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Figure 1: A low density elastic dinosaur toy deforming and interacting with liquid under our cut-cell coupling scheme.

ABSTRACT
We present a new approach to simulation of two-way coupling
between inviscid free surface �uids and deformable bodies that ex-
hibits several notable advantages over previous techniques. By fully
incorporating the dynamics of the solid into pressure projection, we
simultaneously handle �uid incompressibility and solid elasticity
and damping. Thanks to this strong coupling, our method does not
su�er from instability, even in very taxing scenarios. Furthermore,
use of a cut-cell discretization methodology allows us to accurately
apply proper free-slip boundary conditions at the exact solid-�uid
interface. Consequently, our method is capable of correctly simu-
lating inviscid tangential �ow, devoid of grid artefacts or arti�cial
sticking. Lastly, we present an e�cient algebraic transformation to
convert the inde�nite coupled pressure projection system into a
positive-de�nite form. We demonstrate the e�cacy of our proposed
method by simulating several interesting scenarios, including a
light bath toy colliding with a collapsing column of water, liquid be-
ing dropped onto a deformable platform, and a partially liquid-�lled
deformable elastic sphere bouncing.
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1 INTRODUCTION
The interactions between liquids and deformable objects are a fa-
miliar element of our daily experience, ranging from children’s toys
in a swimming pool to �exible kitchen implements in the sink to a
rubber duck in the bath. In the present work, we develop a novel
method to simulate such interactions between grid-based Eulerian
�uids and tetrahedral Lagrangian solids, in a stable, robust, and
e�cient manner.

While we are not the �rst to consider this general problem [Chen-
tanez et al. 2006; Génevaux et al. 2003; Guendelman et al. 2005;
Robinson-Mosher et al. 2009, 2008], we believe our new method
o�ers several attractive features compared to prior animation tech-
niques. The approach we take is to generalize an increasingly
popular family of symmetric positive-de�nite cut-cell �uid meth-
ods [Azevedo et al. 2016; Batty et al. 2007; Bridson 2015; Gibou and
Min 2012; Ng et al. 2009; Roble et al. 2005; Weber et al. 2015] to the
case of strongly (or monolithically) coupled two-way interactions
with deformable solids, in which solid and �uid dynamics are solved
simultaneously. To reconcile the Eulerian �uid and Lagrangian solid
domains, we construct a mutually conforming cut-cell mesh at each
frame by clipping the cells of the �uid grid against the deformable
solid object’s geometry. We apply a �nite volume discretization
over the �uid cells to enforce incompressibility through pressure
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projection, and at the same time integrate the velocities of the elas-
tic solid with a standard �nite element method. With the cut-cell
mesh in hand, we accurately and straightforwardly treat interac-
tions by integrating pressure over the solid’s surface to determine
the forces from the �uid, while using the solid’s surface velocities
to dictate velocity boundary conditions at the clipped faces of �uid
cells.

This approach avoids grid-induced stairstep artefacts and accu-
rately satis�es the desired tangential free-slip boundary conditions
precisely at the solid-�uid boundary, without the need for extra
explicit constraints or Lagrange multipliers beyond the existing
per-cell �uid pressures. Our strongly-coupled solution of the �uid
and solid dynamics, along with our treatment of the solid dynam-
ics with a fully implicit corotational model, endows our method
with very good stability properties. We further demonstrate how a
simple linear algebra transformation can carry over the symmetric
positive-de�niteness property of this family of cut-cell methods
to our setting. Given the �exibility and increasing prevalence of
cut-cell methods, we believe this extension is quite practically rele-
vant (e.g., Bridson’s recent book [Bridson 2015] mentioned it as an
unsolved challenge), and it further broadens the domain of applica-
bility of these cut-cell methods.

In summary, we present a novel cut-cell method for strongly
coupled two-way �uid-deformable interaction that features

• excellent stability;
• boundary condition enforcement at the true interface;
• tangential free-slip without grid artefacts;
• a symmetric positive-de�nite linear system; and
• no extra constraints or degrees of freedom.

2 RELATEDWORK
Coupling Fluids to Rigid Bodies. We begin with a review of tech-

niques for the related problem of rigid body-�uid interaction. Since
a typical �uid simulation often involves an enclosing container,
the problem of rigid boundaries and objects has been considered
from the earliest days of �uid animation. Use of the now-ubiquitous
marker-and-cell (MAC) discretization was introduced to the com-
puter graphics community by Foster and Metaxas [1996]. In this
seminal paper, grid-aligned solid boundaries were readily handled;
however, signi�cant voxelization artefacts unavoidably cropped up
in the presence of sloped or curved geometry. Furthermore, only a
limited discussion of dynamic rigid bodies was included, with the
authors remarking that a more sophisticated method is necessary
to properly capture two-way coupling.

Handling of solid boundary conditions, particularly for advec-
tion, was subsequently improved by Foster and Fedkiw [2001],
Houston et al. [2003], and Rasmussen et al. [2004]. However, issues
can still surface due to the voxelized pressure solve. For instance,
none of the aforementioned methods can adequately simulate a
body of water in hydrostatic equilibrium within a spherical con-
tainer. Feldman et al. [2005] circumvented this problem by using
conforming volumetric meshes in order to accurately capture the
�uid region (and, hence, its boundaries), and Klingner et al. [2006]
adapted this approach for the purpose of two-way coupling with dy-
namic rigid bodies. Unfortunately, both of these works relied on the
use of conforming unstructured tetrahedral meshes and frequent

remeshing of the �uid domain, adding computational overhead.
Another approach to two-way coupling is the “rigid �uid” method
proposed by Carlson et al. [2004], which handles interactions by
temporarily treating the rigid body as a �uid region, but this ap-
proach can lead to severe leakage through objects.

A widely adopted solution to the problem of irregular solids is
the use of cut-cell methods, which essentially clip the object ge-
ometry against a regular background grid. Their use in computer
graphics was �rst suggested by Roble et al. [2005], who proposed
a simple modi�cation to regular pressure projection that allows
for more accurate enforcement of static solid boundary conditions.
The variational formulation of Batty et al. [2007] similarly treated
two-way rigid body interactions by casting the coupled pressure
solve in an energy minimization form that accounts for partial
cell volumes in three dimensions. Subsequently, Ng et al. [2009]
used a �nite volume cut-cell discretization to derive a more accu-
rate scheme for kinematically scripted solids, involving the same
stencils with a di�erent choice of weighting terms. This thread
of research culminated in work by Gibou and Min [2012], who
presented further accuracy improvements to the method of Ng et
al. [2009] and extended it to two-way coupling with dynamic rigid
bodies.

Such cut-cell discretizations have become increasingly common
in �uid animation, for example in the context of spatial adaptivity
[Batty et al. 2010], multigrid methods [Weber et al. 2015], detailed
splashes [Edwards and Bridson 2014], and thin solids [Azevedo
et al. 2016]. This trend can be attributed to the simplicity of cut-
cells (both conceptual and with respect to implementation) as well
as their expressive power: �uxes across small geometrical details
can be mathematically captured without re�ning or re-orienting the
computational grid. Observing these properties, the present work
makes use of cut-cell discretization to accurately enforce coupling
conditions at the interface between a �uid and deformable bodies.

Coupling Fluids to Lagrangian Deformables. The �uid nature of
liquids and gases results in immense shape changes throughout the
course of a simulation. Consequently, despite various advantages
possessed by Lagrangian mesh-based approaches to �uid simula-
tion [Clausen et al. 2013; Misztal et al. 2014], such as a uni�ed
physical model for solid and �uids, better volume preservation,
and straightforward support for implicit surface tension, they are
less common because they necessitate continuous and expensive
remeshing of the �uid region. Many solids, on the other hand, are
not ordinarily subject to such extreme distortion and permanent
deformation. As a result, Lagrangian mesh methods have predomi-
nantly been used to animate elastic deformable objects. A typical
example of such a scheme is given by Teran et al. [2003]: the solid
domain is partitioned into volumetric elements, allowing for a sim-
ple calculation of per-element strains, which can be used to obtain
material stresses and internal forces.

This discrepancy in representation of �uids and solids introduces
a challenge in their dynamic coupling: because velocity samples for
the two entities are not collocated, it becomes harder to accurately
enforce boundary conditions at the regions of contact. To bypass
the inherent di�culty in simultaneous satisfaction of boundary con-
ditions, early attempts at animating solid-�uid interactions took a
weakly coupled approach that alternates solving for solid and �uid
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motions. For example, Genevaux et al. [2003] devised a simple sim-
ulation scheme that integrates �uid and solid dynamics separately,
with interactions facilitated by interfacial forces. Guendelman et
al. [2005] take a similar approach, but use solid velocities as pre-
scribed boundary conditions for (voxelized) pressure projection.
E�ects of the �uid on the solid are then captured through applica-
tion of forces induced by the computed pressure �eld. We observe
that the simplicity of weakly coupled schemes generally comes at
the cost of accuracy, stability, or e�ciency: it is often necessary to
take restrictively small time steps in order to prevent unphysical
behavior or even catastrophic simulation failure.

The problem of instability was largely mitigated by Chentanez et
al. [2006], whose implicit, strongly coupled formulation is demon-
strably robust, even with relatively large time steps. The tetrahedral
mesh variant of this method naturally requires continuous remesh-
ing, while the regular grid variant does not correctly apply the
free-slip condition at the exact interface, since it inaccurately treats
the solid as voxelized; as a result, visible voxelization artefacts ap-
pear at the solid-�uid boundary. Furthermore, the linear system
for pressure projection is non-symmetric, rendering it more dif-
�cult to solve numerically. The formulation of Robinson-Mosher
et al. [2008], on the other hand, instead requires the solution of
a symmetric inde�nite matrix. While such systems are generally
easier to solve numerically than non-symmetric ones, working with
positive-de�nite matrices is still preferred. The e�ects of the under-
lying voxelization are present in this method as well; in particular,
lumping of �uid and solid momenta within computational cells
forces the �uid to inherit the solid’s velocity at the boundaries. In
essence, despite the use of an inviscid �uid model, this method
violates the desired free-slip condition, causing the �uid to stick
unnaturally to objects.

In subsequent follow-up work, Robinson-Mosher et al. [2009]
incorporated tangential free-slip boundary conditions into their
coupled pressure projection scheme via Lagrange multipliers that
explicitly constrain only the interpolated normal component of
relative velocity to be zero. However, these boundary conditions
are once again applied at regular grid faces as opposed to the true
contact interface, and the resultant linear system remains symmet-
ric inde�nite. A positive-de�nite formulation of the same problem
was �nally presented by Robinson-Mosher et al. [2011] through
linear algebraic manipulations that rely on construction of a sym-
metric factorization of the solid’s damping matrix; our method is
more general in avoiding this requirement. In addition to our use
of a cut-cell approach that better accounts for solid geometry, the
present work is also distinguished from the preceding three ap-
proaches by our use of corotational linear elasticity which allows
us to incorporate the full implicit solid dynamics into the coupled
pressure projection; Robinson-Mosher et al. [2011] include only the
solid damping.

An important determinant of computational cost of a deformable
simulation is the node count for the mesh. In certain cases, it is
not possible to coarsen a mesh without signi�cantly a�ecting its
shape. In these scenarios, one can still improve running time by
utilizing a reduced model, whose deformations are restricted to a
smaller subset (e.g., [Sheth et al. 2015]). Building on the aforemen-
tioned algorithm of Robinson-Mosher et al. [2011], Lu et al. [2016]

developed a method to capture interactions of �uids and reduced
deformable bodies. Since our goal is high-�delity simulation with
accurate boundary condition handling, we do not consider reduced
models; however, we anticipate that our coupling strategy could
similarly be adapted to work with reduced models.

Sotiropoulos and Yang [2014] provide a review of a wide vari-
ety of approaches to �uid-structure interaction in computational
physics. While various �avors of immersed boundary and cut-cell
methodologies are common, we are not aware of any method that
o�ers the speci�c advantages provided by the present work. As
an example, Pasquariello et al. [2016] use a cut-cell �nite di�er-
ence/volume strategy in a manner broadly similar to our work and
that of Ng et al. [2009]. In contrast to our work though, they con-
sider compressible �ow, handle the boundary interactions via a
mortar method based on explicit Lagrange multiplier constraints,
and employ a weak/partitioned coupling strategy.

Coupling Fluids to Eulerian Deformables. Although still not as
popular as the ubiquitous Lagrangian schemes, Eulerian and hy-
brid solid simulation approaches have recently gained traction; the
Eulerian solids approach [Levin et al. 2011] and the material point
method [Stomakhin et al. 2013] are representative examples. Most
relevant to our research is the Eulerian two-way solid-�uid cou-
pling method of Teng et al. [2016]. While a fully Eulerian scheme is
in many ways very natural, this method exhibits several practical
drawbacks. First, the underlying Eulerian solid model su�ers from
strong numerical damping. More importantly, this uni�ed model
necessarily implies a no-slip condition at the boundaries, and the
described method is limited to simulating fully immersed, strictly
incompressible objects. By contrast, we are interested in coupling
of potentially compressible solids to inviscid free surface �uids,
for which the free-slip condition yields more realistic results for
animation scenarios.

SPH Methods. Smoothed particle hydrodynamics (SPH) methods
provide an alternate way to simulate �uids, by distributing mass
to particles and using interactions between particles to determine
the dynamics of the aggregate �uid. Several algorithms to simulate
two-way coupling of deformable solids to SPH �uids have been
previously proposed (e.g., [Akinci et al. 2013; Solenthaler et al.
2007]). These methods are outside the scope of the present work,
which focuses on Eulerian �uid representations.

3 FLUID EQUATIONS
We simulate the liquid by solving the incompressible Euler equa-
tions in an Eulerian fashion, using

∂u
∂t
+ u · ∇u +

∇p

ρ
= f ,

∇ · u = 0,
(1)

where u is the �uid velocity �eld, p is pressure, ρ is the �uid density,
and f denotes external forces [Batchelor 2000]. At the interface
between air and liquid, the free surface condition, p = 0, must be
satis�ed. For solid objects in contact with the �uid, we enforce
the free-slip boundary condition: u · n = v · n, where v is the
solid’s velocity, and n is the surface normal. For (near-)inviscid
�uids at typical resolutions and scales for animation applications,
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this condition is preferable, as it avoids the undesirable tangential
sticking e�ects produced by the no-slip condition (u = v).

We take an operator-splitting approach to solve the �uid equa-
tions [Stam 1999]. First, the �uid’s velocity �eld is advected. Our
method is agnostic with respect to the advection scheme; due to its
ease of implementation, e�ciency, and excellent stability, we opted
for a standard semi-Lagrangian technique [Stam 1999]. Next, the
external forces are integrated explicitly to acquire an intermediate
velocity �eld u∗. The �nal step is to perform pressure projection,
which involves �nding a pressure �eld to apply to the �uid such
that the updated velocities

u = u∗ −
∆t

ρ
∇p (2)

are divergence-free, ∇ · u = 0, and satisfy the appropriate boundary
conditions. Fluid-solid interaction will be mediated through our
coupled projection scheme that simultaneously integrates �uid pres-
sure forces and both elasticity and damping forces in the deformable
solid. We delay discussion of the �uid’s spatial discretization and
our solid-�uid coupling strategy to section 5.

4 SOLID EQUATIONS
We assume a linear elastic material model for the deformable solids,
leading to equations of motion of the form

M Üx + D Ûx + K(x − x0) = f , (3)

where M , D, and K are solid’s mass, damping, and sti�ness matri-
ces, respectively, x is the stacked vector of node coordinates (and
overdots represent time-derivatives), x0 is the vector of node co-
ordinates in a rest con�guration, and f is the vector of external
forces [Terzopoulos et al. 1987]. This system of ordinary di�erential
equations is integrated on a tetrahedral mesh of the desired solid.
We assume M is a diagonal lumped mass matrix and D is a Rayleigh
damping matrix given by

D = τmM + τkK , (4)

for non-negative constants τm ,τk . Because it provides rotational
invariance and requires only a linear solve per step, we compute the
global sti�ness matrix using the corotational �nite element model
described by Müller and Gross [2004]. (Note that this standard coro-
tational formulation assumes �xed element rotations so it requires
only a single linear solve per time step; an exact approach can
account for changing rotations, but makes the problem nonlinear
[Barbic̆ 2012].)

The dynamics equations are discretized in time using backwards
Euler and expressed in terms of nodal velocities, v:

M

(
vn+1 − vn

∆t

)
+ Dvn+1 + K(xn + ∆tvn+1 − x0) = f , (5)

where the superscripts are used to identify the time step. Upon
rearranging, we arrive at the linear system that governs evolution
of the deformable body’s nodal velocities:(

1
∆t

M + D + ∆tK

)
vn+1 =

1
∆t

Mvn − K(xn − x0) + f . (6)

b

b

b

b

b

b

b

b b

b

b

b b b

b

b

Figure 2: A sampleMAC grid con�guration. The solid region
is shaded, and black dots denote nodes of its mesh. Fluid
pressures are at cell centers (blue dots), while �uid velocity
components are on cell faces (red dashes for x components,
blue dashes for y components). Only locations of valid pres-
sure and velocity samples are marked.

5 PRESSURE PROJECTION
We now proceed to describe our coupled pressure projection that
simultaneously enforces �uid incompressibility and integrates the
solid’s internal forces, allowing for accurate enforcement of bound-
ary conditions at the solid-�uid interface.

5.1 Fluid Incompressibility
Throughout the �uid domain, we place velocity components on cell
face midpoints and pressures at cell centers, in accordance with
the standard marker-and-cell (MAC) method [Foster and Metaxas
1996] (see Figure 2 for a sample con�guration in two dimensions).
This staggered sampling allows for straightforward central �nite
di�erence approximations of the key di�erential operators (gradient
and divergence), and avoids odd-even pressure decoupling artefacts
of collocated schemes.

Following Ng et al. [2009], we employ the �nite volume method
to enforce incompressibility. Consider the �uid region, denoted Ω,
contained within a cubic computational cell (see Figure 3); incom-
pressibility in conjunction with the velocity update (2) imply

0 =
∫
Ω
∇ · udV =

∫
∂Ω

udn

=

∫
∂ΩF

(
u∗ −

∆t

ρ
∇p

)
dn +

∫
∂ΩS

vdn,
(7)

where the divergence theorem was used to convert the expres-
sion into a surface integral. In the last step, we partitioned the
boundary into the region in contact with the solid, ∂ΩS , and the
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P−y

Q1

Q2

Q3

Q4

n1
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n4

b

b

b

b

b

Figure 3: A sample con�guration within a cell. The �uid re-
gion (Ω) is shaded, its boundary in contact with neighbor-
ing �uid cells (∂ΩF ) is given in blue, and the region in con-
tact with the solid (∂ΩS ) is given in red. In this case, we have
∂ΩF = P−x ∪P−y ∪Py and ∂ΩS = Q1 ∪Q2 ∪Q3 ∪Q4. Black dots
represent centroids of regions Qi , and the inward-oriented
normal for each region is also depicted. The pressure sample
is located at the central blue dot. This diagram corresponds
to the central cell in Figure 2.

remainder, ∂ΩF , and used the fact that u · n = v · n on ∂ΩS . To
simplify our derivation, we ignore the presence of a free surface
(this boundary condition is handled separately with the ghost �uid
method [Enright et al. 2003]). It follows that the non-solid por-
tion of the boundary is a union of axis-aligned planar regions,
which are parts of the cell walls neighboring other �uid cells:
∂ΩF = Px ∪ P−x ∪ Py ∪ P−y ∪ Pz ∪ P−z , where subscripts are
used to denote outward-pointing normals. Consequently, we can
approximate the �ux across ∂ΩF as follows:∫

∂ΩF

u∗dn ≈
∑

α ∈{x,y,z }

(
A(Pα )u

∗(Pα ) −A(P−α )u
∗(P−α )

)
. (8)

In the above equation, A(P) is the area of region P , and u∗(P) is the
normal component of the intermediate �uid velocity at the center
of the face that contains P ; by construction, this velocity value can
be directly read from the MAC grid. Likewise, we have∫

∂ΩF

∇pdn ≈
∑

α ∈{x,y,z }

(
A(Pα )

∂p

∂α
(Pα ) +A(P−α )

∂p

∂α
(P−α )

)
, (9)

where the partial derivatives at cell face centers can be estimated
with �nite di�erences between the cell-centered pressures.

In a similar vein, we assume the solid’s surface is represented by
a triangle mesh and partition ∂ΩS into planar polygonal regions

Q1, . . . ,Qk . (These regions are not necessarily triangular, since
they result from clipping mesh triangles against the cubic �uid
cells). Letting ai and ni be the area and unit normal of region Qi
(pointing out of the �uid), and ci be the centroid of Qi , we can use
the following approximation:∫

∂ΩS

vdn ≈
k∑
i=1

aiv(ci ) · ni . (10)

To estimate the velocity at the centroid, v(ci ), linear interpolation
is used. Speci�cally, note that Qi is contained within a surface
triangle of the solid, and let the nodes of this triangle be numbered
i(1), i(2), i(3). If xj is the location of node j, then we can express ci
in terms of its barycentric coordinates:

ci = αxi(1) + βxi(2) + (1 − α − β)xi(3). (11)

Finally, this allows us to approximate the velocity at ci using

v(ci ) = αvi(1) + βvi(2) + (1 − α − β)vi(3), (12)

where vj is the velocity of node j.
We now use u∗ to denote the stacked vector of all intermediate

velocities. Then the stacked vector of boundary integrals (8) can
be written as −GTAu∗, where A is the diagonal matrix of face
areas, and G is the discrete gradient matrix. Likewise, the stacked
vector of integrals (9) can be expressed as −GTAGp, where p is the
vector of pressure samples at cell centers. Lastly, the integral (10)
can be combined in vector form as NTCv, where N is the matrix
containing area-weighted normals (oriented into the solid),C is the
matrix of barycentric coordinates, and v is the stacked vector of
nodal velocities. Substituting these expressions into (7) yields the
discrete equations for the �uid volume,

0 = −GTAu∗ +
∆t

ρ
GTAGp + NTCv. (13)

5.2 Solid Dynamics
On the solid side, (6) already captures the internal dynamics; we
need only add the e�ects of �uid pressure, by incorporating them
into the vector of external forces.

Consider a planar patch P acquired by intersecting one of the
solid’s surface triangles T with a �uid cell; we will use p to denote
�uid pressure at this cell’s center. We make the simplifying assump-
tion that pressure is constant within the computational cell; though
this may incur some minor additional error, it is a common and
e�ective choice in graphics applications, e.g., [Batty et al. 2007;
Bridson 2015; Yngve et al. 2000]). The force applied by the liquid
pressure on P is then given by f = pA(P)n, where A(P) and n are
the area and unit normal of P (oriented into the solid). We further
assume that f is applied at c, the centroid of the patch P , and dis-
tribute this force among the nodes of T . Speci�cally, if the nodes
of T are numbered 1, 2, 3, and the barycentric representation of c
within this triangle is

c = α1x1 + α2x2 + α3x3, (14)

then the force distributed to node i is

fi = αi f = αipA(P)n. (15)

Stacking all nodal pressure forces into a vector, we �nd that it can
be expressed as CTNp. As such, (6) with pressure forces factored
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in reads(
1
∆t

M + D + ∆tK

)
v =

1
∆t

Mv∗ − K(x − x0) +CTNp, (16)

where v∗ are solid nodal velocities prior to pressure projection.

5.3 Coupled System
Given the solid and �uid discretizations, we can proceed to assemble
our combined linear system. We note that (13) can be rearranged
into

∆t

ρ
GTAGp + NTCv = GTAu∗. (17)

Likewise, (16) can be equivalently written as(
1
∆t

M + D + ∆tK

)
v −CTNp =

1
∆t

Mv∗ − K(x − x0). (18)

Stacking these last two equations gives the linear system for our
novel coupled pressure projection scheme( ∆t

ρ GTAG NTC

CTN −

(
1
∆tM + D + ∆tK

) ) (
p
v

)
=

(
GTAu∗

− 1
∆tMv∗ + K(x − x0)

) (19)

which we solve for �uid pressures and solid velocities. This allows
us to simultaneously account for �uid incompressibility, solid inter-
nal forces, and the two-way interactions between these two entities.
(Note that the solid equations were negated to achieve symmetry.)

Following solution of the above system, the acquired pressure
vector is used to update the �uid velocities to be divergence-free as

u = u∗ −
∆t

ρ
Gp. (20)

6 POSITIVE-DEFINITE FORMULATION
The matrix associated with the linear system (16) for the corota-
tional solid dynamics is positive-de�nite, a fact that has been ex-
ploited in prior work (e.g. [Hecht et al. 2012]). While the negation
of the solid equations above allows us to obtain a symmetric system,
it also causes the principal sub-block corresponding to solid veloci-
ties to be negative-de�nite. Since (∆t/ρ)GTAG is positive-de�nite,
the overall coe�cient matrix for our pressure projection solve (19)
is only symmetric inde�nite. Although various methods tailored
towards such equations exist (e.g., MINRES or QMR, as discussed
by Robinson-Mosher et al. [2009; 2008]), it is generally more de-
sirable to work with symmetric positive-de�nite (SPD) systems.
Fortunately, the symmetric coe�cient matrix in (19) is endowed
with a special structure: the principal submatrix corresponding to
pressures is positive-de�nite, and the principal submatrix for solid
velocities is negative-de�nite and constructed as a weighted sum
of a sti�ness matrix and a diagonal mass matrix. We exploit these
facts in order to e�ciently convert the system into SPD form; our
method to do so is described below.

We begin by expressing the (negative) principal velocity subma-
trix as a sum of arbitrary symmetric positive-de�nite matrices Z1
and Z2:

1
∆t

M + D + ∆tK = Z1 + Z2. (21)

Then the second set of equations in (19) reads

CTNp − Z1v − Z2v = w, (22)

where we let w denote the right-hand side for convenience. This
equation is equivalent to

v = Z−11 (C
TNp − Z2v −w). (23)

Substituting this expression for v into the �rst set of equations from
(19) yields

∆t

ρ
GTAGp + NTCZ−11 (C

TNp − Z2v −w) = GTAu∗, (24)

which can be rearranged into(
∆t

ρ
GTAG + NTCZ−11 CTN

)
p − NTCZ−11 Z2v

= GTAu∗ + NTCZ−11 w.
(25)

Also, note that we can use (23) to derive

0 = Z2v − Z2v = Z2v − Z2Z−11 (C
TNp − Z2v −w), (26)

which is equivalent to

− Z2Z
−1
1 CTNp +

(
Z2 + Z2Z

−1
1 Z2

)
v = −Z2Z−11 w. (27)

Finally, combining (25) and (27) gives the following SPD system:(
A11 A12
A21 A22

) (
p
v

)
=

(
GTAu∗ + NTCZ−11 w

−Z2Z−11 w

)
, (28)

where w = −1/∆tMv∗ + K(x − x0) and

A11 =
∆t

ρ
GTAG + NTCZ−11 CTN ,

A12 = −N
TCZ−11 Z2,

A21 = −Z2Z
−1
1 CTN = AT12,

A22 = Z2 + Z2Z
−1
1 Z2.

(29)

Note that Z−11 appears extensively in (28); as such, it is ideal to
choose Z1 to be a diagonal matrix. Upon experimenting, we found
that letting Z1 be a multiple of the solid mass matrix provides
good results. Considering our use of Rayleigh damping and the
constraint thatZ2 be SPD, it is reasonable to setZ1 = σ (1/∆t+τm )M
(where τm is the mass damping coe�cient from (4)), for σ ∈ (0, 1);
we exclusively used σ = 0.9 to generate our simulations without
encountering numerical di�culties. This construction implies

Z2 =
1
∆t

M + D + ∆tK − Z1

=

(
1
∆t
+ τm

)
M + (∆t + τk )K − σ

(
1
∆t
+ τm

)
M

= (1 − σ )
(
1
∆t
+ τm

)
M + (∆t + τk )K .

(30)

It is fairly straightforward to establish that the transformed sys-
tem (28) is indeed SPD. To this end, take vectors p, v (at least one
of which is non-zero). Because (∆t/ρ)GTAG and Z2 are both SPD,
it can be concluded that

pT
(
∆t

ρ
GTAG

)
p + vTZ2v > 0. (31)
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Also, Z1 is SPD, so its inverse (which is necessarily SPD as well)
can be written as Z−11 = Y

TY for some matrix Y . Use of these facts
allows us to derive(

p
v

)T (
A11 A12
A21 A22

) (
p
v

)
= pT

(
∆t

ρ
GTAG

)
p + pTNTCZ−11 CTNp

− 2pNTCZ−11 Z2v + vTZ2v + vTZ2Z−11 Z2v

> pTNTCYTYCTNp − 2pNTCYTYZ2v

+ vTZ2YTYZ2v = ‖YCTNp − YZ2v‖2 ≥ 0,

(32)

as required.
Lastly, we note that the system (28) may su�er from poor condi-

tioning due to di�erent element magnitudes in the solid and �uid
blocks. We resolved this issue through rescaling; that is, we instead
solve the modi�ed system(

A11 αA12
αA21 α2A22

) (
p
1
α v

)
=

(
GTAu∗ + NTCZ−11 w
−αZ2Z−11 w

)
. (33)

Theoretically, any non-zero scaling factor α can be plugged into
the above system; however, certain values of this parameter may
in fact be detrimental. Using the termination condition for iterative
solvers as a guide, we propose a simple heuristic for choosing α
automatically. In particular, for a linear system Ax = b, an iterative
solver re�nes the current solution until the relative residual, ‖Ax −
b‖/‖b‖, falls below some speci�ed threshold. Writing the two parts
of (28) as A1x = b1 and A2x = b2, we can prevent either b1 or
b2 from dominating the denominator of residual error by scaling
them to be of roughly equal norm; this can be achieved by setting
α = ‖b1‖/‖b2‖. Choosing α in this manner ensures that both �uid
and solid dynamics equations are solved to comparable accuracy
by an iterative scheme. Alternatively, it is possible to use a static
value of α throughout a simulation. For instance, we found that
α = 0.001 worked quite well and used it exclusively for all our
experiments. However, this setting may need modi�cation if quite
di�erent material parameters are used.

While this transformation allows us to acquire an SPD system,
we have not yet considered whether doing so might signi�cantly
deteriorate sparsity and conditioning as a side-e�ect. Section 8 de-
scribes the results of several numerical experiments designed to
assess these properties. To summarize our �ndings, the transforma-
tion provides us with an SPD system at a permissibly modest cost
to sparsity and conditioning.

7 ALGORITHM OVERVIEW AND
IMPLEMENTATION DETAILS

This section describes the stages of a single simulation step, in the
order they occur, as outlined in Algorithm 1.

Solid Position Update. First, the solid nodes are moved with their
current velocities via forward Euler:

xn+1 = xn + ∆tvn . (34)

Once the nodal positions are updated, the invalidated corotational
sti�ness matrix must be reassembled by updating all elemental
rotations (see [Müller and Gross 2004] for details).

Algorithm 1 Algorithm Overview

1: while Simulating do
2: Update solid positions
3: Advect �uid particles and velocities
4: Apply external forces
5: Compute distance �elds and cut-cells
6: Perform coupled pressure projection
7: Extrapolate �uid velocities
8: end while

Fluid Advection. Fluid advection is comprised of two parts: par-
ticle advection and velocity advection. We use simple marker parti-
cles to track the �uid volume, so the former evolves the geometry of
the �uid, whereas the latter is called for by the governing dynamics
equations. Particle advection is performed according to the grid
velocities using a second-order explicit Runge-Kutta method with
trilinear interpolation. A basic semi-Lagrangian method is used to
advect the velocity �eld, with the same explicit integration scheme
to trace a sample’s trajectory backwards in time.

Application of Forces. Next, external forces are applied to both
the solid and the �uid. We considered only a constant gravitational
force, integrated using forward Euler.

Distance Field Computations. The fourth stage of a simulation
step involves various geometric operations that aid the subsequent
pressure projection solve. First, the liquid distance �eld is sampled
at cell centers of the MAC grid, using a simple union-of-spheres
approximation of the surface based on the particles. This step is
followed by calculation of the solid distance �eld, sampled at nodes
of the MAC grid. Lastly, the cut-cells are formed by intersecting
every solid surface triangle with the computational grid. For each
planar surface region intersecting a cell, we save the area, unit
normal (oriented into the solid), and barycentric representation of
its centroid.

Pressure Projection. The signed distance �elds are used to �rst
identify active pressure cells (a cell is marked active if it contains
some �uid and its center is inside either the �uid or solid regions).
For simplicity, solid MAC grid face areas are calculated with the help
of the solid’s signed distance �eld (a more geometrically faithful
approach would compute these based on the exact cut-cell geometry,
although we encountered no issues from this mild inconsistency).
To avoid conditioning problems, face area fractions below 0.01 are
clamped down to 0, and fractions above 0.99 are rounded up to 1,
as is common practice [Bridson 2015]. At this point, the SPD linear
system (33) is assembled and solved for �uid pressures and solid
velocities. Finally, the pressure values are used to update the �uid
velocities, in accordance with (20).

Our CPU-based C++ implementation uses Eigen [Guennebaud
et al. 2010] to handle linear algebra routines and OpenMP to fa-
cilitate simple loop parallelization throughout the code. The SPD
system is iteratively solved with the conjugate gradient method
aided by an incomplete Cholesky preconditioner, with convergence
tolerance on the relative residual set to 10−10.

Velocity Post-Processing. Successive advection steps will inevitably
query the �uid velocity �eld outside of the valid region computed
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Table 1: Table of simulation resolutions.

Simulation Grid Size Solid
Nodes Elements

Dam Break 100 × 100 × 100 725 2688
Buoyancy 100 × 100 × 100 481 2000

Compressibility 100 × 100 × 100 343 1296
Thin Solid 1 100 × 100 × 100 882 2400
Thin Solid 2 64 × 64 × 64 2450 6936

Fluid in Sphere 100 × 100 × 100 992 2948
Light Dino 100 × 100 × 100 1424 5920

Stability 35 × 35 × 35 189 480

during pressure projection; we use a simple constrained velocity ex-
trapolation approach to assign �uid grid velocities to these regions
[Houston et al. 2003; Rasmussen et al. 2004]. Due to truncation
error, �uid particles may still occasionally enter the solid and must
be projected back to the solid surface, but the aforementioned mod-
i�cation reduces such occurrences.

8 RESULTS
We conducted several experiments to test and demonstrate our
scheme’s e�cacy; the interested reader is referred to our supple-
mental video for a rendered collection of our test scenarios. All
visualizations were obtained by rendering our simulation data in
Houdini [Side E�ects Software 2017]. Table 1 contains simulation
resolutions for the described tests. Excluding the stability or con-
ditioning assessments discussed later, the average time per experi-
ment to carry out a single step of simulation ranged between 18 and
59 seconds; of that time, between 3.5 and 39 seconds were spent per-
forming pressure projection.1 In order to minimize the likelihood
of tunneling of liquid particles through solids from overly large
timesteps relative to the �uid velocity, we made use of substepping
within frames, leading to approximately 4.42 simulation steps per
animation frame on average.

Dam Break. Our �rst scenario consists of an initially vertical
column of liquid interacting with a dangling deformable beam
pinned at its top. Upon collapsing under gravity, the liquid collides
with the beam at which point two-way coupling e�ects can be
witnessed: the �uid’s motion is de�ected by the solid, and the beam
deforms as it is subjected to the accelerating liquid’s momentum.
After the initial violent interactions, the solid and the liquid settle
into a calmer rhythm, gently swaying in tandem.

Buoyancy Example. To demonstrate that our coupling method
correctly applies buoyancy forces, we conducted drop experiments
with solid balls of di�erent densities. The lightest solid is realistically
propelled out of the liquid body, while the heaviest one sinks rapidly
to the bottom of the pool. The neutrally buoyant ball (i.e., with rest
density equal to the �uid) can be observed to initially maintain its
path of motion, then more passively �ow with the �uid, and �nally
sink to the bottom as compression induced by liquid pressure gives
it a slightly higher density.
1Simulations were performed on a Linux machine (running Ubuntu 16.04) equipped
with 16 GB of RAM and AMD FX-8370E clocked at 3.3 GHz.

Figure 4: A volume of liquid falls onto and comes to rest atop
a deformable platform.

Solid Compressibility Example. In contrast to the Eulerian cou-
pling scheme of Teng et al. [2016], our formulation allows for simula-
tion of compressible solids without special treatment. To showcase
this feature, we simulated the expansion of an initially squished
cube submerged in a body of water. At the start, this solid is com-
pressed to an eighth of its rest volume; however, elastic forces cause
it to rapidly recover its original size. Furthermore, the initially com-
pact solid begins to sink slightly under the in�uence of gravity, only
to be pushed to the surface as expansion lowers its density.



An SPD Cut-Cell Method for Two-Way Fluid-Deformable Coupling SCA ’17, July 28-30, 2017, Los Angeles, CA, USA

Liquid Supported by Deformable Solid. Two di�erent scenes were
set up to illustrate that our method can capture interactions be-
tween �uids and deformable solids of modest thickness. For the
�rst scenario, a mass of �uid is dropped on an angled rectangular
elastic solid panel that is constrained along two of its sloped sides.
Upon contact, the �uid deforms the object as expected. Because
the solid is angled, the liquid then starts freely �owing down its
slope, showing that the free-slip condition is correctly applied at
the solid-�uid interface and no grid artefacts are present. As the
�uid �ows o� the object’s surface, the solid elastically rebounds
and gradually returns to equilibrium.

The second scenario consists of a mass of �uid being dropped on
a highly deformable horizontal platform. Rich two-way interactions
between the liquid and the solid can be observed: �uid �ow stretches
and distorts the platform, and, conversely, internal elastic forces of
the solid work to undo the induced deformations, further agitating
the �uid. As the system settles into equilibrium, the liquid collects
into a pool at the center of its deformable enclosure (see Figure 4).

Fluid in a Sphere. In this experiment, a ball of liquid with a high
initial velocity is placed inside a hollow deformable sphere. It can be
clearly observed that �uid interactions not only locally distort the
solid’s shape, but also a�ect the overall trajectory of the combined
system. In particular, the sphere is propelled to one side and bounces
o� a side wall as a result of the liquid’s motion within it (see Figure
5).

Light Dino. For our last animation example, we demonstrate
a somewhat more complex solid geometry in the form of a light
dinosaur-shaped toy (a standard Houdini model) being dropped
into a breaking column of water. Two-way interactions can again
be observed, with the water being de�ected by contact with the
solid and the motion of the water distinctly impacting the toy’s
trajectory. Figure 1 contains several frames from this animation.

SPD System Conditioning. To assess the e�ect of our SPD trans-
formation technique on conditioning and sparsity of the system, we
ran a few instances of our dam break experiment at di�erent grid
and mesh resolutions. The simulations were allowed to proceed
for 100 frames, and the relevant properties of coe�cient matrices
were computed and aggregated (condition numbers were estimated
using MATLAB’s condest function [Mathworks 2017]). Addition-
ally, time taken to solve the pressure projection system in Eigen
was recorded for each formulation (BiCGSTAB in conjunction with
an incomplete LU preconditioner [Saad 2003] was used to solve
the inde�nite system2). Our �ndings are summarized in Table 2.
The data reveals that the transformation results in a modest rise
in matrix density for our test case; in addition, the condition num-
ber sees a noticeable increase. (As another point of comparison, a
naïve approach to achieve a positive-de�nite system would be to
simply form the normal equations, but this has the signi�cantly
worse e�ect of squaring the condition number.) More importantly,
average convergence time for the pressure projection illustrates
the advantage of our SPD transformation: the inde�nite system

2We also attempted to solve the inde�nite system using MINRES with a block-based
preconditioner in the manner suggested by Robinson-Mosher et al. [2008], but in our
experiments this performed appreciably worse than ILU-preconditioned BiCGSTAB.
We therefore present the BiCGSTAB data as our baseline in Table 2.

generally takes longer to solve. Note also that despite being slightly
slower on the coarsest grid, the SPD system can be solved almost
twice as fast on the medium grid, and almost four times as fast on
the �nest grid. That is, the SPD formulation exhibits appreciably
better scaling with respect to simulation resolution.

Stability Assessment. The dam break experiment was also used
to gauge the e�ect of strong coupling on stability. To this end, we
simulated a low-resolution dam break using several pressure pro-
jection schemes: weak (alternating) coupling with the solid, strong
coupling with the solid’s damping only, and strong coupling of solid
damping and elasticity. In order to strain these methods, a sti� but
light deformable body was used along with high gravity and rela-
tively large time steps. As expected, the �rst method was unstable,
with the solid undergoing extreme distortion, and the simulation
eventually failing. While the simulation was able to complete when
only solid damping was coupled with pressure projection, results
obtained via this scheme were noticeably unrealistic; speci�cally,
since pressure projection is sequenced after elastic forces, pressure-
induced buoyancy inaccurately dominates and incorrectly pushes
the sti� solid to the surface. Our proposed fully coupled approach,
on the other hand, encountered no di�culties with this scenario.
Additionally, the fully coupled simulation was repeated with zero
damping force; once again, our formulation had no problems pro-
ducing the animation. This result is signi�cant, since the current
state-of-the-art method of Robinson-Mosher et al. [2009] simul-
taneously accounts for �uid pressure and solid damping (but not
elasticity) and, thus, requires the deformable object to be damped.

9 CONCLUSIONS
We have presented a novel approach to simulating two-way cou-
pling between �uids and deformable bodies. Compared to previous
solutions, our cut-cell method facilitates accurate free-slip bound-
ary condition enforcement at the true solid-�uid interface without
adding new degrees of freedom. Due to a fully implicit treatment
of solid dynamics as part of the pressure projection, our technique
also enjoys better stability properties. Additionally, an e�cient
SPD transformation scheme was introduced that allows us to con-
vert the symmetric inde�nite projection system into a form that is
appreciably faster to solve numerically.

We conclude by listing possible avenues for future research.
With respect to simulation of thin solids, it was established that our
method is capable of producing animations if the object’s thickness
is greater than a grid cell width or two. However, prevention of
�uid �ow through the solid is much more di�cult when it has a
very small or zero thickness (e.g., cloth); furthermore, di�erences
in pressure and velocity on opposite sides of the object must be
taken into account. We expect that our method could be combined
with the techniques proposed by Azevedo et al. [2016] to allow
for e�cient simulation of scenarios involving such thin solids or
shells. We assumed a simple isotropic linear elastic corotational
model that yields realistic results for many deformable objects,
but the dynamics of more complex materials cannot be adequately
captured with this approach. To properly treat nonlinear consti-
tutive models within our framework, a linearization of the solid
forces or a full nonlinear solve would likely be required. Improved
numerical linear algebra solvers tailored to our SPD system, such
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Figure 5: A volume of liquid moving within a thick-walled spherical shell a�ects its overall motion, forcing to collide with the
right wall and bounce.

Table 2: Comparison of coe�cient matrices for the inde�nite and SPD formulations (all entries in this table are averaged over
100 simulation steps).

Fluid Solid Nonzeros log10 of Condition Number Solve Time (s)
Grid Size Nodes Elements Inde�nite SPD Inde�nite SPD Inde�nite SPD

40 × 40 × 40 135 336 157498 185503 8.347 10.497 1.635 1.813
60 × 60 × 60 352 1134 499787 610697 8.579 11.311 16.121 8.292
80 × 80 × 80 725 2688 1177419 1439173 8.819 11.497 100.875 28.020

as multigrid schemes, could bene�t our timing results. To allow
the liquid to freely separate from solids, as originally proposed
by Batty et al. [2007], one could explore extending our method
with inequality boundary conditions leading to an LCP system.
Finally, we treated contact between the deformable solid and the
domain boundaries with a simple explicit correction; it could also
be valuable to incorporate implicit contact response into our system.
For con�gurations involving multiple deformable objects and com-
plex contact, we expect that this extension would further improve
stability and accuracy.
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