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Abstract— We propose a new barrier-based box-constrained convex QP solver based on a primal-dual interior point method to
efficiently solve large-scale pressure Poisson problems with non-negative pressure constraints, which commonly arise in liquid
animation. The performance of prior active-set-based approaches is limited by the need to repeatedly update the active set. Our solver
eliminates this issue by entirely avoiding the use of an active set, which in turn makes the inner problems of our Newton iteration
process fully unconstrained. For efficiency, exploiting the solution uniqueness of convex QPs and the fact that the pressure constraints
are simple box constraints, we aggressively update solution candidates without performing any step selection procedure (such as line
search) and instead directly clamp candidates back to the bounds wherever constraint violations occur. Additionally, to accelerate
the inner linear solves, we present a topology-aware geometry-inspired aggregation algebraic multigrid preconditioner and describe
in detail several key performance optimizations that we incorporate. We demonstrate the efficacy of our solver in various practical
scenarios and show that it often surpasses various alternatives in terms of speed and memory usage.

Index Terms—Fluid simulation, quadratic program, multigrid, primal-dual interior point method

1 INTRODUCTION

The visual quality of Eulerian grid-based liquid animation benefits
significantly from using inequality-constraint-based boundary condi-
tions, which allow natural separation of liquid from solid surfaces
[7, 13, 24, 30, 43]. However, this improvement over naive boundary
treatments comes at a cost. Unlike the traditional pressure projection,
which requires solving only a linear system, the required non-negative
pressure constraints lead to a more numerically challenging problem: a
linear complementarity problem (LCP) or equivalent box-constrained
convex quadratic program (QP) [7, 34]. We seek to develop a highly
efficient numerical solver for this problem.

While one can solve the LCP using variants of standard linear
solvers, e.g., projected Gauss-Seidel (PGS) [19] or standalone nonlinear
multigrid methods [13, 30], numerically minimizing a corresponding
quadratic objective (e.g., using iterative Krylov solvers) can often be
more robust, efficient, and flexible [33,39,47]. Therefore, a popular and
effective approach has been to apply a Krylov solver with an active-set
method, specifically modified proportioning with reduced gradient pro-
jections (MPRGP) [17, 18], to solve the box-constrained convex QPs.
This formulation supports further acceleration with preconditioners,
such as modified incomplete Cholesky (MIC) [22, 34] or algebraic
multigrid (AMG) [43].

Despite its success, this MPRGP-based methodology suffers from
a key remaining bottleneck. When one solves box-constrained QPs
using MIC-MPRGP [22, 34], the number of MPRGP iterations re-
quired to achieve convergence is typically dictated by the (limited)
effectiveness of MIC preconditioning. By contrast, since AMG pre-
conditioning is much more effective, the necessary iteration count for
AMG-MPRGP [43] instead becomes dictated by the need to repeatedly
update the active set of constraints on the way to finding the optimal
solution. In particular, this issue becomes more noticeable when more
variables interact with lower/upper bounds [43] and can persist even
with a fast active-set expansion technique [29, 42]. As such, MPRGP
cannot take maximal advantage of AMG preconditioning, and further
improvements to preconditioning effectiveness are unlikely to remove
the existing performance bound in practice. Moreover, it is challeng-
ing to develop effective preconditioners that take the active sets into
account [43].
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We therefore set MPRGP aside and propose a new box-constrained
convex QP solver based on a primal-dual interior point method to
efficiently handle large-scale sparse QP problems arising from fluid
pressure projection with separating solid boundary conditions. Our new
solver handles the constraints with the help of log-barriers [36] and is
thus free of active sets, unlike MPRGP [17, 18]. This design decision
removes the performance bound due to the active-set updates while
taking full advantage of AMG preconditioning. In addition, we exploit
the solution uniqueness of the convex QP and the box constraints to
achieve greater efficiency by aggressively updating solution candidates
without a step selection procedure and instead directly clamping them
back to the bound where constraint violations occur. As our barrier-
based solver leads to inner problems that are fully unconstrained linear
systems with symmetric positive definite (SPD) M-matrices, we can
efficiently solve the inner problems using AMG-preconditioned CG
(AMGCG). To further accelerate solving the inner linear systems, we
present a new topology-aware geometry-inspired aggregation AMG
preconditioner (which can also be used independently of our barrier-
based QP solver). Our AMG preconditioner simultaneously possesses
five key features: 1) it ensures solvability at coarser levels due to the
Galerkin principle, 2) it avoids merging algebraically disconnected
components so coarser-level systems remain effective, 3) it preserves
the regular Cartesian grid structure that permits repeated applications
of the same coarsening scheme, 4) it enables red-black coloring for
effective GS-type smoothers, and 5) it maintains relatively sparse re-
striction/prolongation operators and coarser-level systems for memory
and computational efficiency. We also present further details for perfor-
mance optimizations within AMG preconditioning, utilizing red-black
coloring and traditional seven-point finite-difference stencils in 3D.
Finally, while our overall QP solver was designed specifically with
pressure Poisson problems in mind, its application is not limited to
these problems; we therefore further demonstrate its effectiveness and
versatility with an application to diffusion equations.

2 RELATED WORK

2.1 Multigrid for Pressure Poisson Equations

Multigrid (MG) is among the most efficient approaches for solving sys-
tems of equations and is especially well-studied for Poisson equations,
such as those which arise in the pressure projection step of fluid simu-
lation. Background on MG methods can be found in various textbooks,
e.g., [10, 47]. MG approaches can generally be classified into two cate-
gories based on how their multiresolution hierarchies are constructed:
geometric MG (GMG) and algebraic MG (AMG).

GMG uses geometric coarsening and rediscretization of systems
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Fig. 1: A liquid bunny is dropped inside a moving solid sphere, simulated with non-negative pressure constraints. Our box-constrained convex QP
solver yields results efficiently without exhibiting boundary suction artifacts.

based on geometric approximations at coarser levels [13,33,49]. While
GMG is conceptually simpler and can be effective for simple domain
shapes, it can diverge or stagnate with complex boundaries, which
frequently appear in liquid simulations [33]. For improved robust-
ness, one can perform extra steps of boundary smoothing [33], adopt
smoother prolongation operators (via trilinear interpolation) coupled
with red-black GS smoothing [16], employ topology-aware geomet-
ric coarsening [16, 20], or use GMG as a preconditioner for CG [33].
However, geometric discrepancies between finer and coarser levels
(which are generally unavoidable to guarantee solvability at coarser
levels) ultimately limit the effectiveness of GMG in many practical
scenarios [43].

On the other hand, AMG uses only algebraic information to build
coarser-level systems Ac via Galerkin coarsening applied to finer-level
systems A f . Using prolongation operators P and restriction operators
R(= PT ), one defines Ac = RA f P. AMG automatically ensures solv-
ability at coarser levels, assuming a non-singular finest system and
full-column-rank prolongation operators, due to the Galerkin princi-
ple [10,47]. In addition, AMG never merges algebraically disconnected
components, thus offering effective coarser-level systems even with
complex domain boundaries, unlike GMG [43]. While AMG can be
an effective standalone solver or preconditioner, purely algebraic con-
struction of prolongation and restriction operators (using e.g., plain
unsmoothed aggregation, smoothed aggregation [45, 48], or the Ruge-
Stüben method [40]) generally produces denser systems at the coarser
levels, thereby sacrificing computational and memory efficiency, as
compared to GMG [28, 50]. In addition, AMG typically destroys any
underlying regular structure (such as that of Cartesian grids), which
means that it cannot take advantage of convenient red-black coloring
for embarrassingly parallel GS-type smoothers (which are typically
more effective than other stationary iterative methods, such as weighted
Jacobi [10, 47] or SPAI-0 [11]). Parallelizing instead via multicolor GS
additionally requires an effective coloring scheme, increasing computa-
tional cost and implementation complexity.

To mitigate performance and memory issues due to the denser sys-
tems at the coarser levels in purely algebraic MG while avoiding the
solvability and geometric discrepancy problems of purely geometric
MG, geometry-inspired aggregation AMG (GIAAMG) approaches
have recently been proposed [30, 38, 51]. GIAAMG constructs the
prolongation and restriction operators in an algebraic way (similar to
AMG), while also employing geometric information (e.g., regular grid
structures for fluid simulations) as an additional guide when building
these operators, e.g., using 8-to-1 averaging. Exploiting these geo-
metric structures, one can form much sparser restriction/prolongation
operators, which also leads to sparser coarser-level systems compared
to purely algebraic MG, resulting in reduced memory usage and per-
iteration costs [10]. In addition, GIAAMG can preserve regular grid
structures across successive coarsening operations, potentially enabling
one to employ red-black GS-type smoothers [38]. However, unfortu-
nately, as the previous GIAAMG approaches are unaware of the liquid
topology, i.e., topology-oblivious, they neglect algebraic connectivi-
ties in the operator construction, inappropriately merging algebraically

disconnected components and thus degrading the effectiveness of the
coarser-level systems, especially in topology-critical scenarios, such as
maze structures [43].

To address this issue, we present a topology-aware GIAAMG scheme
that merges only algebraically connected components (similar to purely
algebraic MG) while simultaneously ensuring the solvability of the sys-
tem, maintaining the regular grid structure, enabling red-black coloring,
and achieving relatively sparse restriction/prolongation operators and
coarser-level systems.

2.2 Non-Negative Pressure Constraints
The key to wall-separating liquid behavior is enforcement of non-
negative pressures within the pressure projection [7, 13, 24, 30, 43].
Researchers have formulated LCPs or equivalent box-constrained QPs
to simultaneously enforce the incompressibility (divergence-free) con-
dition and non-negative pressure constraints. These formulations have
been solved in various ways, e.g., using a PATH solver [7], PGS [31],
nonlinear multigrid [13, 30], a non-smooth Newton method [5], and a
variant of the alternating direction method of multipliers (ADMM) [24].
Alternatively, iterative Krylov solvers augmented with an active-set
method have demonstrated their potential in practical scenarios for
splashing liquids and granular flows [22,34,42,43]. In particular, a CG-
based box-constrained QP solver, MPRGP [17,18] has become popular
and is effective in combination with MIC preconditioning [22, 34, 42]
and AMG preconditioning [43]. It has been shown that the performance
of MPRGP can then become bounded by the efficiency of the active-set
update, when sufficiently effective preconditioners (e.g., AMG) are em-
ployed [43]. Instead of using MPRGP, we present a new barrier-based
box-constrained QP solver that eliminates the performance bound due
to the active-set updates by eschewing active sets altogether, and can
thereby take full advantage of AMG preconditioning.

3 LIQUID SIMULATION FORMULATION

To simulate splashy liquids with separating solid boundary conditions
(but neither viscosity nor surface tension), we solve the incompressible
Euler equations and adopt the affine particle-in-cell (APIC) framework
[27] with the traditional finite-difference method on a staggered grid [9]
and particle-level position correction for improved particle distributions
[44]. We enforce fluid incompressibility with separating solid boundary
conditions via minimization over pressure with non-negative pressure
constraints [7, 34]. The resulting constrained minimization can be
written as

p = argmin
s(p)≥0

E(p), E(p) =
1
2

pT Ap−pT q, (1)

where p denotes the pressure, A and q the Laplacian matrix and the
source term in the pressure Poisson equations, respectively, and s(p)
the separating-boundary constraint function for pressure. We can define
s(p) to uniformly enforce non-negative pressures throughout the fluid
and thereby achieve splashy liquid behavior [22] using

s(p) = p ≥ 0. (2)



(a) Initial state (b) Equilibrium without temperature bounds (c) Equilibrium with temperature bounds

Fig. 2: Constrained heat diffusion on a static dragon. Dark red/blue bands in (a) indicate Dirichlet values. Our QP solver correctly handles heat
diffusion while respecting temperature bounds, achieving an equilibrium (c) that differs from the equilibrium without temperature bounds (b).

Alternatively, we can define s(p) for wall-separating but "non-splashy"
liquid given the set of indices S for only those pressure cells in contact
with solid boundaries [30] using

s(p) = pi ≥ 0, if i ∈ S . (3)

Our goal is to efficiently solve the box-constrained convex QP (1) using
our barrier-based solver (§5), harnessing AMG preconditioning (§4)
for inner CG solves.

4 TOPOLOGY-AWARE GIAAMG PRECONDITIONING

To address various shortcomings of GMG, AMG, and topology-
oblivious GIAAMG, we propose a topology-aware GIAAMG pre-
conditioner that simultaneously achieves the following five features:
1) coarser-level solvability, 2) topology-aware algebraic aggregation,
3) regular grid structure preservation, 4) red-black coloring, and 5)
sparse restriction/prolongation operators and coarser-level systems. In
addition, we describe our performance optimizations, which take full
advantage of the red-black coloring for GS-type smoothers and residual
computations.

4.1 AMG Preconditioning
The goal of AMG preconditioning is to solve the preconditioning sys-
tem Ax = b derived from the quadratic objective in (1) as accurately
and efficiently as possible. In practice, the accuracy and efficiency
relationship exhibits a trade-off, and it is typically preferred to perform
just one V- or W-cycle along with up to a few smoothing iterations to
minimize the preconditioning cost [10, 38] because performing more
CG iterations is generally more efficient than spending more time on
preconditioning. Here, we use a single W-cycle (as we consistently
observed it to be more efficient than a V-cycle with unsmoothed aggre-
gation; see our supplementary materials). The algorithm for W-cycle
preconditioning is given in Algorithm 1 (which is equivalent to a V-
cycle if one skips lines 10 to 14).

Algorithm 1 W-cycle(A f , x f , b f )

1: Initialize x f = 0
2: if Coarsest
3: Smooth x f //§4.4
4: else
5: Presmooth x f //§4.4
6: Compute residual r f = b f −A f x f //§4.5
7: Restrict residual bc = Rr f
8: W-cycle(Ac, xc, bc)
9: Prolongate and correct x f += Pxc

10: Resmooth x f //§4.6
11: Compute residual r f = b f −A f x f //§4.7
12: Restrict residual bc = Rr f
13: W-cycle(Ac, xc, bc)
14: Prolongate and correct x f += Pxc
15: Postsmooth x f //§4.8
16: end if

In AMG, if the prolongation and restriction operators are not suffi-
ciently smooth, coarser-level errors are typically underestimated, de-
laying convergence. In such cases, there are a few possible treatments
to apply: perform more or stronger (boundary) smoothing [2, 38, 52];
smooth the prolongation operator itself [48] (although such operator
smoothing suffers from a non-negligible cost); use a W-cycle instead
of a V-cycle; and/or rescale the coarser-level systems [40] (equivalent
to over-interpolation of error), defining Ac = αRA f P, where α de-
notes the rescaling parameter (for unsmoothed prolongation/restriction
operators, we use α = 0.55 for V-cycles and α = 0.65 for W-cycles).

The system matrices and prolongation/restriction operators can be
stored in a memory-efficient way using the compressed sparse row
(CSR) format, and parallel sparse matrix-matrix multiplication can
be efficiently performed in the CSR format [37]. For implementation
details of AMG, we refer the reader to available open source codes
[15, 51].

4.2 Topology-Aware GIA Coarsening
To establish the MG hierarchy while ensuring the coarser level re-
mains solvable, we use the following AMG-style procedure. We first
build a prolongation operator P from the finest system A f and geo-
metric information (specifically, three indices x,y,z for each cell lo-
cation in the 3D Cartesian grid), define the restriction operator R as
R = PT , and then assemble the coarser-level system Ac = αRA f P.
(While earlier geometry-inspired aggregation approaches [30, 38, 51]
use R = (1/2)dPT , where d is the number of spatial dimensions, we
observed the constant scaling by (1/2)d to have no effect.) We repeat-
edly perform this process until only a single element is left for each
algebraically connected group (i.e., we cannot reduce the system size
any further). We give the details of this process below.

To completely avoid merging algebraically disconnected compo-
nents, we base our approach on algebraic aggregation [15, 48], but
without relying on geometric coarsening because the purely geometric
perspective makes it more challenging to efficiently identify whether
elements are algebraically connected or not (especially at the coarser
levels) [16, 20]. In our algebraic aggregation approach, we addition-
ally impose geometry-inspired constraints on aggregatable elements
when forming coarser aggregation groups so as to maintain the regu-
lar grid structures, enable red-black coloring, and ensure sparsity of
prolongation/restriction operators and coarser-level systems. Simul-
taneously, in this aggregation step, we allocate necessary degrees of
freedoms (DOFs) for disconnected components, similar to cell duplica-
tion [16, 20]. In particular, we prefer unsmoothed aggregation because
it lets us keep operators and systems sparse, and hierarchy construction
is much faster than for smoothed aggregation approaches, which suffer
from non-negligible costs of operator smoothing [48]. In addition,
the slower convergence rates of unsmoothed aggregation (compared
to smoothed aggregation) can be significantly improved via Galerkin
scaling, W-cycles, and red-black GS-type smoothers. Our algorithm
for the prolongation operator construction is given in Algorithm 2.

We identify whether a fine cell can be merged into a coarse one
based on the coarse grid ID dx,y,z computed for each fine cell by

dx,y,z = ((x/2)≪ 20) |((y/2)≪ 10) |(z/2). (4)



Algorithm 2 Construction of Prolongation Operator P
1: Compute coarse grid ID dx,y,z for each fine cell using (4)
2: for coarse cells c j in red and then black
3: Set F as fine cells in c j
4: while F is not empty
5: for fine cell fi in F
6: for aggregatable neighbor ni of fi
7: Relate ni to c j and add to a next set G
8: F = G
9: Construct P using (5)

Fig. 3: (Left) 3D Illustration of the access order from a fine cell within a
coarse cell in the scan-and-merge process. Starting from the orange cell,
we reach green cells in the first pass, then cyan in the second pass, and
finally magenta in the third pass. (Middle and right) 2D illustration of the
configuration of fine and coarse cells with red/black dots representing
red/black cells. (Middle) In our algorithm, when fine cells are related to
a coarse cell, the coarse one needs to physically contain the fine ones
(relation drawn as cyan arrows). (Right) Since linear interpolation relates
the red fine cell to the coarser cells that do not physically contain the
fine one (relation drawn as yellow arrows), the linear interpolation-based
prolongation operator is denser.

Then, while scanning algebraically connected fine cells from another
fine cell, if their coarse grid IDs dx,y,z are the same, we permit the
finer cells to merge (i.e., relate) to the coarse one. When fine cells are
algebraically connected following the seven-point stencils, repeating
this scan-and-merge process three times is sufficient because a search
starting from a fine cell can reach the fine one diagonally located in the
coarse cell (see Figure 3 (left)). However, in practice, it can happen
that two neighboring fine cells are not directly connected (e.g., due to
inactive velocity DOFs between two pressure cells [7]) but algebraically
connected through other fine cells, requiring more than three iterations
to reach all algebraically connected fine cells in the coarse cell. Fur-
thermore, it is generally not possible to know how many iterations
are necessary to reach all of the (algebraically connected) duplicated
fine cells in the coarse cell. As such, we repeat this scan-and-merge
process until no fine cells can further be merged into the coarse cell (see
Algorithm 2), which can be considered as a variant of the flood fill algo-
rithm based on the breadth-first search (BFS) for connected component
analysis (CCA). Here, we note that our aggregation procedure eschews
eliminating weakly connected elements with small off-diagonal values,
unlike other AMG approaches [15, 28], to avoid cutting connections
of elements in the grid structure, and assembles red coarse cells first
and then black ones to ensure the special block matrix structure (see
§4.3). Once we identify the relations between fine and coarse cells, we
generate the prolongation operator as

Pi j =

{
1 if fine cell i and coarse cell j are related,
0 otherwise.

(5)

Since each fine cell is related to a single coarse cell, the resulting
prolongation operator is guaranteed to be full column rank.

Our approach generates a so-called piecewise constant prolongation
operator, and if all neighboring elements are algebraically connected in
the regular grid structure, the resulting prolongation operator is exactly
the same as the one generated by the previous topology-oblivious GIA

approaches using 8-to-1 averaging [38, 51]. In addition, the cost for
prolongation operator construction is comparable to algebraic aggrega-
tion [15, 48] and GIA [38, 51] (see our supplementary materials). Our
algorithm enforces that finer cells are related to a coarser one only if
these finer ones are physically included inside the coarser one (see 2D
illustration in Figure 3 (middle)). This rule ensures that the resulting
prolongation operator and thus coarser-level systems are sparse, and
the coarser-level systems are structurally identical to the finer ones,
enabling repeated applications of the same coarsening procedure and
red-black coloring.

If we were instead to relate a finer cell to coarser cells that do not
physically contain the finer cell (e.g., via trilinear interpolation [30], see
Figure 3 (right)), the prolongation operators would be denser (though
they also become smoother, similar to smoothed aggregation [48]),
leading to denser and denser coarser-level systems and invalidating the
red-black coloring with the seven-point stencil (although we would still
be able to maintain the regular grid structures).

4.3 Block Matrix Structures
Given the red and black cells aggregated in this order, we can rewrite
the preconditioning system Ax = b (and corresponding coarser-level
systems) in block form as[

Arr Arb
Abr Abb

][
xr
xb

]
=

[
br
bb

]
, (6)

where subscripts r and b indicate red and black colors (for variables,
cells, etc.), respectively. We observe that Arb = AT

br. This matrix
structure enables sequential access to xr, completely avoiding access
to xb and improving the memory locality, and vice versa. In addition,
because a red variable is algebraically connected exclusively to itself or
black variables (and vice versa) due to the seven-point Cartesian finite-
difference stencils in 3D (five-point stencils in 2D) at the finest level,
Arr and Abb are guaranteed to be diagonal [37], and this diagonality
also holds at the coarser levels due to our coarsening scheme. (If we
did not aggregate all algebraically connected fine cells in a coarse cell
during the P construction, the result would be multiple coarser level
DOFs coupled with each other, causing Arr and Abb to no longer be
strictly diagonal and thus invalidating the seven-point stencils.) Given
the diagonality of these matrices, we define Drr = Arr and Dbb = Abb
for convenience, and precompute and store D−1

rr and D−1
bb prior to

performing CG iterations to enable efficient smoothing operations. In
addition, we can directly access diagonal elements Arr and Abb as
the first and last entries of A at the corresponding row in the CSR
format, respectively, since Arr and Abb have only one non-zero per
row. Furthermore, due to this structure, we can exclusively access
the non-zeros in the Arb and Abr blocks by skipping the first and last
entries of A at the corresponding row, respectively.

4.4 RBSSOR Presmoothing with Zero-Initialization
Considering the Cartesian grid structures and seven-point stencils that
are strictly maintained from the finest to the coarsest levels, we pre-
fer using a GS-type smoother parallelized via red-black coloring over
weighted Jacobi [33] or SPAI-0 [11]. In addition, we can employ over-
relaxation to improve the effectiveness of smoothing, and symmetrize
the smoother to satisfy the symmetry requirement of CG precondition-
ing [37]. Specifically, we employ a red-black symmetric successive-
over-relaxation (RBSSOR) smoother. Presmoothing operations that
first process red and then black variables (i.e., in forward order) can be
written as

xk+1
r = xk

r +ωD−1
rr (br −Arrxk

r −Arbxk
b), (7)

xk+1
b = xk

b +ωD−1
bb (bb −Abrxk+1

r −Abbxk
b), (8)

where k denotes the smoothing iteration index, and ω the over-
relaxation parameter (we use ω = 1.2). When ω = 1, RBSSOR is
equivalent to red-black symmetric GS (RBSGS).

As we perform only one W-cycle with one presmoothing (for effi-
cient CG preconditioning [10, 33, 47]) along with the necessary zero-
initialization for symmetric Krylov solvers [37, 46], we take advantage



of this zero-initialization to eliminate some unnecessary matrix-vector
multiplications in (7) and (8) (as has also been done with damped
Jacobi and SPAI-0 [3, 33, 43]), leading to

xk+1
r = ωD−1

rr br, (9)

xk+1
b = ωD−1

bb (bb − cb), cb = Abrxk+1
r . (10)

Here, cb can be reused for the residual computation (§4.5). The opti-
mized RBSSOR presmoothing operations (9) and (10) remove essen-
tially half of the matrix-vector multiplications needed to compute Ax
since most of the non-zeros are in Arb and Abr (whereas using damped
Jacobi and SPAI-0, matrix-vector multiplication in presmoothing can
be completely eliminated [3, 33, 43]).

While one can use any symmetric linear solver (e.g., Cholesky-based
direct solver or MICCG [9]) at the coarsest level of MG preconditioning
in general, we simply perform a smoothing operation, as done for
presmoothing, because our coarsest system consists of a set of 1×1
systems.

4.5 First Residual Computation
To perform the W-cycle algorithm, we need to compute the residual r
immediately after presmoothing (see Algorithm 1, line 6). The residual
defined by r = b−Ax can be rewritten for red and black variables as

rr = br −Arrxr −Arbxb, (11)
rb = bb −Abrxr −Abbxb = bb − cb −Dbbxb. (12)

Here, Abrxr in (12) is equivalent to cb = Abrxk+1
r in (10) as xr is not

updated in (10). As such, we can compute and store cb during the
presmoothing for xb (10) and avoid recomputing cb when computing
rb in (12). This optimization (which is not applicable to damped
Jacobi or SPAI-0) allows us to further remove half of the matrix-vector
multiplications, indicating that RBSSOR can essentially omit one full
matrix-vector multiplication (in combination with the optimization
within the presmoothing), equivalently to damped Jacobi and SPAI-
0 [33, 43], if V-cycle is used. In addition, we can directly access Dbb as
the last element in the row due to the CSR format (or as precomputed
values), completely skipping access to Abr when computing Abbxb
in (12). Furthermore, since rb,i (ith element of rb) is dependent only
on xb,i (ith element of xb) among xb, we can compute rb,i once we
obtain xb,i by (10). This fact enables us to unify (12) with (10) (i.e.,
computing xb,i and rb,i together in this order) and to further remove the
extra computation pass for (12).

4.6 RBSSOR Resmoothing
To perform the minimal amount of resmoothing while satisfying the
symmetry requirement of CG preconditioning in the W-cycle [37], one
possible approach is to perform a single forward or backward smooth-
ing while switching the order every time at the coarser levels, and
performing both forward and backward smoothing at the finest level.
However, switching the smoothing order complicates the implementa-
tion and its optimization. Since the coarser-level smoothing is much
less costly than that of the finest level, we prefer to ensure symmetry
within each individual resmoothing, by performing forward and back-
ward smoothing (without requiring other resmoothing operations at the
same level for symmetry). Specifically, we perform resmoothing in the
order of red-black black-red; we have tested black-red red-black and
observed no particular differences. The resmoothing operations can
thus be written as

xk+1
r = xk

r +ωD−1
rr (br −Arrxk

r −Arbxk
b), (13)

xk+1
b = xk

b +ωD−1
bb (bb −Abrxk+1

r −Abbxk
b), (14)

xk+2
b = xk+1

b +ωD−1
bb (bb −Abrxk+1

r −Abbxk+1
b ), (15)

xk+2
r = xk+1

r +ωD−1
rr (br −Arrxk+1

r −Arbxk+2
b ). (16)

Given the equivalence of Abrxk+1
r in (14) and (15), and independence

of xr and xb from any other red and black variables except for itself,

respectively, we can unify operations for xb ((14) and (15)) to remove
unnecessary operations as

xk+2
b = (1−ω)2xk

b +(2−ω)ωD−1
bb (bb −Abrxk+1

r ). (17)

In addition, since Arr = Drr, we can rewrite (16) with cr to unify the
resmoothing for xr (16) and residual computation for rr (19) (see §4.7)
as

xk+2
r = (1−ω)xk+1

r +ωD−1
rr (br − cr), cr = Arbxk+2

b . (18)

4.7 Second Residual Computation
The second residual computation (Algorithm 1, line 11) can be written
as

rr = br −Arrxr −Arbxb = br −Drrxr − cr, (19)
rb = bb −Abrxr −Abbxb. (20)

We unify (19) and (18) to eliminate unnecessary computations, as done
for the first residual computation (12) and presmoothing (10).

4.8 RBSSOR Postsmoothing
Given the resmoothing symmetrized by itself, we perform postsmooth-
ing in the reverse order of presmoothing to satisfy the symmetry re-
quirement [37], first processing black and then red variables as

xk+1
b = xk

b +ωD−1
bb (bb −Abrxk

r −Abbxk
b), (21)

xk+1
r = xk

r +ωD−1
rr (br −Arrxk

r −Arbxk+1
b ). (22)

5 PRIMAL-DUAL BOX-CONSTRAINED CONVEX QP SOLVER

To avoid the performance bound due to active-set updates [17, 18], we
propose a new barrier-based box-constrained convex QP solver based
on a primal-dual interior point method. This approach completely
avoids the use of an active set while taking full advantage of our AMG
preconditioner for inner linear solves.

5.1 Primal-Dual Interior Point Method for QP
We consider a box-constrained convex QP problem written as

x = argmin
c(x)≥0,

f (x), f (x) =
1
2

xT Ax−bT x, (23)

with optimization variable x, SPD M-matrix A, vector b, and constraint
function vector c(x). The constraint function vector can be defined to
support both lower and upper bounds as c(x) = [cT

l (x),c
T
u (x)]T using

cl(x) = x−xl ≥ 0, cu(x) = xu −x ≥ 0, (24)

where xl and xu denote the lower and upper bounds, respectively. If
the ith variable xi does not have lower/upper bounds, we do not define
any corresponding constraints. Considering that variables (e.g., x) will
be represented in single- or double-precision floating-point, the opera-
tors “≥” and “>” can be used almost interchangeably because, when
c(x) = 0, we can enforce c(x)+ε > 0 by introducing a tiny (physically
negligible) positive offset value, ε (e.g., 10−16 for double-precision
values). Hereafter, we consider that ≥ and > are interchangeable for
convenience, and thus logb and b−1 are valid for a scalar b(≥ 0).

While the primal-dual interior point method can be formulated in
multiple ways [36, §14, §16.6, §19], we derive its formulation via a
barrier function for a slack variable. Given a slack variable s= [sT

l ,s
T
u ]

T

introduced for the inequality constraints c(x), i.e.,

c(x)− s = 0, s ≥ 0, (25)

we can formulate an augmented objective L(x,s,z) with a Lagrange
multiplier z = [zT

l ,z
T
u ]

T (≥ 0), a log-barrier function for s, and a barrier
parameter µ as

L(x,s,z) = f (x)−µ ∑
i

logsi − zT (c(x)− s). (26)



The associated Karush–Kuhn–Tucker (KKT) conditions are given as

∂L
∂x

= Ax−b−JT
l zl −JT

u zu = 0, (27)

∂L
∂ sl

=−µS−1
l el + zl = 0,

∂L
∂ su

=−µS−1
u eu + zu = 0, (28)

∂L
∂zl

=−(x−xl − sl) = 0,
∂L
∂zu

=−(xu −x− su) = 0, (29)

where the matrix Jl =
∂cl(x)

∂x is a constant diagonal matrix (i.e., Jl = JT
l )

with its ith diagonal element being 1 if xi has a lower bound xl,i and 0

otherwise, and similarly Ju =
∂cu(x)

∂x is a constant diagonal matrix with
its ith diagonal element being −1 if xi has an upper bound xu,i and 0
otherwise. The matrices Sl and Su are diagonal with their ith diagonal
elements equal to sl,i and su,i, respectively, and el and eu are vectors
of all ones with the same dimensions as sl and su, respectively. To
improve numerical conditioning, we can left-multiply (28) by Sl and
Su [36], obtaining

−µel +Slzl = 0, −µeu +Suzu = 0, (30)

and arrive at a nonlinear system consisting of (27), (29), and (30).

5.2 Newton Step Direction
To find the optimal solution for the nonlinear system consisting of
(27), (29), and (30), applying Newton’s method (while symmetrizing
its Jacobian) leads to the following unconstrained symmetric indefinite
linear system (known as a primal-dual system [36]) to compute the
Newton descent directions ∆x, ∆s, and ∆z: A O −JT

O W I
−J I O

 ∆x
∆s
∆z

=

 − ∂L
∂x

− ∂L
∂ s

− ∂L
∂z

 , (31)

where J =
∂c(x)

∂x , O denotes the zero matrix, I the identity matrix, and
W = ZS−1 (S and Z are diagonal matrices with their ith diagonal
elements set to si and zi, respectively). Solving this large symmetric
indefinite system (31) (whose size can be up to 5N ×5N when x has
length N) yields the correct descent direction; however, it is possible to
derive a much smaller SPD system given that there are a large number
of inequality constraints c(x). By first eliminating ∆s from (31), we
obtain [

A −JT

−J −W−1

][
∆x
∆z

]
=

[
− ∂L

∂x
W−1 ∂L

∂ s −
∂L
∂z

]
, (32)

and then eliminating ∆z, we arrive at the smaller SPD system(
A+JT WJ

)
∆x =−∂L

∂x
+JT

(
W

∂L
∂z

− ∂L
∂ s

)
. (33)

Furthermore, by explicitly representing subscripts l and u, introducing
Newton iteration index k, and further simplifying the system with (27)
and (28), we finally obtain(

A+ ∑
i=l,u

JT
i Wk

i Ji

)
∆xk =−∂Lk

∂xk + ∑
i=l,u

JT
i

(
Wk

i
∂Lk

∂zk
i
− ∂Lk

∂ sk
i

)
(34)

= b−Axk + ∑
i=l,u

JT
i

(
µ[sk

i ]
−1 +Wk

i
∂Lk

∂zk
i

)
, (35)

where we define Wl = ZlS−1
l ,Wu = ZuS−1

u , let Zl and Zu denote
diagonal matrices with ith diagonal elements equal to zl,i and zu,i,
respectively, and let [sl ]

−1 and [su]
−1 denote elementwise inverses of

sl and su, respectively. This system is SPD, and its size is N ×N.

In addition, as ∑i=l,u JT
i Wk

i Ji in (34) is diagonal due to the special
structures of box constraints, the resulting system matrix is an M-
matrix since A is an M-matrix. This diagonality also lets us efficiently
update the system matrix stored in the CSR format (if necessary, we
can precompute indices to access diagonal elements in advance). In
addition, we compute and store ∂Lk

∂zk
l

and ∂Lk

∂zk
u

here for later use in (37).

After we obtain ∆xk by solving the reduced unconstrained linear
system (34) using AMGCG (see §4 and §5.4) or any other linear solver,
we can recover the eliminated descent directions ∆sk and ∆zk by

∆sk = J∆xk − ∂Lk

∂zk , ∆zk =−Wk
∆sk − ∂Lk

∂ sk , (36)

and thus ∆sk
l ,∆sk

u,∆zk
l , and ∆zk

u are given by

∆sk
i = Ji∆xk − ∂Lk

∂zk
i
, ∆zk

i =−Wi∆sk
i +µ[sk

i ]
−1 − zk

i , (37)

where i = l,u.
Notably, applying Newton’s method directly to the augmented objec-

tive (26) instead to minimize it without going through (30) leads to a
so-called primal system, which is more ill-conditioned compared to the
primal-dual system (31) [36]. Subsequently eliminating the dual and
slack variables (also via s = c(x)) leads to a formulation exactly the
same as the one derived from the log-barrier method only with primal
variables x.

5.3 Solution Update
In the traditional primal-dual interior point method for nonlinear func-
tions, or even for QP with quadratic objectives, it is typically necessary
to select an appropriate step length (e.g., via line search). Doing so
avoids violating the imposed constraints for the primal variable x and
the non-negative constraints for the slack variable s ≥ 0 and Lagrange
multiplier z ≥ 0 (or to decrease a corresponding merit function) when
updating x, s, and z [36], and is needed because violating these con-
straints can make the solver diverge or fail to converge to correct
solutions. However, the step size chosen to satisfy these constraints
can often be small, which significantly slows down the convergence
of the solver. Therefore, we exploit two properties of our problem:
the uniqueness of the solution for the convex QP and the fact that the
constraints are specifically box constraints. Since a convex QP has
a unique solution [36], it is still possible to converge to the correct
solution even if solution candidates temporarily violate the constraints
and are projected back into the valid solution domain. In addition, due
to the box shape of the constraints, violated variables can be easily
projected into the valid solution domain using simple clamping, unlike
for general QPs with linear constraints (which would require solving
another expensive constraint minimization problem just for the projec-
tion) [36]. Specifically exploiting these features, we simply update x, s,
and z (without step selection) using

xk+1 = clamp(xk +∆xk,xl ,xu), (38)

sk+1 = max(sk +∆sk,ε), zk+1 = max(zk +∆zk,ε). (39)

5.4 Implementation Details
The algorithm of our primal-dual box-constrained convex QP solver is
given in Algorithm 3. We initialize x0 with x0 = clamp(0,xl ,xu) taking
the box constraints into account. For the slack and Lagrange multiplier
variables, we initialize with s0 = e and z0 = e to ensure s ≥ 0 and z ≥ 0,
avoiding the too close proximity of the constraint boundaries [36].

Given the homotopy nature of the traditional interior point methods,
they gradually reduce the barrier parameter µ toward 0 as the solution
candidates approach the correct solution. However, we found that if
µ is far from 0 then the nonlinear system due to the KKT conditions
(27), (28), and (29) can generate local minima which differ from the
correct solution; furthermore, clamping the solution candidates makes
it more likely to erroneously converge to such local minima. As such,



Algorithm 3 Primal-Dual Box-Constrained Convex QP Solver

1: k = 0,µ = 10−20

2: Initialize xk = clamp(0,xl ,xu), sk = e, and zk = e
3: Compute A
4: do
5: Compute the right hand side using (35)
6: Update the diagonals of the system matrix as (34)
7: Obtain ∆xk by solving (34) with AMGCG (see §4)
8: Recover ∆sk and ∆zk by (37)
9: Update to xk+1 by (38) and sk+1 and zk+1 by (39)

10: k = k+1
11: while max(∥∆x∥2 ,∥∆s∥2 ,∥∆z∥2)> εN

we initialize and fix the barrier parameter as µ = 10−20. This choice
ensures that the correct and unique solution remains the same during
Newton iterations.

Given the correct unique solution during the optimization procedure,
we prefer using an inexact Newton’s method because performing more
Newton iterations is typically more efficient than spending more time
to obtain more accurate Newton descent directions [36]. We therefore
apply early termination of AMGCG iterations for (34) when obtaining
the Newton step directions. While performing just one AMGCG itera-
tion is minimal, we observed that the computed descent direction was
typically not accurate enough, often failing to converge to correct solu-
tions. Considering that CG is a rougher (as opposed to smoother) [39],
it was necessary to perform at least a few AMGCG iterations to obtain
sufficiently accurate Newton step directions in our experiments. We
typically use up to three AMGCG iterations to balance efficiency and
accuracy.

We terminate the Newton iterations based on the maximum L2
norm of the Newton step directions. Specifically, we evaluate whether
max(∥∆x∥2 ,∥∆s∥2 ,∥∆z∥2) < εN holds or not (where εN denotes the
maximum error threshold). This condition allowed us to reliably obtain
converged visual results in our experiments.

6 APPLICATION TO DIFFUSION EQUATIONS

As an additional application of our QP solver, we consider an implicit
heat diffusion with box constraints, which can specifically be written as

(I+αL)q = qt , s.t. ql ≤ q ≤ qu, (40)

where I and L denote the identity and Laplacian matrices, α(> 0) a
scaling parameter (including diffusion coefficient and time step size), q
and qt the next and current temperature, respectively, t time, ql and qu
lower and upper bounds for q, respectively. As both I and L are SPD
M-matrices, I+αL is also an SPD M-matrix. Given the equivalence
of the KKT conditions of the box-constrained QPs to this linear system
with box constraints, we can reformulate (40) into a quadratic form as

q = argmin
ql≤q≤qu

1
2

qT Aq−qT qt , (41)

where A = I+αL. This box-constrained QP can efficiently be handled
using our barrier-based QP solver.

7 RESULTS AND DISCUSSIONS

We implemented our method in C++17 with double-precision floating-
point for scalar values and parallelized it using OpenMP. All examples
used adaptive timestepping with CFL numbers of 3.0 or larger (em-
pirically chosen based on visual quality) with 60 frames per second.
Unless otherwise mentioned, we use the non-negative pressure con-
straints defined by (2), termination norm of 102 (which is around 10−4

of the relative norm) for Newton iterations, and termination relative
residual of 10−4 for CG. We executed two scenarios (Figure 4 and
Figure 8) on a cluster with dual Intel Xeon Silver 4314 (each has 16
cores, and thus totaling to 32 cores) and 256GB RAM, and the other
scenarios on a desktop machine with an Intel Core i7-9700 (8 cores)
with 16GB RAM.

Table 1: Simulation settings and results for Figure 4, where the system
size is 2.4M with 16.3M non-zeros. The time for preconditioning prepara-
tion is denoted by Tp, CG solve by Ts, the number of CG iterations per
solve by N, and total time for the pressure solve phase (including level-
set computations, valid cell evaluations, operator construction, system
assembly, and system solve) by T . Timing is given in average seconds
for a single frame. ZPR and ZA denote the sum of non-zeros over the
MG hierarchy for P+R and A (including the top level), respectively. ZIC
denotes the number of non-zeros in the lower triangular matrix computed
by (modified) incomplete Cholesky.

Scheme Tp Ts N T ZPR ZA ZIC

MIC 0.68 22.10 505.4 26.85 9.3M
SAAMG 1.15 0.66 18.9 5.38 10.1M 27.3M
GIAAMG 0.74 2.01 26.4 6.57 2.8M 18.6M

TAGIAAMG 0.79 0.53 6.1 5.09 2.9M 19.0M

7.1 Preconditioning Evaluation for Linear Solve
To evaluate the efficacy of our topology-aware GIAAMG approach,
we compare various preconditioning schemes for CG. We experiment
with fluids in a maze-like structure with purely Neumann boundaries
and continuously added external forces [43], using a grid resolution of
1603, as shown in Figure 4. We compare the following preconditioning
schemes:

1. MIC: baseline [9];

2. SAAMG: smoothed aggregation AMG [48];

3. GIAAMG: [38, 51];

4. TAGIAAMG (ours): our topology-aware GIAAMG.
We use V-cycle and SPAI-0 for SAAMG and W-cycle and RBSSOR for
GIAAMG and TAGIAAMG. We use a single simulation step per frame,
and termination relative residual of 10−8 for CG. Figure 5 compares
profiles of the computational cost for the linear system solve (i.e.,
preconditioning preparation and CG solve), and Table 1 summarizes
the simulation settings and averaged results.

As all the approaches fully converged, they generated comparable
visual results while MIC was much slower than the others, and was
not particularly memory efficient compared to TAGIAAMG (9.3M
+ 16.3M vs. 2.9M + 19.0M). Compared to the topology-oblivious
GIAAMG approach, SAAMG and TAGIAAMG require fewer CG iter-
ations because these schemes enable more effective preconditioning by
respecting the fluid topology even at the coarser levels. Consequently,
TAGIAAMG is faster than GIAAMG by a factor of around 3.8 in the
CG solve while having a negligible additional cost for preconditioning
preparation. As SAAMG requires smoothing the prolongation operator,
the preconditioning cost is more expensive than that of TAGIAAMG.
In addition, using W-cycle and RBSSOR reduces the necessary iter-
ations more than V-cycle with SPAI-0 does, resulting in a slightly
better performance for TAGIAAMG over SAAMG. In addition, since
the restriction/prolongation operators and coarser-level systems are
much sparser, TAGIAAMG used around half of memory compared to
SAAMG.

7.2 Box-Constrained QP Solver Evaluation
We conduct two evaluations. The first evaluation is to justify our QP
solver design by comparing various variants of barrier-based QP solvers
(§7.2.1). The second one is to evaluate the characteristics of MPRGP
and our solver with different preconditioners (§7.2.2).

7.2.1 Barrier-based QP Solvers
We employ a 3D cubic domain, where a source term is placed on the
domain center while the outermost boundaries are fixed with a zero
pressure Dirichlet boundary condition and an upper bound imposed on
the solution. We experiment with three different resolutions: 643,1283,
and 2563. We compare the following schemes:

1. PLB: primal log-barrier method [36];

2. IPM-P: interior point method that solves the primal system [36];
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Fig. 4: Fluids in a maze-like domain with purely Neumann boundaries and continuously added external forces, simulated with different preconditioners
for CG (see §7.1). Particles are color-coded based on the fluid velocities. All approaches generate comparable visual results.
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Fig. 5: Log-scale profiles of the preconditioning preparation + CG solve
time per frame. Our TAGIAAMG achieves 17.3×, 1.4×, and 2.1× faster
performance than MIC, SAAMG, and GIAAMG, respectively.

Table 2: Evaluation of various box-constrained convex QP solver variants
using resolutions of 643, 1283, and 2563. Numbers represent the solve
time (Newton iteration count). Timing is shown in seconds.

Scheme \ Res 643 1283 2563

PLB 1.24 (16) 13.72 (24) 102.97 (23)
IPM-P 1.27 (17) 13.71 (25) 114.54 (25)

IPM-PD 0.74 (9) 5.52 (9) 45.63 (9)
IPM-PD+HS 4.00 (53) 33.36 (56) 281.59 (58)

IPM-PD+CAB+SS 2.02 (31) 21.06 (36) 203.02 (41)
Mehrotra 1.49 (15) 14.73 (15) 121.88 (16)

3. IPM-PD (ours): IPM that solves the primal-dual system;

4. IPM-PD+HS: IPM-PD with halved steps;

5. IPM-PD+CAB+SS: IMP-PD using complementarity-based adap-
tive barrier parameter tuning with step selection [36];

6. Mehrotra: Mehrotra predictor-corrector method [36].

With PLB, IPM-P, and IPM-PD (ours), we aggressively update solution
candidates without using any step selection procedure and clamp them
if constraint violation occurs. With IPM-PD+HS, we update the solu-
tion candidate in the same way but with halved step lengths. (Although
we have tested step selection with IPM-PD, it stagnated due to the need
for excessively small steps). With IPM-PD+CAB+SS and Mehrotra, we
use step selection. With PLB, IPM-P, IPM-PD (ours), and IPM-PD+HS,
we use a fixed barrier parameter, while with IPM-PD+CAB+SS and
Mehrotra, the barrier parameters are adjusted following their methods.
In this comparison, we uniformly set 10−7 as their termination New-
ton step norm since IPM-P and IPM-PD+CAB+SS did not converge
to a norm value lower than that due to numerical issues while other
approaches were able to reach a norm value lower than 10−10. (In
practice, due to better numerical conditioning, IPM-PD and Mehrotra

Table 3: Simulation setting and results using the maze scenario, simu-
lated with a grid resolution of 1443 over five frames. The system size is
around 1.4M. The number of outer Newton iterations is denoted by M,
the number of CG/MPRGP iterations per solve by N, and total time (s)
for the QP solve and entire pressure solve phase per frame by Ts and T ,
respectively. The top three methods are linear solvers included only for
comparison.

Scheme M N Ts T
MICCG 434.0 13.44 17.54

SAAMG-CG 12.0 1.06 5.41
TAGIAAMG-CG 6.0 0.73 5.30

MIC-MPRGP 1,264.0 55.25 60.42
SAAMG-MPRGP 233.2 13.58 18.47
IPM-PD+MICCG 23.4 100.0 62.67 67.78

IPM-PD+SAAMG-CG 25.0 2.0 12.38 17.13
IPM-PD+TAGIAAMG-CG 22.2 2.0 7.78 12.94

methods lead to much smaller residual than PLB and IPM-P even with
the same termination norm). Table 2 summarizes the evaluation settings
and results.

Among the tested variants, our IPM-PD was fastest and most scal-
able, exhibiting the smallest Newton iteration counts. As PLB and
IPM-P solve essentially the same primal system, their computational
cost and Newton iteration counts were comparable. Their performance
is worse than our IPM-PD due to their ill-conditioned primal system
compared to the primal-dual system because the resulting Newton
descent direction can neglect the constraints, making the projected
variables significantly deviate from the correct solution [21]. On the
other hand, using halved steps to mitigate the constraint violation
significantly slows down convergence with IPM-PD+HS. Similarly,
IPM-PD+CAB+SS was slow to converge due to small steps chosen
during step selection even though the barrier parameter is adjusted with
the complementarity-based approach [36]. The Mehrotra predictor-
corrector method was able to reliably and scalably converge to the
correct solution with relatively few Newton iterations although its per-
formance was not fast enough because this approach needs two linear
solves (despite it being the same system matrix) for prediction and
correction [36].

7.2.2 Characteristics of MPRGP and IPM-PD

Next, we experiment with various preconditioners to evaluate character-
istics of MPRGP and IPM-PD using the maze scenario (Figure 6). We
use a grid resolution 1443 and only the first five frames. We compare
the following schemes:

1. MICCG: reference [9];

2. SAAMG-CG: reference [48];

3. TAGIAAMG-CG: reference;

4. MIC-MPRGP: [34];



Table 4: Simulation setting and results for Figure 6. The number of
Newton iterations denoted by M, the number of CG/MPRGP iterations
per solve by N, the number of substeps per frame by s, and total time
(s) for the system solve and entire pressure solve phase per frame by
Ts and T , respectively. The top pure linear solver method is included for
comparison.

Scheme M N s Ts T
TAGIAAMG-CG 3.5 1.9 0.80 9.56
SAAMG-MPRGP 273.4 2.4 23.87 35.84

IPM-PD+SAAMG-CG. 18.1 2.0 2.3 16.39 28.39
IPM-PD+TAGIAAMG-CG 16.2 2.0 2.4 10.00 22.33

5. SAAMG-MPRGP: [43];

6. IPM-PD+MICCG;

7. IPM-PD+SAAMG-CG;

8. IPM-PD+TAGIAAMG-CG (ours);
The first three methods (denoted ‘reference’) are linear solver methods
included only for comparison, and thus do not actually solve the QP.
We use a termination relative residual of 10−4 for CG/MPRGP and
employ the fast active-set expansion technique [29, 42]. To compare
MPRGP and IPM-PD in a fair condition, we terminate IPM-PD when its
absolute residual (derived from the quadratic objective) is comparable
to that of MPRGP. With IPM-PD, while we use up to two SAAMG-
CG/TAGIAAMG-CG iterations, we use up to 100 MICCG iterations,
as MICCG needed many iterations to achieve convergence of IPM-PD.
Table 3 summarizes the evaluation results.

With MIC, because its preconditioning effectiveness is limited, the
performance of MPRGP is not dictated by active-set updates, causing
MIC-MPRGP to be more efficient than IPM-PD+MICCG. By contrast,
with SAAMG, the performance of MPRGP is dictated by the active-set
updates, making IPM-PD+SAAMG-CG more efficient than SAAMG-
MPRGP. In addition, using TAGIAAMG-CG as an inner solver further
improves the performance, and IPM-PD+TAGIAAMG-CG is around
1.7× faster than SAAMG-MPRGP [43] in the QP solve.

7.3 Separating Solid Boundary
To evaluate the efficacy of our solvers, we compare our method with
the state-of-the-art box-constrained QP solver, SAAMG-MPRGP [43],
using a maze scenario, as shown in Figure 6. We use a grid resolution
of 1283 and 6.0M particles. We compare the following solvers:

1. TAGIAAMG-CG: reference;

2. SAAMG-MPRGP: [43];

3. IPM-PD+SAAMG-CG;

4. IPM-PD+TAGIAAMG-CG (ours).
The ‘reference’ TAGIAAMG-CG scheme is a linear solver approach in-
cluded for comparison purposes. Although we have tested the quadratic
penalty method [36] and augmented Lagrangian method (ALM) [35,36]
(without using clamping to avoid solver stagnation [42]), these ap-
proaches did not converge to the correct solution with moderately large
penalty parameters and they stagnated with very large penalty param-
eters due to numerical issues. Considering these problems and the
difficulty of choosing appropriate penalty parameters for stable con-
vergence, we did not consider them in this comparison. We also did
not consider TAGIAAMG-MPRGP as it is nontrivial to support our
optimized operations that utilize red-black coloring along with active
sets. We use a termination relative residual of 10−3. Figure 7 compares
profiles of the computational cost for the system solve, and Table 4
summarizes the simulation settings and averaged results.

Unlike TAIGAAMG-CG for reference, SAAMG-MPRGP, IPM-
PD+SAAMG-CG, and IPM-PD+TAGIAAMG-CG correctly generated
wall-separating liquid behaviors. Similar to the previous experiment,
as the performance of SAAMG-MPRGP is dictated by the active-set
updates, IPM-PD+SAAMG-CG was more efficient, enabling further

Table 5: Simulation setting and results for Figure 8. The number of non-
negative constraints denoted by c, the number of Newton iterations by M,
the number of CG iterations per solve by N, the number of substeps per
frame by s, and total time (s) for the system solve and entire pressure
solve phase per frame by Ts and T , respectively.

Scheme c M N s Ts T
Unconstrained 0 3.3 5.2 4.06 14.63
Non-splashy 0.1M 6.9 2.0 5.1 15.94 25.89

Splashy 1.4M 13.2 2.0 5.2 26.20 36.64

acceleration and memory usage reduction with TAGIAAMG-CG. Con-
sequently, IPM-PD+TAGIAAMG-CG achieved 2.4× and 1.6× faster
performance with around half the memory usage for the MG hierar-
chy as compared to SAAMG-MPRGP and IPM-PD+SAAMG-CG,
respectively.

7.4 Splashy vs. Non-Splashy

To evaluate the influence of the number of non-negative pressure con-
straints on the performance, we compare liquid simulations in the
double dam break scenario, as shown in Figure 8. We used a grid
resolution of 1603 and 8.0M particles. We compare the following
formulations:

1. Unconstrained: reference without any non-negative constraints;

2. Non-splashy: Non-negative constraints only at the solid bound-
aries with (3);

3. Splashy: Non-negative constraints everywhere with (2).

We use TAGIAAMG-CG for the unconstrained formulation and IPM-
PD+TAGIAAMG-CG for the non-splashy and splashy constrained
formulations. Figure 9 compares profiles of the computational cost for
the system solve, and Table 5 summarizes the simulation settings and
averaged results.

As expected, the unconstrained formulation does not support wall
separation, while both non-splashy and splashy formulations generate
plausible wall-separating liquid behaviors. The choice between non-
splashy and splashy formulations depends on the particular application,
but the splashy formulation (2) introduces 12.5× as many non-negative
constraints as the non-splashy one (3), and thus requires around 1.9×
more iterations and 1.6× more time for the QP solve.

7.5 Dynamic Solid Boundaries

To demonstrate the ability of our solver to support dynamic solid bound-
aries, we simulate a liquid bunny in a moving solid sphere, as shown in
Figure 1. We used a grid resolution of 1923 and 1.0M particles. The
entire pressure solve phase required 24.1 seconds per frame on average.
As the contribution from the moving sphere can seamlessly be encoded
into the quadratic objective (1) on a Cartesian grid structure [7], our
QP solver can handle this scenario, in the same manner as static solid
boundaries.

7.6 Box-Constrained Heat Diffusion

To demonstrate the versatility of our QP solver, we simulate heat dif-
fusion with lower and upper temperature bounds on a static dragon,
discretized on a Cartesian grid (using a resolution of 2563 and 2.2M
active cells) and rendered as color-coded particles, as shown in Fig-
ure 2. We initialize the temperature of the dragon to 50 (K), fix the
middle left and right bands at 0 and 100 (K) as Dirichlet boundary
conditions, respectively, specify outside of the dragon as Neumann
boundary conditions, and set lower and upper temperature bounds as 20
and 80 (K), respectively. Once simulation begins, heat starts diffusing,
and it reaches the equilibrium. Our QP solver correctly handles the
diffusion process and enforces the temperature bounds throughout the
simulation, reaching an equilibrium different from the one generated
without the bounds.



(a) TAGIAAMG-CG (b) SAAMG-MPRGP (c) IPM-PD+SAAMG-CG (d) IPM-PD+TAGIAAMG-CG

Fig. 6: Liquids in a maze-like structure with separating solid-boundary conditions, simulated with different pressure solvers (see §7.3). TAGIAAMG-CG
exhibits suction artifacts on the ceiling, while SAAMG-MPRGP, IPM-PD+SAAMG-CG, and IPM-PD+TAGIAAMG-CG generate wall-separating liquid
behaviors and are visually comparable to each other.
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Fig. 7: Log-scale profiles of the system solve time per frame. Our
IPM-PD+TAGIAAMG achieves 2.4× and 1.6× faster performance than
SAAMG-MPRGP and IPM-PD+SAAMG-CG, respectively.

8 CONCLUSIONS AND FUTURE WORK

We have proposed and evaluated an effective new solver strategy for
pressure Poisson equations with non-negative pressure constraints that
uses an active-set-free primal-dual interior point scheme combined with
AMG preconditioning of the inner CG solves. We achieved additional
speedups by developing and optimizing our topology-aware geometry-
inspired aggregation AMG preconditioner. Below we discuss some
tradeoffs inherent in our approach and highlight exciting directions for
future work.

8.1 Multigrid
Our MG approach is designed to be effective in handling general and
practical liquid simulation scenarios; however, other MG schemes may
be more effective in certain special cases. For example, if boundary
conditions are not complex, GMG or topology-oblivious GIAAMG
approaches are conceptually simpler and can be implemented in a
matrix-free way, performing the necessary operations on the fly and
thus reducing memory usage and computational cost [33, 38]. If sys-
tems are unstructured or have no meaningful geometric structures to
exploit, purely algebraic MG would be the only practical choice among
the other MG schemes [12]. In addition, even when meaningful ge-
ometric information (e.g., regular grid structures) is available, using
such data effectively in the solver does introduce additional complexity
and require extra implementation effort, making the code maintenance
and optimization more cumbersome. As such, computation and mem-
ory efficiency gains from exploiting geometric information may not
necessarily be worthwhile in practice for some applications.

8.2 Unconstrained Inner Linear Systems
Our barrier-based box-constrained convex QP solver involves no active
sets, making the inner linear systems fully unconstrained, and as such,
various linear solvers and preconditioners can be used to solve the inner

linear systems. By contrast, MPRGP [17, 18] needs specially designed
preconditioning schemes for MIC and AMG to take active sets into
account in the linear preconditioning system [43]. This property of our
solver (i.e., unconstrainedness) is favorable and allows us to employ
various approaches that would be nontrivial to use in the presence of
constraints (or active sets), e.g., red-black GS-type solvers/smoothers
(as used in our work), direct solvers based on Cholesky factorization
and triangular solves, preconditioned CG [39], sequential multiplica-
tion [9, 41], or block GS decomposition with specialized solvers for
each subsystem [1, 23]. In particular, as unconstrained problems are
much easier to handle than constrained ones, reformulating constrained
systems into unconstrained ones using our approach appears to be a
promising avenue for addressing challenging systems featuring non-M-
matrices.

8.3 Interior Point Method

Due to the tiny offset value ε and barrier parameter µ , barrier-based
approaches are relatively sensitive to numerical issues even with double-
precision floating-point, e.g., round-off errors and loss of significance
(catastrophic cancellation), and might suffer from either erroneous
early termination or changes in the optimization results that depend
on parameter values and computation orders. While our primal-dual
method was more robust than approaches based on the primal system,
it might be recommended to use the more numerically stable Mehrotra
method in some applications [36]. In addition, although our method
was most efficient among tested variants in our experiment, it is possible
that these approaches might outperform ours depending on scenarios
and choices of algorithm-specific parameters. Holistically investigating
various sets of initialization values, parameter values, and update rules
would be beneficial but lies beyond the scope of our paper, and hence
is left for future work.

Unlike MPRGP [17, 18], our method requires updating the system
matrix in each outer Newton iteration although the update is limited
only to its diagonal entries. As we prepare AMG preconditioning for
each new system, the overhead for preconditioner preparation can be
nonnegligible, especially with early termination. As such, it might be
beneficial to reuse the previous MG hierarchies at the coarser levels,
given that changes are limited to the diagonals.

To accelerate convergence, we exploited the fact that our application
gives rise only to box constraints by aggressively updating solution
candidates while projecting them back to the bounds when constraint
violation occurs. However, for applications involving general linear
inequality constraints, projecting the solution candidates to the nearest
point in the valid solution domain would itself require another expensive
QP solve [36]. Alternatively, one could sequentially project variables
one by one, but this latter approach does not guarantee convergence
despite the solution to the convex QP being unique. It would therefore
be beneficial to respect the linear constraints (without violating them)
within each Newton iteration, as done by step-selection approaches,
e.g., IPM-PD+CAB+SS and Mehrotra methods [36].



(a) Unconstrained (b) Non-splashy (c) Splashy

Fig. 8: Double dam break simulated with different pressure formulations (see §7.4). The unconstrained formulation exhibits the usual suction artifact
on the ceiling, but both non-splashy and splashy formulations correctly generate natural wall-separating liquid behaviors.
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Fig. 9: Log-scale profiles of the system solve time per frame. As the
number of non-negative constraints increases, our QP solver requires
more iterations and thus becomes more expensive.

8.4 Box-Constrained Convex QP Applications and Beyond
Since our method is designed for box-constrained convex QPs with
M-matrices, it seems promising to apply our solver to the componen-
twise frictional stress QP problems for granular flows [34, 42]. On
the other hand, our solver may not offer ideal convergence rates for
box-constrained convex QPs involving non-M-matrices, which arise
in many settings, including frictional contact handling [6], skinning
for non-negative least square [26] and bounded biharmonic weight-
ing [25], cubature optimization [4], or level-set smoothing [8]. As
such, it would be worthwhile to explore effective preconditioners and
solvers for non-M-matrices (e.g., via better coarsening schemes, cy-
cles, and smoothers), demonstrating their efficacy over preconditioned
MPRGP [22, 34, 43]. In addition, considering that past authors have
attempted to apply MPRGP (which was originally developed for box-
constrained convex QPs) to general QPs [32], it could also be fruitful
to apply our method to general QPs, given the versatility of primal-dual
interior point methods, and to evaluate how it compares to existing QP
solvers [14].
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