{1}\right) \\
& & & \ddots & & \vdots \\
& & & & 1 & N \Re\left(\alpha^{m}\right)
\end{array}\right) N \Im\left(\alpha^{m}\right)\right]
$$

- Any $\boldsymbol{x} \in L$ has form $\boldsymbol{x}=\sum_{i=0}^{m} g_{i} \boldsymbol{b}_{i}$ for some $g_{i} \in \mathbb{Z}$.
- Can think of $\left(g_{0}, \ldots, g_{m}\right)$ as $\boldsymbol{g} \in \mathbb{Z}^{m}$ or an integer polynomial $g(x)=\sum_{i=0}^{m} g_{i} x^{i}$.
- Any $\boldsymbol{x} \in L$ has the form

$$
\boldsymbol{x}=\left[\begin{array}{lll}
\boldsymbol{g}^{T} & N \Re(g(\alpha)) & N \Im(g(\alpha))
\end{array}\right]
$$

and it follows $\|\boldsymbol{x}\|^{2}=\|\boldsymbol{g}\|^{2}+N^{2}|g(\alpha)|^{2}$.

- We can make $h(\alpha)$ arbitrarily small by increasing the precision of α.
- So by taking N large enough, we can make the shortest nonzero vector in L be

$$
\boldsymbol{s}=\left[\begin{array}{lll}
\boldsymbol{h}^{T} & N \Re(h(\alpha)) & N \Im(h(\alpha))
\end{array}\right] .
$$

- And then increasing N by a factor $\approx 2^{m / 2}$ ensures that any vector $\boldsymbol{x} \in L$ not a multiple of \boldsymbol{s} will have $\|\boldsymbol{x}\|^{2}>2^{m}\|\boldsymbol{s}\|^{2}$.
- LLL will always find a vector $\left\|\boldsymbol{b}_{0}\right\|^{2} \leq 2^{m}\|\boldsymbol{s}\|^{2}$.

