Optimizing Parameters for Static Equilibrium of
Discrete Elastic Rods with Active-Set Cholesky

Tetsuya Takahashi and Christopher Batty

Abstract—We propose a parameter optimization method for
achieving static equilibrium of discrete elastic rods. Our method
simultaneously optimizes material stiffness and rest shape pa-
rameters under box constraints to exactly enforce zero net forces
while avoiding stability issues and violations of physical laws.
For efficiency, we split our constrained optimization problem
into primal and dual subproblems via the augmented Lagrangian
method, while handling the dual maximization subproblem via
simple vector updates. To efficiently solve the box-constrained
primal minimization subproblem, we propose a new active-
set Cholesky preconditioner for variants of conjugate gradient
solvers with active sets. Our method surpasses prior work in
generality, robustness, and speed.

Index Terms—Parameter optimization, hair simulation, inverse
problem, active-set method

I. INTRODUCTION

When modeling deformable objects or fabricating elastic
materials, sagging under external forces, such as gravity and
applied loads, can ruin specific shapes carefully designed by
artists and designers or captured from real world counterparts.
This sagging problem arises because the external forces are
often implicitly considered during modeling but simulators
typically neglect it during initialization [1]-[S]. To prevent
this issue, we aim to achieve static equilibrium of the objects
preserving their original shapes at initialization. While stiff-
ening materials can reduce the sagging, it alters the dynamic
response of the elastic material. Alternatively, modifying rest
shape parameters can achieve static equilibrium, though sub-
stantial rest shape changes can introduce stability problems or
increase the likelihood of undesirable rest configurations [S].

In this paper, we focus on elastic objects with one-
dimensional structures (e.g., hair, cables, strands, etc.). We
employ discrete elastic rods (DER) [6, 7] for strand simulation
due to their generality, flexibility, and efficiency, as adopted
in various applications with forward simulations [8]-[11] and
inverse problems [2, 12]-[14].

To address the sagging problem, we propose a new pa-
rameter optimization method that is guaranteed (at solver
convergence) to achieve static equilibrium of DER-based
strands. Our method simultaneously optimizes rest shape and
material stiffness parameters while minimizing changes in the
parameters and satisfying their corresponding box constraints;
the latter are imposed to avoid violating physical laws or in-
troducing stability issues in forward simulation. We formulate
our problem as a constrained minimization and decompose

Tetsuya Takahashi is with Tencent America, USA; Christopher Batty is
with University of Waterloo, Canada

it into primal and dual subproblems via the augmented La-
grangian method (ALM) [15], addressing the primal minimiza-
tion subproblem with a Newton-type optimizer and the dual
maximization subproblem via vector updates. To efficiently
and accurately handle the primal subproblem, we take the
box constraints into account and solve the symmetric positive
definite (SPD) inner systems using a variant of conjugate
gradient (CG) with active sets, modified proportioning with
reduced gradient projections (MPRGP) [16]. Additionally, we
propose a new preconditioner based on a Cholesky-based
direct solver with active sets to accelerate the convergence
of MPRGP. Figure 1 shows our method in action.

II. RELATED WORK
A. Elastic Rod Simulation

To capture bending and twisting of one-dimensional elastic
strand structures, Pai [17] introduced the Cosserat theory into
graphics, which was later extended to dynamical systems [18].
The Cosserat theory has since been adopted within position-
based dynamics [19] and further extended with quaternions [4,
20], volume constraints [21], and projective dynamics [22].
Instead of evolving edge rotations, Shi et al. [23] proposed
using a volume-like torsion energy to capture twisting effects.
Curvature-based approaches were also presented to capture
elastic rod dynamics with a smaller number of degrees of free-
dom (DOF) [24, 25]. From the various methods for simulating
elastic strands, we selected DER [6, 7] because it can handle
general bending and twisting cases with few DOFs.

B. Sag-Free Simulation

To achieve sag-free simulations (or equivalently, static equi-
librium), one common approach is to enforce zero net forces
in the dynamical system. Hadap [26] proposed using inverse
dynamics to solve nonlinear force equations for reduced multi-
body systems, although such methods may not necessarily
be applicable to general maximal coordinate systems (e.g.,
finite-element-method-based deformables and DER). To solve
nonlinear force equations, the asymptotic numerical method
(ANM) was employed, achieving faster convergence compared
to Newton-type optimizers [27, 28], although it remains un-
clear how to incorporate box constraints, which help prevent
stability problems and violations of physical laws. Curvature-
based solvers have also been employed, since they need fewer
DOFs to represent elastic rod dynamics. Derouet-Jourdan et
al. [29] presented a method for achieving static equilibrium of
curvature-based elastic strands [24] and extended their work
with frictional contacts [30]. The curvature-based formulations

Fig. 1.

Our method optimizes material stiffness and rest shape parameters to achieve static equilibrium for DER-based strands. It preserves the original

hairstyle without sagging, demonstrates natural dynamic strand behaviors in response to prescribed motions of the root vertices, and eventually restores the
strands to their initial configuration. Our parameter optimization required 713 seconds for 3.2k strands; forward simulation without collision handling took

25 seconds per frame.

have extensively been used for inverse problems to model,
design, and fabricate elastic rods [31]-[34].

To achieve static equilibrium in more general contexts,
Twigg and Kaci¢-Alesi¢ proposed minimizing the force norm
by optimizing rest shape parameters in mass-spring systems
consisting of one-dimensional elements [1]. Takahashi and
Batty extended their approach to DER [5] and proposed
optimizing the rest length, rest curvature, and rest twist pa-
rameters while penalizing the force norm in the kinetic energy
metric. However, this approach would fail to achieve static
equilibrium because fully optimized rest shape parameters
alone could still be insufficient to achieve zero net forces. Sag-
free DER simulations have been attempted in other previous
work as well [10, 35], albeit without offering formulation
and algorithmic specifics. Rest shape optimization has also
been applied to two-dimensional sheet-like structures [36]
and three-dimensional deformable volumes [37, 38]. To en-
force zero-net-force constraints, adjoint methods have been
extensively used [2, 12, 39]. While this approach can be
efficient and can ensure stable local minima by examining
the Hessian of the DER objectives, handling the full Hessian
due to differentiation of nonlinear force constraints can be
complicated [9, 12]. Given that DER Hessian treatments are
the subject of ongoing study [12, 23], we formulate our
problem without explicitly incorporating the Hessian into the
parameter optimization. While finite differences could bypass
this complexity [40], they are known to be significantly slower
than optimization with analytical gradients [15].

As an alternative, Hsu et al. [3, 4] proposed a global-
local initialization method that first computes global forces to
achieve static equilibrium and then adjusts local elements to
generate such forces. However, this approach would require
excessive stiffening of materials and is applicable only to
specific simulation approaches that can locally define forces
without coupling neighboring elements. As such, the global-
local initialization is not applicable to DER [5].

C. Preconditioning with Active Sets

Preconditioners have been extensively used to reduce the
number of necessary iterations for iterative solvers, such as
CG. Preconditioners are also applicable and effective for
variants of CG with an active-set method, e.g., MPRGP (which
updates active sets in each iteration to find their optimal sets
and solution) [16], by taking active sets into account during
the preconditioning.

While Narain et al. [41] used modified incomplete Cholesky
(MIC) preconditioning [42] for MPRGP, the derivations and
rationale behind their approach are not explained, and it is
not necessarily clear from their publicly available source code
how to adapt it to support variants of Cholesky solvers (e.g.,
LDLT-type decomposition with 2 x 2 diagonal blocks [43]).
Recently, Takahashi and Batty [44] proposed a smoothed
aggregation algebraic multigrid (SAAMG) preconditioner for
MPRGP, using an SPAI-0 smoother [45] with active sets
(which can easily be modified to a diagonal, weighted Jacobi,
or symmetric Gauss-Seidel (SGS) smoother/preconditioner).
However, their focus is on systems with M-matrices, and thus
the effectiveness of their preconditioning on non-M-matrices,
such as those in our formulation, remains unverified.

III. CONTRIBUTIONS

We propose optimizing both the material stiffness and rest
shape parameters simultaneously while enforcing zero net
forces as a hard constraint via ALM to ensure the static
equilibrium of DER-based strands at solver convergence. To
reduce the optimization cost, we propose two techniques. First,
we arrange the optimization parameters in an interleaved way
to yield a banded system by leveraging the one-dimensional
strand structure. This arrangement eliminates the need for
matrix reordering in Cholesky-based solvers. Second, given
the overlapping force spaces with 4D curvatures in the bending
formulation [6, 9], we consider only two rest curvature vari-
ables per vertex in the optimization, reducing the DOF count
and improving efficiency. Moreover, instead of using penalty-
based methods [5], we employ an active-set-based iterative
solver, MPRGP [16], to enforce the box constraints precisely.
We also propose a new active-set Cholesky preconditioner
to accelerate the convergence of MPRGP. Because of these
improvements, our method can more robustly and efficiently
achieve static equilibrium of DER-based strands.

IV. DISCRETE ELASTIC RODS PRELIMINARIES

For completeness, we briefly summarize key details of
the DER formulation [6, 7] before explaining our parameter
optimization method (Sec. V) and active-set Cholesky precon-
ditioner (Sec. VI-A). In our framework, we exclude contacts
(as our goal is to achieve static equilibrium which introduces
no contacts if none exist at initialization) and thus process
each strand independently, focusing on a single strand below.

Given a strand discretized into N vertices with positions
x=[x¢,...,x5k_1J7 € R3" and N — 1 edges with angles

0 = [0o,...,0n_2]7 € RNL, the generalized positions
can be defined by interleaving vertex and edge variables as
q=[x3,00,...,08_2,x%_;]T € R*N~L This arrangement
leads to a banded Hessian due to the locally defined DER
objectives and time-parallel transport [7]. For simplicity, we
assume a strand with a perfectly circular cross-section and
uniform radius r. The root end of the strand is minimally
clamped, fixing xg, 8y, and x;, which yields 4N — 8 active
DOFs [5]. For more details, we refer to a book on DER [46].

We define a minimization problem for a forward simulation
step with a DER objective F(q) [5] as q = argmin, F(q),
where E(q) = Ein(q) + Est(q) + Ebe(a) + Eiw(q), and
Ein(q), Est(q), Eve(q), and Eiy, (q) represent inertia, stretch-
ing, bending, and twisting objectives, respectively. We define
these objectives in the following sections and provide their
gradient in the supplementary material.

A. Inertia

We define the inertia objective as follows:

1 * 12
Ein(q) = AR la—q*u - (D

where q* = gt + Atq? + A?2M~f., qf and ¢' denote the
generalized positions and velocities at time ¢, respectively, At
the time step size, M a diagonal generalized mass matrix [7,
46], and £, generalized external forces. While we set gravity
as the only external force, one could specify spatially varying
external loads and winds (even on edge angles) [5].

B. Stretching

We define the stretching objective [7] as Eg(q) =
27{\;_12 Est,i(xi7 Xi+1), where Estﬂ’(xzﬁ Xi+1) iS given by
2
Egti(Xi, Xig1) = % (saiﬂr > (L —L)?, 2
l;
with s denoting a global constant scalar (defined in Sec. V-A)
that scales stiffness parameters, ; as the stiffness parameter
for stretching on edge ¢ (we use different stiffness parameters
for stretching, bending, and twisting to enable finer control [5,
47], unlike [7] which uses only Young’s and shear modulus),
1; = ||xi+1 — ||, representing the length of edge i, and 1; as
its rest length.

C. Bending

We define the bending objective [6, 9] as Enc(q) =
211\512 FEhe,i(yi), where Eye ;(y;) is given by

1 sB,mrd _
&) ;= Rills, 3

Eyvei(yi) =5 | /==
b (¥1) 2(4(1i1+li)

and y; = (x_1,0;—1,x],0;,x],,)" € R, 3, denotes the
bending stiffness at vertex ¢, and x; and K; are the four-
dimensional curvature and rest curvature, respectively [6, 9].
We use the formulation with four-dimensional curvatures and
rest curvatures [6, 9] because a simplified bending formulation
with two-dimensional curvatures and rest curvatures via aver-
aged material frames [7] is known to fail to evaluate strand
bending correctly due to the non-unit and non-orthogonal
averaged material frames [12, 48]. We provide more details
on these bending formulations in the supplementary material.

D. Twisting
We define the twisting objective [7, 46] as FEiy(q) =

ZZV:_IQ Eiw.i(yi), where Ey, ;(y;) is given by

1 (sy, mrt
(

Ewi i) = 5 = =
tw,i (Y1) 2 @ +1)

with ~y, representing the twisting stiffness parameter, and m;
and m, the twist (including the reference twist [7, 46, 49])
and rest twist, respectively.

) (m; — Iflz')Q, 4

V. PARAMETER OPTIMIZATION

Our goal is, at the initialization stage, to find a set of optimal
rest shape and material stiffness parameters which achieve
static equilibrium of the strands. Letting p be the optimization
variable (to be detailed in Sec. V-A), our parameter optimiza-
tion task is formulated as a constrained minimization problem:
arg min R(p), R(p) = % Ip—Pollw > 5
Pmin <P<Pmax,c(p)=0

p:

where pmin and pmax denote the box constraints (lower and
upper bounds for p, respectively) to ensure compliance with
physical laws and limit significant parameter changes [5], and
c(p) (defined in Sec. V-C) is a nonlinear hard constraint to
enforce zero net forces. We define py as the initial value
for p before optimization, and R(p) acts as a regularizer to
minimize the deviation of p from py with a diagonal weight
matrix W. We aim to solve (5) using ALM and a Newton-type
optimizer (see Algorithm 1 in Sec. V-F for the procedure).

A. Optimization Variable

We simultaneously optimize parameters of the rest shape
(,%,m) and material stiffness (c,3,7) to achieve static
equilibrium of an elastic strand. To improve robustness and
efficiency, we use the following approaches to define the
optimization variable p.

Variable Scaling. While one typically specifies stiffness
coefficients directly as cg (= sat), cpe(= s0), and ¢y (= $7),
we instead optimize «, 3, and =y. This approach addresses the
significant scale differences between the stiffness coefficients
(Cst» Che, Ctw on the order of 107 [7, 46]) and rest shape pa-
rameters (1, &, m up to 10), enabling stable convergence of nu-
merical optimizers and mitigating numerical issues. To ensure
similar value scales, we initialize the stiffness scaling constant
sas s = m va:f(cst,rFCbe,i—i-ctw,i), and subsequently
set @ = Cgt/5, B = Che/S, and ¥ = ¢ty /s. While equivalent
formulations could be derived through proper scaling of (5)
and (6), our change of variables ensures consistent scales in
the Jacobians (see the supplementary material), thus avoiding
catastrophic cancellation and enhancing numerical stability. In
practice, we found that parameter optimization without this
change of variables fails to achieve static equilibrium.

Variable Interleaving. Exploiting the one-dimensional
structure and locally defined DER objectives of strands, we
interleave the rest shape and stiffness parameters to ensure
banded inner linear systems (which can be solved with fewer
fill-ins via Cholesky-based direct solvers) within Newton-type
optimizers, similar to the approach used in forward simulations

[7]. Note that we exclude 1y on the fixed edge from the
parameter optimization [5].

Reduced Rest Curvatures. Furthermore, we optimize only
two rest curvature DOFs per vertex, K;o and K; i, while
excluding K; 2 and K; 3, in contrast to previous work [5]. This
choice stems from the association of K;o and K;2 with the
second material frame, while K;; and K; 3 relate to the first
[6]. Their overlapping force spaces lead to similar final values
for K; ¢ and K; » without expanding the force spaces necessary
to achieve static equilibrium, while including K; 2 and K; 3
would increase the optimization cost due to the additional
DOFs. In practice, we synchronize these variables by setting
Ki;2 = K;p and K;3 = K;1 whenever K;o and K; are
updated. This approach effectively reduces the dimensionality
of the rest curvature from 4D to 2D; however, we still use 4D
rest curvatures in (3) to ensure the same dimensionality for
curvature K and rest curvature K.

Based on these choices, we define the optimization variable
for the parameters as p = (K10, 1.1, 31, M1,71, L1, @1, . . .,
RN—-20, RN-21,BN_2 MN_2,YN_2 IN—2, an_2)T €
R7N-14 " The subset corresponding to the rest shape
parameters consists of 4N — 8 DOFs, which matches the
number of active DOFs for the generalized positions q. Any
set of rest shape parameter values can exactly be converted
into any corresponding set of generalized positions (and vice
versa), and thus either representation could (potentially) be
optimized for. We choose to use the rest shape parameters in
the optimization because this approach offers more precise
control over the magnitude of forces via the box constraints,
and makes the Jacobians of the generalized forces with
respect to the rest shape parameters much simpler [5].

B. Augmented Lagrangian Method

To handle the nonlinear constraints ¢(p) = 0 in (5), we use
ALM [15, 36] and define an augmented Lagrangian objective
with a Lagrange multiplier A and a penalty parameter p (> 0):

p
L(p,A) = R(p) — ATc(p) + B le(®)]f3 - (6)
We then reformulate the parameter optimization (5) as

argmin argmax L(p, A), @)
Pmin SP<Pmax A

pP,A=

which we optimize by iteratively solving primal and dual
subproblems [15]. The primal minimization subproblem, with
fixed A* for iteration index k (initialized with A° = 0), is
defined as

k+1

pFtl = L(p, \"), (8)

arg min
Pmin SP<Pmax

while the dual maximization subproblem can be solved via a
simple vector update:

Ak"rl — Ak _ pc(karl). (9)

Thus, efficiently solving the primal subproblem (8) is crucial
for fast parameter optimization.

C. Zero Net Force Constraints

Given the total force due to the DER objectives, represented
as f(p) = —VE(q), it seems natural to define c(p) = f(p)
to enforce zero net forces. However, in this case, the term
2 |lc(p)||> in (6) becomes equivalent to a quadratic penalty
2 2
on the total force, which is numerically ill-conditioned and
fails to correctly account for the force contributions within the
system [5]. To avoid these issues, we penalize the generalized
forces in the kinetic energy metric [5] and define c(p) as

c(p) = M 2£(p). (10)
Consequently, L(p,A) in (6) can be rewritten as

L(p,A) = R(p) = A"M 3 (p) + L)} - (1D

This objective (11) is numerically equivalent to the formulation
proposed by Takahashi and Batty [5] when considering only
the rest shape parameters (excluding stiffness parameters) and
setting A = 0. Thus, their formulation, which treats c(p) as
a soft constraint, can be regarded as a subset of ours. In the
following, we assume At = 1 to simplify the formulations
without affecting the optimization results [5].

D. Box Constraints

We impose box constraints on the optimization parameters
to prevent stability problems (in forward simulation) which
can be caused by too significant changes in the parameter
values. Specifically, we define L, <1 < 1., (except for o),
Kmin S K S Kmax> Mupin S m S Mpax, Xmin S « S Qmax,
ﬁmin < ﬁ < IBmaX’ and Y min < vy < Ymax- Unlike the
penalty-based approach [5], which requires safety margins to
mitigate the risk of violating physical laws (e.g., negative rest
lengths and material parameters), we handle box constraints
precisely using MPRGP [16]. Consequently, we set lower and
upper bounds for 1 «a, B, and ~ as

1min =€, lmax = 00, Opin = €, Qmpax = 00, (12)
16n11n =€ lﬁmax = 00, ’Ymin =€ ’Ymax = 00, (13)
where € denotes a small positive value (we set e = 10710).

While we set the upper bounds of stiffness parameters to co
to ensure that static equilibrium is achievable [3, 29], finite
values can be used if one prefers to avoid excessively stiff
materials that may compromise static equilibrium.

We set the lower/upper bounds for £ and m as

(14)
15)

where Ky and mg denote the initial rest curvature and rest
twist (before parameter optimization), respectively, o and 7 the
allowed change for rest curvature and rest twist, respectively,
and ey and e, vectors of all ones with the same dimensions
as Kk and m, respectively. The stable range of K (i.e., which
does not cause stability problems in forward simulations)
and thus p can vary depending on simulation settings (e.g.,
strand geometry and material stiffness) [5]; we use p© = 1 by
default based on our experiments. Additionally, since changes
in rest twist are typically much smaller than those in the rest
curvature, we set 7 = u/4 to reduce the number of tunable
parameters.

Rmin - RO — H€he, Rmax = RO + Hehe,

ITlmin = IT’10 — Netw, rYlmax - IT’10 + Netw,

E. Newton-based Box-Constrained Optimization

We solve the primal, box-constrained nonlinear minimiza-
tion subproblem (8) using a Newton-type optimizer. While one
could approximate the box constraints with a penalty objective
to ensure fully unconstrained inner linear systems [5], penalty
methods often require tedious parameter tuning to achieve
acceptable results [15]. Even with carefully tuned parameters,
these methods may lead to compromises that violate box
constraints. Therefore, instead of relying on penalty meth-
ods, we incorporate box constraints directly when computing
the Newton directions, which is equivalent to solving box-
constrained quadratic programs (BCQPs) [50].

The Newton direction Ap at k+1 iteration can be computed
by solving the following BCQP:

Apk+1 —
ApF

min

1 ,
F(Ap) = SAp"V2L(p")Ap + Ap" VL(p", A"), (17)

F(Ap), (16)

arg min
<Ap<APf.x

where Ap¥. and Ap¥ . denote lower and upper bounds for
Ap, respectively. We omit ¥ in the argument of V2L(p) as
it is independent of AF (19). Assuming the ideal step length
of one [15], we have pumin < P*™" = p* + Ap**! < pax,
giving Ap¥. = pumin — P* and ApF . = pmax — P [50].

Given the augmented Lagrangian objective (11), we can
compute its gradient as

VL(p,A¥) = VR(p) — ITM 2 A" + pJTM~'f(p), (18)

where VR(p) = W(p — po), and we denote the Jacobian of
f(p) with respect to p by J (: %(pp)) € RUN-8)x(TN—14)
(details are given in the supplementary material). Note that we
treat M (which is computed with the initial rest length 1 [7,
46]) as constant, as M is introduced and intended to properly
scale the generalized forces (see (10)) [5].

Since the generalized forces are linear with respect to the
rest curvature, rest twist, and stiffness parameters, the second
order derivatives with respect to these parameters are zero.
While the second order derivatives with respect to 1 are non-
zero, these components would be projected to zero to ensure
SPD inner systems and valid Newton descent directions [15].
In addition, the change in 1 during the parameter optimization
is typically small for less extensible strands, i.e., 1 can be
close to constant. Thus, using the exact Hessian with SPD
projections does not have discernible benefits while increasing
the implementation complexity and computational cost due
to the involvement of third order tensors, as demonstrated
and discussed in [5]. Therefore, we ignore the second order
derivatives with respect to 1 and approximate the Hessian in a
Gauss-Newton style (excluding A from arguments) by

V2L(p) = W + pJTM~1J. (19)
As this approximated Hessian is guaranteed to be SPD, we can
solve the convex BCQP (16) using MPRGP [16], accelerated
with our active-set Cholesky preconditioner (see Sec. VI).

F. Algorithm and Implementation

Algorithm 1 outlines our parameter optimization method.
To accelerate convergence and reduce the risk of converging
to undesirable local minima, we use warm starting. We set
p = 10°, and use 103 and 10° for the stiffness and rest shape
parts of diagonals in W, respectively, so that we prioritize
achieving (in order) zero net forces, small changes in the
stiffness parameters, and then in rest shape parameters. We
perform a single Newton iteration to solve our primal BCQP
subproblem (8) as it serves as an inner problem within (7). To
guarantee a decrease in the objective, we implement a back-
tracking line search [15]. The iterations are terminated when
| Ap||, falls below a threshold €, (= 10~%) or iteration count
exceeds kmax (= 100). In addition, we can also terminate the
solver iterations to prevent infinite loops if we cannot make
any progress with the backtracking line search (although our
method did not experience this case in our examples).

Algorithm 1 Parameter Optimization
1: Initialize generalized positions q, radius 7, stiffness coef-
ficients cgt, Cpe, Ctw, length 1, rest length 1, generalized
mass matrix M, unit tangent vector t, reference and
material frames, curvature k, rest curvature K, twist m,
rest twist m, stiffness scaling s, and material stiffness
parameters «, 3, vy, penalty parameter p, weight matrix
W, Lagrange multiplier A¥ = 0, iteration index k = 0
Set pp = p and compute Ppin and Pmax
do
Compute box constraints Ap*. and Apk .
Compute VL(p¥, A\¥), V2L (p*) with (18) and (19)
Solve V2L(p*)Ap*t! = —VL(p*, A¥) with ApF .
7. Update to p**! using backtracking line search with (11)
and synchronization for K
8: Update Lagrange multipliers with (9)
9 k=k+1
10: while €, < ||Apk+1||2 and k < kmax

AN A R

VI. BOX-CONSTRAINED QUADRATIC PROGRAM SOLVER

Box constraints are a specific type of inequality constraint
that can be handled efficiently through active-set methods,
without relying on barriers or penalties [15]. Since our BC-
QPs arise as primal subproblems (8) within the constrained
nonlinear minimization (7), we opt to solve them with a
prescribed level of accuracy suitable for inexact Newton-
like methods. This approach enables us to conserve com-
putational resources by avoiding unnecessary precision [15].
Thus, instead of employing direct solvers with active sets
(e.g., Lemke’s method or Dantzig’s simplex algorithm), we
prefer iterative methods that permit early termination. Given
the stiff yet SPD inner systems, we employ MPRGP [16]
and propose an effective new preconditioner based on full
Cholesky factorization and triangular solves with active sets,
utilizing the banded system structures. We refer to this scheme
as active-set Cholesky (ASC) preconditioning. Notably, since
the Cholesky-based approach precisely solves a linear system,

Cholesky-preconditioned MPRGP (or CG) finds a solution in
just one iteration when no box constraints are activated.

A. Active-Set Cholesky Preconditioning

Consider minimizing a quadratic objective %XTAX)
and corresponding linear system Ax = b. The associated
linear preconditioning system can be expressed as Az = r,
where z and r are vectors corresponding to x and b, respec-
tively. Adopting an active set a that indicates whether x is
limited or not (i.e., with an index i, a; = 1 or a; = —1 if
x; is limited by its lower or upper bound, respectively, and
a; = 0 otherwise) [44], we can define a diagonal selection
matrix S with S;; = 1 —|a;|, which can also be interpreted as
a filtering matrix. Given z, and z. that denote unconstrained
and constrained parts of z, respectively, we need to solve the
preconditioning system for z, while enforcing z. = 0 [44].
The preconditioning system can be rewritten (incorporating the
necessary constraints [51]) as (SAST +I—S)z = Sr, or given
equivalently (by splitting it for z,, and z..) as SuAsgzu =S,r
and z. = 0, where S,, denotes a matrix consisting of S’s rows
associated with the unconstrained variables.

1) Problems with Naive Application of Cholesky Solver:
While one approach to solving these preconditioning systems
is to reassemble (SAST + I —S) or S,AST and factorize
it using Cholesky decomposition, this procedure is costly
because active sets can change in each MPRGP iteration [44],
and thus it is ideal to perform Cholesky decomposition only
once and reuse its resulting factor.

We consider Cholesky factorization A = LL”? (where L
is a lower triangular matrix). While its naive substitution to
(SAST +1 - S)z = Sr gives (SLLTST +1 - S)z = Sr,
triangular solves are inapplicable to this form. Similarly, while
SuAszu = S,r can be transformed into SuLLTSZzu =
S,r, we cannot perform triangular solves with S, Ly = S, r
and LTST'z, =y since S, L is generally not square. Another
attempt is to solve SASTz = Sr (and thus SLL7S”z = Sr)
while enforcing z. = 0 (e.g., by setting z. to zero during
the triangular solves). With this form, the forward substitution
SLy = Sr can be written in the elementwise notation as

yi = s“ri_sgnszfi L% and back substitution L7STz = y
as z; = M . However, this approach still has two
problems. F1rst S“ = 0 for constrained variables, rendering
these operations infeasible. Second, the forward and back sub-
stitution are asymmetric, violating the symmetry requirement
for preconditioning in symmetric Krylov iterative solvers, such
as CG and MPRGP [52].

2) Our Preconditioning: Considering the equivalence be-
tween forward/back substitution and forward/backward GS
applied to lower/upper triangular matrices, we can interpret
triangular solves as SGS. Thus, instead of directly filtering
the system matrix A with S, we perform the filtering in
SGS to solve a system equivalent to the filtered precondi-
tioning system. Given the elementwise form of forward GS,
yvi=(r; — Zj<i L;;y;)/Li;, we can filter this operation with
S while ensuring symmetry by

Vi = (Siri — Sy Z S;;iLijy;)/Lii.

j<i

(20)

Similarly, given z; = (y; — >_;-; Ljiz;)/Ly; for backward
GS, we add filtering to obtain

z; = (Siyi — Sii Z S;jLjiz;)/ Lii.

j>i

2n

Note that it is unnecessary to filter the denominator L;;
in (20) and (21) because y and z are properly filtered in
the numerator. Our filtered SGS preserves the symmetry of
operations required for preconditioning of CG/MPRGP [52],
and can be rewritten in the block form as (D + SLST)y Sr
and (D + STLTS)Z = Sy, respectively, where L = D + L,
and D and L denote the diagonal and strictly lower parts of
L, respectively. Note that while (20) and (21) are equivalent
to SGS (except for filtering), our L arises from Cholesky
factorization, in contrast to the strictly lower triangular matrix
L from the traditional SGS (where A =D + L + L7, and D
is the diagonal part of A). Additionally, while it is typical to
initialize y = 0 and z = 0 in GS-type preconditioning [52],
our scheme does not require such initialization because (20)
and (21) directly overwrite y and z.

In practice, we prefer sqrt-free Cholesky factorization A =
LDL”, where L is unit lower triangular (for clarity, we
redefine L here), and D is diagonal. This approach can detect
negative pivots (to clamp them for robustness) and avoid sqrt
operations for efficiency [47]. The triangular solve proceeds
as Lw = r, Dy = w, and L7z = y. By merging the forward
substitution and diagonal scaling (which preserves symmetry)
and skipping unnecessary computations (e.g., multiplications
with S;; and L;;(= 1), and scanning rows in L), we have
forward and backward operations for y and z, respectively, as

o= 2250855 Ly5) /D Si #0, 27
yi = . (22)
0 otherwise,

) yi— 255855 lhiz Su #0, 3
7; = , (23)

0 otherwise.

B. Active-Set Incomplete Cholesky Preconditioning

Our preconditioning strategy utilizing active sets can also
be applied to IC preconditioning. Notably, when the system
is banded and fully populated within the band, Cholesky and
IC factorization are equivalent, making their preconditioning
(even with active sets) identical.

In our parameter optimization, while the system is banded,
it is not entirely filled because, e.g., optimization variables for
rest curvatures and stretching stiffness are not coupled (i.e.,
the Hessian (19) lacks off-diagonal elements relating them).
Cholesky decomposition is guaranteed to succeed for SPD
systems (except for the case where pivot elements become
negative due to numerical error [53]), whereas IC factorization
may fail unless the system matrix possesses certain properties,
such as being an M-matrix [54]. This necessitates reordering
the system (i.e., pivoting) potentially breaking the banded
structures, adding positive diagonals [54], or reverting to GS
[42], ultimately reducing preconditioning effectiveness. Given
that approximately 97% of the band is filled, it is acceptable to
introduce a small number of fill-ins, considering the IC issues
above. We therefore prefer full Cholesky factorization.

(a) Naive initialization

~Qay

(b) 4D rest curvatures with unbanded/banded system

(c) 2D rest curvatures with banded system

L

Fig. 2. Coil-like strand test. Rest shape optimization achieves static equilib-
rium unlike naive initialization (a). 4D rest curvatures with unbanded/banded
systems generate identical results (b), while the reduced 2D rest curvatures
also produce equivalent results given the redundant force spaces (c).

VII. RESULTS AND DISCUSSIONS

We implemented our method in C++20 with double-
precision floating-point for scalar values and parallelized for-
ward simulation and parameter optimization with OpenMP,
processing each strand concurrently. We executed all the
examples on a desktop machine with an Intel Core 17-9700
(8 cores) with 16GB RAM. For forward simulation, we use
the exact Hessian with SPD projection for stretching objective
and Gauss-Newton Hessian approximation for bending and
twisting objectives [23]. We perform a single Newton iteration
per simulation step [47], executing four simulation steps per
frame, except for Figures 1 and 8, which used 12 simulation
steps per frame. We use 60 frames per second. For MPRGP, we
use a termination absolute or relative residual of 107!, Unless
specified otherwise, we use ¢y = 109, Che = 109, Cew = 107.
Material frames are rendered at the centers of the correspond-
ing edges in red and yellow, with lengths matching the rest
lengths of the edges.

A. Banded System with Reduced Rest Curvatures

To assess the performance improvement achieved through
banded systems and reduced rest curvatures, we experiment
with a coil-like strand discretized with 2k vertices, as shown in
Figure 2 (for reference, we include naive initialization, which
computes rest shape parameters with the generalized positions
of the input strand). For a fair comparison with previous work
[5], we optimize only the rest shape parameters and exclude
box constraints to eliminate the influence of active sets. We
compare the following:

1) Unbanded system with 4D rest curvatures [5];

2) Banded system with 4D rest curvatures;

3) Banded system with 2D rest curvatures.

Using the approximate minimum degree (AMD) reordering,
the sequential arrangement of the rest shape parameters (rest
length, rest curvatures, and rest twist) [5] aligns with the
banded system, yielding identical results. The AMD reordering

(a) Naive initialization

o ——

(c) Active-set method

Fig. 3. We vertically translate the root position (initially the leftmost endpoint)
of a horizontal strand up and down. The leftmost column shows the initialized
states for each method and the remaining columns from left to right show the
results of forward simulation. The penalty method fails to precisely enforce
box constraints, causing significant rest curvature changes and allowing the
strand’s tail to end up on the left side after the motion stops (b). By contrast,
our active-set method (c) strictly enforces the box constraints, keeping the
tail on the right side and better preserving the original shape than the naive
initialization (a).

took 2.0 ms while the system solve took 5.0 ms. As the banded
system (with 4D rest curvatures) eliminates the need for the
reordering, we achieve around 29% performance gain.

Due to the redundant force spaces with rest curvatures, the
virtually reduced 2D rest curvatures produce results compara-
ble to those obtained with 4D rest curvatures. The computation
times were 2.1 ms and 5.0 ms with 2D and 4D rest curvatures,
respectively. As the DOF count is 4N — 8 and 6N — 12, with
non-zero counts per row of 22.0 and 32.0 on average, the total
number of non-zeros is approximately 88N (= 4N x 22) and
192N (= 6N x 32) for 2D and 4D rest curvatures, respectively.
Thus, the performance ratio 0.42 = (2.1/5.0) is in good
agreement with the ratio of the total number of non-zeros
0.46 ~ (88N/192N).

B. Penalty vs. Active-Set Methods

To demonstrate the efficacy of our active-set-based BCQP
solver, we compare it to a penalty-based one, using a hori-
zontal strand discretized with 30 vertices, as shown in Figure
3 (naive initialization included for reference). In this com-
parison, we optimize rest shape parameters only and use
= 0.4 to prevent significant rest curvature changes and thus
to keep the tail end of the strand on the right. For the penalty
method, we use a Cholesky solver [5]. As we perform only
one Newton iteration to solve each BCQP, if we apply ALM
(with Lagrange multipliers initialized to zero) to the BCQP, it
becomes equivalent to the penalty method [15].

The penalty method failed to strictly enforce the rest cur-
vature changes within their corresponding box constraints.
Consequently, significant rest shape changes caused the tail
end of the strand to flip to the left side after the root
was perturbed. By contrast, our active-set method precisely

-

dilee e rerererereee e e e e sl
Ji e e eer e e e e e e e sl

Jil e rer e e eer e etttk
L S T Y

U A A A PRI TENEI T
o e o o o o R R W R R R R R R

e

-

8 z'l'|'|‘o‘o'l'l‘l'|'t‘l‘l'n‘l‘l‘o'n‘l‘l-‘l'i‘-Ln

(a) (©)

Fig. 4. Evaluation with a vertical strand. The first edge (black) is fixed so its
stretching stiffness parameter is undefined. The white/green edges represent
lower/higher stiffness parameters. (a) Rest shape only. (b) Rest shape and
material stiffness with penalty. (c) Rest shape and material stiffness with ALM
(ours). With the rest shape only optimization, material stiffness parameters are
unchanged (edges stay white), failing to achieve static equilibrium with rest
shape parameters within their box constraints (a). Optimizing the material
stiffness parameters additionally stiffens the edges and thus reduces the
necessary rest shape changes. Treating the zero net force constraint as a
hard constraint enables more significant stiffness changes to achieve static
equilibrium (c), compared to using a soft one (b).

constrains curvature changes via their box constraints, keeping
the tail end of the strand on the right side. While we may need
to compromise static equilibrium, our method better preserves
the original shape compared to naive initialization.

The penalty method uses 4 Newton iterations with a total
system-solving cost of 0.31 ms (0.078 ms per solve), whereas
our method uses 2 Newton iterations with 8.0 MPRGP itera-
tions on average per solve, resulting in a total cost of 0.33 ms
(0.17 ms per solve). Although MPRGP needs multiple itera-
tions, our method performs Cholesky factorization (which is
costlier than triangular solves) only once per Newton iteration,
leading to a moderate cost per MPRGP solve. Furthermore, the
strict enforcement of box constraints enhances the convergence
of Newton iterations. Consequently, the total cost of our
method is comparable to that of the penalty-based approach.

C. Simultaneous Optimization of Rest Shape and Material
Stiffness Parameters Under Hard Zero Net Force Constraints

To demonstrate the necessity of optimizing both rest shape
and material stiffness parameters and enforcing c(p) = 0 as
a hard constraint, we compare the following schemes:

1) Rest shape only: rest shape only optimization [5];

2) Rest shape and material stiffness with penalty: simulta-
neous optimization of rest shape and material stiffness
parameters with enforcement of c¢(p) = 0 via quadratic
penalty [15] (which is equivalent to ours with A = 0);

3) Rest shape and material stiffness with ALM (ours): rest
shape and material stiffness parameter optimization with
enforcement of c(p) = 0 as a hard constraint via ALM.

1) Vertical Strand: We test with a vertical strand discretized
with 30 vertices (Figure 4) using 1, = 1072 and cg = 10°.

Optimizing only rest shape parameters fails to achieve
static equilibrium. Additionally optimizing stiffness parame-
ters reduces the necessary rest shape changes, but enforcing

c(p) = 0 as a soft constraint via a quadratic penalty also
fails. This failure occurs because the penalty from material
stiffness changes is large and comparable to the penalty from
violation of c¢(p) = 0, leading to inadequate adjustment of
the stiffness parameters. By contrast, our method guarantees
perfect static equilibrium, as ALM enforces ¢(p) = 0 as a hard
constraint. This allows for adequate adjustments to stiffness
parameters, ensuring rest shape parameters remain within their
box constraints while achieving zero net forces.

The rest shape only optimization takes 8§ Newton iterations,
5.6 MPRGP iterations on average, and 8.1 ms for the entire
optimization process, while the rest shape and material stiff-
ness optimization with penalty takes 7 Newton iterations, 73.9
MPRGP iterations, and 19.5 ms for the optimization. The in-
creased cost is primarily due to the larger system size (7N —14
for rest shape and material stiffness vs. 4N — 8 for rest shape
only) with more non-zeros and increased MPRGP iterations
(due to the increased complexity of the systems). Our method
takes 25 Newton iterations, 66.0 MPRGP iterations, and 58.3
ms for the optimization. The increased cost compared to the
approach with penalty is due to the updates of Lagrange multi-
pliers, which modify the optimization problem. Consequently,
our method requires around 3x more Newton iterations and
computational time. Although our method is approximately 7 x
more costly than the rest shape only optimization [5], these
methods are performed only once per scene as a preprocess
(i.e., no additional cost during forward simulation). Thus, we
believe that our approach, which guarantees static equilibrium
with minimal stiffness changes while eliminating tedious man-
ual stiffness tuning, is a practical and attractive alternative.

2) Horizontal Strand: We experiment with a horizontal
strand discretized with 30 vertices (Figure 5) using p = 0.2.
Similar to the vertical strand case, optimizing only the rest
shape parameters fails to achieve static equilibrium (despite the
relatively stiff strand with ¢, = 10%) due to tightly bounded
rest curvature changes. While simultaneous optimization of
the rest shape and material stiffness aims to achieve zero
net forces, it still fails when enforcing ¢(p) = 0 as a soft
constraint using the penalty method. By contrast, our method
successfully attains static equilibrium. The computational costs
follow a trend similar to that observed with the vertical strand.
The optimization takes 7.5 ms for the rest shape only, 17.9 ms
for the rest shape and material stiffness with penalty, and 47.7
ms for our method.

D. Box-Constrained Quadratic Program Solver Comparisons

We compare our method with various schemes to solve the
BCQP subproblem (16) using the scene shown in Figure 3.
1) MPRGP Preconditioners: We first examine our method
against various preconditioning techniques for MPRGP.
Specifically, we compare the following schemes:
1) MPRGP: MPRGP without preconditioning [16];
2) D-MPRGP: MPRGP with diagonal preconditioning;
3) WJ-MPRGP: MPRGP with two weighted Jacobi itera-
tions with a weighting factor w = 0.5;
4) SSOR-MPRGP: MPRGP with symmetric successive-
over-relaxation (SSOR) preconditioning (serial forward
and backward passes) with a weighting factor w = 1.2;

S R,

3
5

. \
LR 00000

bl
(a) Rest shape only
“Crernn
N "%
(b) Rest shape and material stiffness with penalty
“Crrrrn

(c) Rest shape and material stiffness with ALM

Fig. 5. Evaluation with a horizontal strand. Material stiffness parameters for
bending are undefined for the first and last vertices (black). The white and
green vertices represent lower and higher stiffness parameters, respectively.
The insets provide enlarged views for clarity. The rest shape only optimization
fails to achieve static equilibrium (a). While simultaneously optimizing rest
shape and material stiffness parameters better enforces zero forces, treating
the zero net force constraint as a soft constraint still fails (b), but as a hard
constraint it succeeds in achieving the horizontal static equilibrium (c).

1012
1010 ll
byl 18 |
108 MH‘!M M W meraP: (10,000)

5 10°] T —— D-MPRGP: (2,566)

2 L MN —— WJ-MPRGP: (2,313)

8 SSOR-MPRGP: (1,178)
1024 SAAMG-MPRGP: (1,660) lq
100 —— IC-MPRGP: (234)

Lo —— MIC-MPRGP: (234)
—— ASC-MPRGP (ours): (19)
10-4 !
10 15 20 25 30
Time (ms)

Fig. 6. Log-scale profiles of residuals over time with various preconditioning
techniques in MPRGP. The numbers in the last parentheses represent MPRGP
iteration counts. Our ASC-MPRGP converges 18x faster than IC-MPRGP.

5) SAAMG-MPRGP: MPRGP with SAAMG precondition-
ing [44];

IC-MPRGP: MPRGP with IC preconditioning [41];
MIC-MPRGP: MPRGP with MIC preconditioning [41];

ASC-MPRGP (ours): MPRGP with our ASC precondi-
tioning.

6)
7
8)

Figure 6 shows log-scale profiles of convergence over
time. Due to the stiffness of our system, MPRGP without
preconditioning failed to converge within 10,000 iterations

101[},
\ — PGS = 0.4: (10,000)
108 | \‘L == IPMp=0.2: (5)
/i ——= IPM u=0.3: (4)
10°4 i ——— IPMpu=0.4: (3
L H=0.4:(3) i
ERR R IPM 1 = 0.5: (3)
s \ IPM 11 =0.6: (3)
& 102 1 ASC-MPRGP (ours) u=0.2: (122)
, ! ASC-MPRGP (ours) u = 0.3: (47)
R —— ASC-MPRGP (ours) y = 0.4: (19)
10-2] B ASC-MPRGP (ours) p =0.5: (11)
F \ —— ASC-MPRGP (ours) u = 0.6: (2)
10-4 b
00 05 10 15 20 25 30 35 40 45
Time (ms)

Fig. 7. Log-scale profiles of residuals over time with various BCQP solvers
and permitted curvature change p. The numbers in the last parentheses indicate
solver iteration counts. Our ASC-MPRGP outperforms IPM for p > 0.4.

TABLE I
PERFORMANCE NUMBERS FOR IPM AND OUR ASC-MPRGP WITH
VARIOUS p. TIMING IS GIVEN IN MILLISECONDS, AND THE NUMBERS IN
THE PARENTHESES REPRESENT THE ITERATION COUNTS.

Scheme \ g] 0.2 0.3 0.4 0.5 0.6
IPM 0.517 (5) 0.434 (4) 0.361 (3) 0.388 (3) 0.375(3)
ASC-MPRGP | 4.518 (122) 0.783 (47) 0.305 (19) 0.184 (11) 0.039 (2)

and was terminated. While WJ-MPRGP and SSOR-MPRGP
effectively reduce the number of MPRGP iterations required,
their preconditioning costs are non-negligible, and D-MPRGP
performs slightly faster. Although SAAMG-MPRGP can be
effective for systems with an M-matrix [44], it underperforms
on our non-M-matrix system. By contrast, Cholesky-based
preconditioners are particularly effective because they exploit
the banded structure of the system with minimal overhead
for a single factorization per MPRGP solve. IC-MPRGP
requires significantly fewer iterations than D-MPRGP, and its
moderate preconditioning cost results in much faster overall
performance. Given the nearly fully filled band, MIC-MPRGP
performs almost identically to IC-MPRGP. Our ASC-MPRGP,
which employs full Cholesky factorization, benefits from the
complete Cholesky factors without the limitations of (M)IC-
MPRGP, which uses incomplete Cholesky with a GS fallback
to avoid breakdown [42]. Consequently, while IC-MPRGP
converges in 234 iterations taking 5.4 ms, our ASC-MPRGP
converges in just 19 iterations taking 0.3 ms, achieving around
18x faster performance.
2) BCQP Solvers: Next, we compare our method with other
BCQP solvers. We consider the following schemes:
1) PGS: projected GS;
2) IPM: interior point method [55] with a Cholesky-based
direct solver for fully unconstrained inner linear systems;
3) ASC-MPRGP (ours).
In this comparison, we exclude the penalty-based approach as
it cannot accurately enforce the box constraints (comparisons
between the penalty-based and active-set approaches are given
in Sec. VII-B). Figure 7 shows log-scale profiles of conver-
gence over time, and Table I summarizes the performance
numbers (excluding PGS).
Although PGS should be able to strictly enforce the box
constraints, it was slow to converge and terminated after
10,000 iterations. While IPM [55] can converge with a small

10

(c) Rest shape and material stiffness optimization (ours)

Fig. 8. Hair simulation with complex strand geometry. Hair strands significantly sag with naive initialization. Rest shape only optimization suffers from some
sagging and unnatural hair lifting. Our method successfully achieves static equilibrium, exhibits natural motions driven by the prescribed movements of the
root vertices, and then restores the hairstyle to a form closely resembling the original.

number of iterations for all values of i, each iteration is costly
because IPM updates the system diagonals, necessitating a full
Cholesky factorization for each updated system. By contrast,
our ASC-MPRGP requires no system updates and enables
the reuse of the Cholesky factor by combining it with active
sets which may change in each MPRGP iteration. Thus, per-
iteration cost is relatively small, enabling ASC-MPRGP to
outperform IPM [55] with approximately p > 0.4 (our default
is ;4 = 1). While our method can be slower than IPM when
1 is small (because MPRGP needs more iterations to update
active sets and does not fully leverage our preconditioner), we
believe that such cases are infrequent in practical applications.

E. Complex Strand Geometry

To evaluate the efficacy of our method with complex strand
geometry, we experiment with hair data publicly released by
Hu et al. [56]. Figure 8 compares our method with naive
initialization and rest shape only optimization, using an asset
with 915 strands (each is discretized with 100 vertices). In this
comparison, we use an extra soft material with ¢y = cpe =
Ciw = 10% to clearly demonstrate differences, and p = 0.5.

With naive initialization, hair strands sag significantly due
to gravity at the start of the simulation, eventually settling
into sagged states after some root vertex movement. With
rest shape only optimization, some strands still suffer from
sagging since the allowed rest shape changes are limited
by the box constraints. Conversely, other strands experience
unnatural lifting because this approach attempts to achieve
static equilibrium solely through adjustments to the rest shape

parameters, yielding significant rest shape changes (even with
the box constraints) and thus continuously unstable strand
configurations that do not settle. Hence the rest shape only
optimization fails both to achieve static equilibrium (with
insufficient rest shape changes) and to ensure stable config-
urations (due to the excessive rest shape changes), indicating
that the range parameter for box constraints p is simulta-
neously too low for some strands and too high for others;
therefore, merely adjusting 1 cannot always fix these failures.
By contrast, our method enables strands to achieve the perfect
static equilibrium even with complex hair geometry through
the smaller rest shape changes facilitated by simultaneous
optimization of material stiffness. It achieves plausible motions
and allows the strands to gradually settle and return towards
the original hair styles, while naive initialization and rest shape
only optimization do not.

Rest shape only optimization used 2.0 Newton iterations
(with frequent failures in backtracking line search, leading
to early termination) and 2.5 MPRGP iterations per solve
on average (occasionally terminating at 100 iterations due to
convergence issues), taking 0.6 s for the entire optimization
process, whereas our method used 148.8 Newton iterations and
1.2 MPRGP iterations, taking 84.4 s. Although our method
incurs higher costs than the rest shape only optimization
(which fails to converge, thus suffering from sagging, unnatu-
ral lifting, and stability problems), we believe that the achieved
static equilibrium justifies this one time initialization cost for
forward simulations (which take 2.0 s per frame).

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed our parameter optimization framework
that ensures static equilibrium of DER-based strands. Addi-
tionally, we presented an active-set Cholesky preconditioner to
accelerate the convergence of MPRGP. We demonstrated the
efficacy of our method in a wide range of examples. Below,
we discuss tradeoffs inherent to our method and promising
research directions for future work.

A. Undesirable Local Minima

While our method ensures that strands achieve static equilib-
rium, certain perturbations may cause them to fall into other
local minima in forward simulations, which may not align
with user expectations. Although our solver enforces rest shape
changes within specified box constraints to mitigate the risk of
encountering such local minima, determining optimal values
for these constraints can be challenging. The desirability of the
resulting behaviors is often subjective, and the optimal values
may vary depending on strand geometry and material stiffness.
To accommodate diverse scenarios, it could be advantageous
to assign different values of i for each strand.

In contrast to optimization methods focused solely on the
rest shape parameters [5], our approach allows for modifica-
tions to the material stiffness, which can be perceived as unde-
sirable. While W in (5) assists in balancing changes between
the rest shape and material stiffness parameters, a potentially
more effective strategy may involve conducting separate and it-
erative parameter optimizations for the rest shape and material
stiffness, similar to block coordinate descent. Furthermore, to
ensure smoothly varying material stiffness, it may be beneficial
to employ a Laplacian-based regularizer or, alternatively, to
optimize a limited set of representative stiffness parameters,
which has the added advantage of reducing memory usage and
optimization costs.

B. Active-Set Cholesky Preconditioner

As our ASC preconditioner is based on a Cholesky-based
direct solver which is particularly effective for stiff SPD linear
systems, it is worth evaluating our preconditioner with stiff
BCQPs. In particular, our preconditioner should work with
tree structures which form block-structured systems (instead
of banded ones) without introducing any fill-in at off-diagonal
blocks between the block matrices [53]. It also seems promis-
ing to extend our preconditioner to (incomplete) LDLT factor-
ization [43, 57] and to explore symmetric indefinite solvers
that can handle box constraints. With small g, many box
constraints can be activated, necessitating additional MPRGP
iterations to manage active sets while failing to fully leverage
our ASC preconditioning. In such cases, exploring active-set-
free approaches, such as interior point methods [15, 55], may
be promising. Although parallel execution over strands ren-
dered extensive parallelization unnecessary in our framework,
it would be valuable to optimize our preconditioner for parallel
execution to fully utilize many-core architectures, particularly
for strands discretized with a large number of vertices.

C. More General Inverse Problems

Supporting anisotropic and inhomogeneous strands, two-end
clamping, and frictional contacts would be useful. In partic-
ular, incorporating contact forces in the parameter optimiza-
tion would prevent extra stiffening and rest shape changes,
giving more plausible results (e.g., for hairs on a head) [3,
4, 30]. To predict strand dynamics over time, developing
differentiable physics approaches, such as those employing the
adjoint method [2, 12], appears promising [58]. Extending our
method to applications involving 2D/3D structured materials
would also be of interest. While our method is guaranteed
to reach static equilibrium at solver convergence, convergence
conditions may depend on strand geometry and properties;
thus, tuning solver parameters may be necessary in challeng-
ing scenarios. Additionally, solving the optimization problem
without primal-dual decoupling could enhance the likelihood
of convergence.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable sug-
gestions, and Bo Yang, Qingyuan Zheng, Rundong Wu, and
Yu Ju Chen for early discussions. We acknowledge the authors
of [56] for publicly releasing the hair dataset. This work was
supported in part by the Natural Sciences and Engineering
Research Council of Canada (Grant RGPIN-2021-02524).

REFERENCES

[1] C. D. Twigg and Z. Kaci¢-Alesi¢, “Optimization for sag-free simu-
lations,” in Proceedings of the 2011 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, ser. SCA ’11, 2011, pp. 225-236.

[2] J. Pérez, B. Thomaszewski, S. Coros, B. Bickel, J. A. Canabal, R. Sum-
ner, and M. A. Otaduy, “Design and fabrication of flexible rod meshes,”
ACM Trans. Graph., vol. 34, no. 4, jul 2015.

[3] J. Hsu, N. Truong, C. Yuksel, and K. Wu, “A general two-stage
initialization for sag-free deformable simulations,” ACM Trans. Graph.,
vol. 41, no. 4, jul 2022.

[4] J. Hsu, T. Wang, Z. Pan, X. Gao, C. Yuksel, and K. Wu, “Sag-
free initialization for strand-based hybrid hair simulation,” ACM Trans.
Graph., vol. 42, no. 4, jul 2023.

[5] T. Takahashi and C. Batty, “Rest shape optimization for sag-free discrete
elastic rods,” Computer Graphics Forum, vol. 44, no. 2, p. €70019, 2025.

[6] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun,
“Discrete elastic rods,” in ACM SIGGRAPH 2008 Papers, ser. SIG-
GRAPH ’08, 2008.

[7] M. Bergou, B. Audoly, E. Vouga, M. Wardetzky, and E. Grinspun,
“Discrete viscous threads,” ACM Transactions on Graphics, vol. 29,
no. 4, pp. 116:1-116:10, 2010.

[8] E. Schweickart, D. L. James, and S. Marschner, “Animating elastic rods
with sound,” ACM Trans. Graph., vol. 36, no. 4, jul 2017.

[91 Y. R. Fei, C. Batty, E. Grinspun, and C. Zheng, “A multi-scale model

for coupling strands with shear-dependent liquid,” ACM Trans. Graph.,

vol. 38, no. 6, Nov. 2019.

S. Lesser, A. Stomakhin, G. Daviet, J. Wretborn, J. Edholm, N.-H. Lee,

E. Schweickart, X. Zhai, S. Flynn, and A. Moffat, “Loki: A unified

multiphysics simulation framework for production,” ACM Trans. Graph.,

vol. 41, no. 4, jul 2022.

G. Daviet, “Interactive hair simulation on the gpu using admm,” in ACM

SIGGRAPH 2023 Conference Proceedings, ser. SIGGRAPH °23. New

York, NY, USA: Association for Computing Machinery, 2023.

J. Panetta, M. Konakovi¢-Lukovié, F. Isvoranu, E. Bouleau, and

M. Pauly, “X-shells: a new class of deployable beam structures,” ACM

Trans. Graph., vol. 38, no. 4, jul 2019.

Y. Ren, U. Kusupati, J. Panetta, F. Isvoranu, D. Pellis, T. Chen, and

M. Pauly, “Umbrella meshes: elastic mechanisms for freeform shape

deployment,” ACM Trans. Graph., vol. 41, no. 4, jul 2022.

L.-J. Y. Dandy, M. Vidulis, Y. Ren, and M. Pauly, “Tencers: Tension-

constrained elastic rods,” p. 1-13, dec 2024.

J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.

York, NY, USA: Springer, 2006.

[10]

(1]

[12]

[13]

[14]

[15] New

[16]

(171

[18]

[19]

(20]

[21]

[22]

[23]

(24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

[32]

[33]
(34]

[35]

[36]

[371

(38]

[39]

[40]

Z. Dostal and J. Schoberl, “Minimizing quadratic functions subject to
bound constraints with the rate of convergence and finite termination,”
Computational Optimization and Applications, vol. 30, no. 1, pp. 23-43,
2005.

D. K. Pai, “STRANDS: Interactive Simulation of Thin Solids using
Cosserat Models,” Computer Graphics Forum, 2002.

J. Spillmann and M. Teschner, “Corde: Cosserat rod elements for the
dynamic simulation of one-dimensional elastic objects,” in Proceedings
of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ser. SCA ’07. Eurographics Association, 2007, p. 63-72.
N. Umetani, R. Schmidt, and J. Stam, “Position-based elastic rods,”
in Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, ser. SCA 14, 2014, p. 21-30.

T. Kugelstadt and E. Schomer, “Position and orientation based cosserat
rods,” in Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, ser. SCA ’16, 2016, p. 169-178.

B. Angles, D. Rebain, M. Macklin, B. Wyvill, L. Barthe, J. Lewis, J. Von
Der Pahlen, S. Izadi, J. Valentin, S. Bouaziz, and A. Tagliasacchi, “Viper:
Volume invariant position-based elastic rods,” Proc. ACM Comput.
Graph. Interact. Tech., vol. 2, no. 2, jul 2019.

C. Soler, T. Martin, and O. Sorkine-Hornung, “Cosserat rods with
projective dynamics,” Computer Graphics Forum, vol. 37, no. 8, pp.
137-147, 2018.

A. Shi, H. Wu, J. Parr, A. M. Darke, and T. Kim, “Lifted curls: A model
for tightly coiled hair simulation,” Proc. ACM Comput. Graph. Interact.
Tech., vol. 6, no. 3, aug 2023.

F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, and J.-L.
Lévéque, “Super-helices for predicting the dynamics of natural hair,”
ACM Trans. Graph., vol. 25, no. 3, p. 1180-1187, jul 2006.

R. Casati and F. Bertails-Descoubes, “Super space clothoids,” ACM
Trans. Graph., vol. 32, no. 4, jul 2013.

S. Hadap, “Oriented strands: dynamics of stiff multi-body system,” in
Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, ser. SCA ’06, 2006, p. 91-100.

X. Chen, C. Zheng, W. Xu, and K. Zhou, “An asymptotic numerical
method for inverse elastic shape design,” ACM Trans. Graph., vol. 33,
no. 4, jul 2014.

K. Jia, “Sanm: a symbolic asymptotic numerical solver with applications
in mesh deformation,” ACM Trans. Graph., vol. 40, no. 4, jul 2021.
A. Derouet-Jourdan, F. Bertails-Descoubes, and J. Thollot, “Stable
inverse dynamic curves,” ACM Trans. Graph., vol. 29, no. 6, dec 2010.
A. Derouet-Jourdan, F. Bertails-Descoubes, G. Daviet, and J. Thollot,
“Inverse dynamic hair modeling with frictional contact,” ACM Trans.
Graph., vol. 32, no. 6, pp. 159:1-159:10, Nov. 2013.

F. Bertails-Descoubes, A. Derouet-Jourdan, V. Romero, and A. Lazarus,
“Inverse design of an isotropic suspended Kirchhoff rod: theoretical and
numerical results on the uniqueness of the natural shape,” Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 474, no. 2212, pp. 1-26, Apr. 2018.

R. Charrondiere, F. Bertails-Descoubes, S. Neukirch, and V. Romero,
“Numerical modeling of inextensible elastic ribbons with curvature-
based elements,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 364, p. 112922, 2020.

C. Hafner and B. Bickel, “The design space of plane elastic curves,”
ACM Trans. Graph., vol. 40, no. 4, jul 2021.

——, “The design space of kirchhoff rods,” ACM Trans. Graph., vol. 42,
no. 5, sep 2023.

J.-M. Aubry and X. Xian, “Fast implicit simulation of flexible trees,” in
Mathematical Progress in Expressive Image Synthesis II, H. Ochiai and
K. Anjyo, Eds. Springer Japan, 2015, pp. 47-61.

M. Skouras, B. Thomaszewski, B. Bickel, and M. Gross, “Computational
design of rubber balloons,” Comput. Graph. Forum, vol. 31, no. 2pt4,
p. 835-844, may 2012.

B. Wang, L. Wu, K. Yin, U. Ascher, L. Liu, and H. Huang, “Deformation
capture and modeling of soft objects,” ACM Trans. Graph., vol. 34, no. 4,
pp- 94:1-94:12, Jul. 2015.

R. Mukherjee, L. Wu, and H. Wang, “Interactive two-way shape design
of elastic bodies,” Proc. ACM Comput. Graph. Interact. Tech., vol. 1,
no. 1, jul 2018.

M. Ly, R. Casati, F. Bertails-Descoubes, M. Skouras, and L. Boissieux,
“Inverse elastic shell design with contact and friction,” ACM Trans.
Graph., vol. 37, no. 6, dec 2018.

A. Choi, R. Jing, A. P. Sabelhaus, and M. K. Jawed, “Dismech: A
discrete differential geometry-based physical simulator for soft robots
and structures,” IEEE Robotics and Automation Letters, vol. 9, no. 4,
pp. 3483-3490, 2024.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]
[53]

(54

[55]

[56]

[57]

[58]

R. Narain, A. Golas, and M. C. Lin, “Free-flowing granular materials
with two-way solid coupling,” ACM Transactions on Graphics, vol. 29,
no. 6, pp. 173:1-173:10, 2010.

R. Bridson and M. Miiller, “Fluid simulation: Siggraph 2007 course,”
in ACM SIGGRAPH 2007 Courses, ser. SIGGRAPH ’07. New York,
NY, USA: Association for Computing Machinery, 2007, p. 1-81.

C. Greif, S. He, and P. Liu, “Sym-ildl: Incomplete 1dIt factorization of
symmetric indefinite and skew-symmetric matrices,” ACM Trans. Math.
Softw., vol. 44, no. 1, Apr. 2017.

T. Takahashi and C. Batty, “A multilevel active-set preconditioner for
box-constrained pressure poisson solvers,” Proc. ACM Comput. Graph.
Interact. Tech., vol. 6, no. 3, aug 2023.

O. Broker, M. J. Grote, C. Mayer, and A. Reusken, “Robust parallel
smoothing for multigrid via sparse approximate inverses,” SIAM Journal
on Scientific Computing, vol. 23, no. 4, pp. 1396-1417, 2001.

M. Jawed, A. Novelia, and O. O’Reilly, A Primer on the Kinematics
of Discrete Elastic Rods, ser. SpringerBriefs in Applied Sciences and
Technology. Springer International Publishing, 2018.

L. Huang, F. Yang, C. Wei, Y. J. E. Chen, C. Yuan, and M. Gao,
“Towards realtime: A hybrid physics-based method for hair animation
on gpu,” Proc. ACM Comput. Graph. Interact. Tech., vol. 6, no. 3, 2023.
G. Gornowicz and S. Borac, “Efficient and stable approach to elasticity
and collisions for hair animation,” in Proceedings of the 2015 Sympo-
sium on Digital Production, ser. DigiPro *15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 41-49.

J. M. Kaldor, D. L. James, and S. Marschner, “Efficient yarn-based cloth
with adaptive contact linearization,” ACM Trans. Graph., vol. 29, no. 4,
jul 2010.

T. Takahashi and C. Batty, “FrictionalMonolith: A monolithic
optimization-based approach for granular flow with contact-aware rigid-
body coupling,” ACM Transactions on Graphics (TOG), vol. 40, no. 6,
pp- 1-16, 2021.

R. Tamstorf, T. Jones, and S. F. McCormick, “Smoothed aggregation
multigrid for cloth simulation,” ACM Trans. Graph., vol. 34, no. 6, pp.
245:1-245:13, 2015.

Y. Saad, “Iterative Methods for Sparse Linear Systems,” Notes, vol. 3,
no. 2nd Edition, pp. xviii+528, 2003.

P. Herholz and M. Alexa, “Factor once: Reusing cholesky factorizations
on sub-meshes,” ACM Trans. Graph., vol. 37, no. 6, dec 2018.

J. Chen, F. Schifer, J. Huang, and M. Desbrun, “Multiscale cholesky
preconditioning for ill-conditioned problems,” ACM Trans. Graph.,
vol. 40, no. 4, jul 2021.

T. Takahashi and C. Batty, “A primal-dual box-constrained qp pres-
sure poisson solver with topology-aware geometry-inspired aggregation
amg,” IEEE Transactions on Visualization and Computer Graphics, pp.
1-12, 2024.

L. Hu, C. Ma, L. Luo, and H. Li, “Single-view hair modeling using a
hairstyle database,” ACM Trans. Graph., vol. 34, no. 4, jul 2015.

T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar, “A survey of
direct methods for sparse linear systems,” Acta Numerica, vol. 25, p.
383-566, 2016.

Y. Chen, Y. Zhang, Z. Brei, T. Zhang, Y. Chen, J. Wu, and R. Vasudevan,
“Differentiable discrete elastic rods for real-time modeling of deformable
linear objects,” 2024.

Tetsuya Takahashi is a Senior Researcher at Ten-
cent America. He was a Software Engineer at
Adobe. He earned his M.S. and Ph.D. from the
University of North Carolina at Chapel Hill in 2017
and 2020, respectively, and B.S. and M.S. from Keio
University in 2012 and 2014, respectively. His re-
search interests include physically-based simulation,
numerical optimization, and geometry processing.

Christopher Batty is an Associate Professor in the
David R. Cheriton School of Computer Science at
the University of Waterloo in Ontario, Canada. He
received his PhD from the University of British
Columbia in 2010 and was a Banting Postdoctoral
Fellow at Columbia University from 2011 to 2013.
His research is primarily focused on the develop-
ment of novel physical simulation techniques for
applications in computer graphics and computational
physics, with an emphasis on the diverse behaviors
of fluids.

