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I. 2D AND 4D CURVATURES

Figure 1 shows the strand configuration to illustrate the
curvatures in the Discrete Elastic Rod (DER) formulation [1,
2]. Given the two incident edges and two material frames
incident on a vertex, the associated 4D per-vertex material
curvature degrees of freedom k; = (K; 0, Ki 1, Kiz2, Ki3). are
defined in [1] (see Equation 2) as

kio = (kb)ld5 ™, (1)
Ki1 = —(kb)Fdi ™, 2)
Ki2 = (kb)] db, 3)
ki3 = —(rkb)] di, 4)

where (kb); denotes the curvature binormal on vertex 4 [1,
2], d¢ and d} are the first and second material frame (direc-
tor) vectors on edge ¢, respectively. Thus, we can interpret
these 4D curvature values k; as the per-vertex binormal
curvature (kb); evaluated on the four material frame vec-
tors (d}~',d5 !, dy,dj). By contrast, 2D curvatures k; =
(Kio,ki1)T are defined in [2] (see the equation preceding
Section 3.2) as

di—l _|_d’L
Ko = (Hb)?%v (5
di—l +dl
ki1 = —(kb)T 1#1 (6)

This computation can be interpreted as the binormal cur-

vature (kb), evaluated on the averaged material frames
di7'4di di'4dd
2 7 2
frames can be non-unit and non-orthogonal (e.g., when the
strand is twisted or flipped), the 2D curvatures [2] can fail to

correctly reflect the true curvatures of the strand.

) at the vertex. As the averaged material

II. GRADIENTS

In the following, we provide details on the gradient of the
objectives in DER.

A. Inertia

The gradient of the inertia objective is given by
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Fig. 1. Strand configuration for illustrating curvatures with three vertices (blue
circles) with positions x; 1, X;,X;+1 and two edges (cyan lines). Green and
red arrows represent material frames on the edges (di_l, d;_l, di, d%) The
purple arrow represents the curvature binormal (kb);.
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B. Stretching

The gradient of the stretching objective on edge ¢ is given
by

valEst,i(Xiv Xit1) = — Vi, Bt i (Xi; Xi+1) ®)
= soymr? (L1 — 1)ty )

where t; = =4~ denotes the unit tangent vector of edge 1.

C. Bending

The 11-dimensional gradient of the bending objective on
vertex ¢ [3] is given by

i), (10)
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where J,,; € R**1! denotes the Jacobian of x; with respect
— 3 —
to yi. Here, J%, (ki —Ri) = Y _o(Kij — Ri ;) VKi j, where

k; ; denotes the jth entry of k; [4, 5].

D. Bending
The 11-dimensional gradient of the twisting objective is
given by

sy mrd
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III. FORCES AND JACOBIANS

We provide details on the forces and Jacobians.



A. Inertia

Given the inertia force defined as fi, = —VF,(q) with
q = qf and ¢ = 0 for a static equilibrium case, we have
f;, = f.x and thus ‘B)af—i; =0 [3].

B. Stretching

We define the stretching force of edge ¢ on vertex ¢ 4 1
as fst,i,i+1 = —in+1ESt7i(xi,x,;+1) (9), and define fst,i,i
'imalogously. Given the dependence of fy ;i+1 and f ;; on
1, and «;, their Jacobians are

Oft i Ofit i =
ngiﬂ = — 8%1 = saﬂrrzlili 2t,, (12)
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i = —smr? (L1 ' — 1) t;. (13)
C. Bending

We define the bending force according to (10) by fi,.; =
—V Ehe,i(y:). Given its dependence on 1L 1,1, Rio,Ri1, and
(B; while respecting the constraints K;o = K;2 and K, =
Ri 3, the Jacobians are given (with j € {0,1}) by
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D. Twisting

We define the twisting force as fi ; = —VEiw.i(yi) (11).
Given its dependence on 1;_1,1;, m;, and =;, the Jacobians
are given by
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IV. BENDING WITH 2D VS. 4D CURVATURES

We compare bending formulations using 2D and 4D cur-
vatures to justify our choice of 4D curvatures, given that
our parameter optimization includes only two rest curvatures
per vertex. The analysis is conducted on a horizontal strand
discretized with 30 vertices.

A. 2D Curvatures with Averaged Material Frames [2]

In Figure 2, we compare a bending model with 4D curva-
tures [1] against a bending model with 2D curvatures [2] which
averages material frames to reduce curvature dimensions from
4D to 2D. We experiment with the horizontal strand without
and with its material frames flipped, and use cpe = 100,

While both models without frame flips yield equivalent
results, the 2D curvature model [2] fails to generate bending

forces when material frames are flipped because the averaged
material frames can be non-unit vectors (in this example,
averaged frames are zero vectors) [4]-[6]. By contrast, the
4D curvature model [1] correctly evaluates the bending even
with the flipped frames, producing results consistent with those
obtained without edge flips.

B. 2D Curvatures with Spherically Interpolated Material
Frames [6]

Figure 3 contrasts the bending model with 4D curvatures [1]
against another model [6] with 2D curvatures, which spheri-
cally interpolates (i.e., uses slerp) material frames to maintain
unit-size frames while reducing the curvature dimensions. We
use flipped frames and cp,, = 108, 10°.

While the slerped material frames, which retain unit length,
enable correct bending evaluation even with the flipped frames,
differentiating the slerped frames to compute bending forces
presents challenges. Consequently, their bending model [6]
resorts to approximated gradients (which did not prove suffi-
ciently accurate in our experiments) causing stability problems
with the Gauss-Newton Hessian approximation. By contrast,
the bending model of [1] is stable under the same settings.

V. COMPARISON WITH SINGLE STIFFNESS PARAMETER

In Figure 4, we evaluate the parameter optimization method
with the bending stiffness defined per strand and per vertex,
along with the naive initialization. In this evaluation, we use a
horizontal strand discretized with 30 vertices and cp. = 10°.
With the single parameter for the strand, we first optimize the
material stiffness (so that rest shape optimization is sufficient
to achieve static equilibrium) and then perform rest shape
optimization [3].

With the single stiffness parameter for the strand, it is
necessary to stiffen the entire strand and reach around 4.5x
higher than the initial bending stiffness. Consequently, the
generated behaviors of the strand appear stiffer than expected
with the given initial stiffness. By contrast, our method stiffens
only at the root end (reaching the 4.5x higher stiffness) to
achieve static equilibrium and thus generates strand behaviors
expected with the initially specified parameters at the tail end.
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Fig. 2. Comparison of two bending models with a horizontal strand without and with flipped material frames. (a) 2D curvatures. (b) 2D curvatures with
flipped frames. (c) 4D curvatures. (d) 4D curvatures with flipped frames. The bending model with 2D and 4D curvatures without frame flips can correctly
evaluate bending and generate natural strand behaviors ((a) and (c)). With the flipped frames, the 2D curvature bending model fails to generate bending forces
(b), whereas the 4D curvature bending model correctly handles the bending, generating the expected result (d).
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Fig. 3. Comparison of two bending models with a horizontal strand. 2D curvatures with slerp and cp. = 108 (a) and cpe = 109 (b). 4D curvatures with
Che = 108 (¢) and cpe = 10° (d). While spherical interpolation enables correct evaluation of bending even with the flipped frames (b), approximated
gradients can lead to stability problems (a). By contrast, the bending model with 4D curvatures generates natural strand behaviors ((c) and (d)).



(a) Naive initialization

(b) Single stiffness parameter

(c) Multiple stiffness parameters (ours)

Fig. 4. A horizontal strand with its root perturbed vertically. White and
green vertices represent low and high material stiffness for bending, while
the black represents the undefined stiffness. The naive initialization fails to
achieve static equilibrium while generating expected strand behaviors with
the specified material stiffness (a). With a single stiffness parameter, while
static equilibrium is achieved, the stiffness of the strand needs to be high for
the tail end, giving the strand behaviors that appear stiffer than expected (b).
Our method achieves static equilibrium while minimizing the stiffening of
the strand and thus generating expected strand behaviors with the specified
material stiffness (c).



