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1 Multigrid Scheme Evaluation

We evaluate various combinations of cycle, coarsening, and smoothing schemes
within AMGCG to justify our MG design on two scenarios: cubic domain and
maze.

1.1 Cubic Domain Test

We use a 3D cubic domain, where a source term is placed on the domain center
while the outermost boundaries are fixed with a zero pressure Dirichlet boundary
condition (similar to the example in AMGCL [1]). We compare the following
schemes:

1. V+UA+WJ: V-cycle + unsmoothed aggregation + weighted Jacobi;

2. W+UA+WJ: W-cycle + UA + WJ;

3. V+UA+SPAI-0;

4. W+UA+SPAI-0;

5. V+SA+WJ: V + smoothed aggregation + WJ;

6. W+SA+WJ;

7. V+SA+SPAI-0;

8. W+SA+SPAI-0;

9. V+GIA+WJ;

10. W+GIA+WJ;

11. V+GIA+SPAI-0;
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Table 1: Evaluation of cycle, coarsening, and smoothing schemes within
AMGCG, at a resolution of 1283 and 2563. Numbers in the “CG” column are
formatted as: preparation time + CG solve time (CG iteration count). Num-
bers in the “NNZ” column are formatted as: sum of non-zeros over the MG
hierarchy in R and P + A. Timing is shown in seconds. The best results in
each column are highlighted in blue.

Scheme \ Res 1283 2563

CG NNZ CG NNZ

V+UA+WJ 0.20+3.29 (69) 4.6+18.2 2.03+43.20 (100) 37.4+149.7
W+UA+WJ 0.21+1.80 (20) 4.6+18.2 1.80+17.95 (22) 37.4+149.7

V+UA+SPAI-0 0.22+3.15 (67) 4.6+18.2 1.80+41.65 (99) 37.4+149.7
W+UA+SPAI-0 0.22+1.78 (20) 4.6+18.2 1.70+17.05 (21) 37.4+149.7

V+SA+WJ 0.47+1.21 (21) 17.6+24.1 4.29+13.04 (25) 145.6+199.2
W+SA+WJ 0.46+1.50 (12) 17.6+24.1 3.86+14.12 (13) 145.6+199.2

V+SA+SPAI-0 0.46+1.16 (20) 17.6+24.1 3.90+12.30 (24) 145.6+199.2
W+SA+SPAI-0 0.46+1.47 (12) 17.6+24.1 3.85+13.02 (12) 145.6+199.2
V+GIA+WJ 0.18+1.94 (43) 4.6+16.0 1.55+21.43 (54) 37.6+131.0
W+GIA+WJ 0.17+1.38 (17) 4.6+16.0 1.39+12.17 (17) 37.6+131.0

V+GIA+SPAI-0 0.17+1.90 (42) 4.6+16.0 1.37+21.15 (53) 37.6+131.0
W+GIA+SPAI-0 0.17+1.39 (17) 4.6+16.0 1.36+12.12 (17) 37.6+131.0
V+GIA+RBSGS 0.18+1.27 (29) 4.6+16.0 1.37+12.85 (34) 37.6+131.0
W+GIA+RBSGS 0.17+0.71 (9) 4.6+16.0 1.38+6.13 (9) 37.6+131.0
V+GIA+RBSSOR 0.17+1.00 (23) 4.6+16.0 1.36+10.15 (27) 37.6+131.0
W+GIA+RBSSOR 0.17+0.70 (9) 4.6+16.0 1.38+6.12 (9) 37.6+131.0
V+RS+SPAI-0 1.96+1.90 (15) 21.8+40.3 26.60+20.24 (16) 179.6+336.8

12. W+GIA+SPAI-0;

13. V+GIA+RBSGS;

14. W+GIA+RBSGS;

15. V+GIA+RBSSOR;

16. W+GIA+RBSSOR (ours);

17. V+RS+SPAI-0: V + Ruge-Stüben coarsening + SPAI-0.

As both topology-oblivious and topology-aware GIA generate exactly the same
MG hierarchy with this simple domain, we report the performance of topology-
oblivious GIA. As UA, SA, and RS coarsening schemes break the regular grid
structures for red-black coloring (and the superiority of WJ vs. SPAI-0 depends
on contexts [2, 3, 4]), we experiment with WJ (with the optimal parameter
ω = 6/7 [5]) and/or SPAI-0 (with the optimal parameter ω = 1 [2]). For W-cycle
with WJ/SPAI-0, we use just one resmoothing as this was more efficient than
performing two. In this example, we use a termination relative residual of 10−10.
While the Ruge-Stüben approach is too expensive in terms of computation and
memory cost, we include it for reference. Table 1 summarizes the evaluation
settings and results, and Figure 1 gives the log-scale plots of convergence over
CG iterations for a selected set of the schemes.
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Figure 1: Log-scale profiles of convergence over CG iterations. For each scheme,
(128) and (256) represent the used resolutions 1283 and 2563, and drawn with
solid and dashed lines, respectively. Schemes with W-cycles give nearly over-
lapping solid and dashed lines, indicating its scalability.

Cycle: Using W-cycles significantly reduces the number of necessary CG it-
erations compared to V-cycles and scales (almost) linearly because W-cycles
more accurately solve the preconditioning system by focusing more on the
coarser levels. In particular, W-cycles improve efficiency with the unsmoothed
aggregation schemes since the reduced iteration count outweighs their relatively
small additional cost compared to V-cycles. With smoothed aggregation, while
the reduction of the iteration count from W-cycles is not enough to justify their
higher cost for smaller systems given the sufficiently effective V-cycles, W-cycles
would become gradually beneficial for larger systems due to their scalability.

Coarsening: The hierarchy construction was relatively quick for both GIA
and UA (while GIA was slightly faster due to the given geometric informa-
tion) whereas SA is much more expensive due to the additional, non-negligible
cost of smoothing the prolongation operator. In particular, if we use a looser
termination residual or early termination, the setup cost can be more critical.
Furthermore, GIA and UA generate much sparser prolongation/restriction op-
erators and coarser-level systems, spending only half the memory compared to
SA. These sparse operators and systems also contribute to efficient precondi-
tioning. In addition, GIA generates a better hierarchy than UA, resulting in
faster convergence even with the same WJ or SPAI-0 smoothers.

Smoothing: GS-type smoothers (enabled by GIA) significantly reduce the
necessary CG iterations and improve efficiency, outperforming the WJ and
SPAI-0. While using over-relaxation improves the convergence for V-cycles, it
has only negligible effects for W-cycles (see W+GIA+RBSGS andW+GIA+RBSSOR
in Table 1), although the termination relative residual (after 9 iterations for

3



both approaches using 2563) was slightly lower for W+GIA+RBSSOR than
W+GIA+RBSGS (1.69 × 10−11 vs. 3.00 × 10−11). We conjecture that the ef-
fectiveness of over-relaxation becomes smaller with a W-cycle because precon-
ditioning effectiveness is almost saturated with the W-cycle by itself.

In summary, we find that our W+GIA+RBSSOR is most efficient in both
computational cost and memory usage.

1.2 Maze Test

Next, we experiment with the topology-critical maze example without free sur-
faces (see the main paper) to evaluate the efficacy of our topology-aware coars-
ening. We use a grid resolution of 1283 and 1923 and first five frames for
evaluation. We compare the following schemes:

1. V+SA+SPAI-0;

2. W+SA+SPAI-0;

3. V+GIA+SPAI-0;

4. W+GIA+SPAI-0;

5. V+GIA+RBSGS;

6. W+GIA+RBSGS;

7. V+GIA+RBSSOR;

8. W+GIA+RBSSOR;

9. V+TAGIA+WJ: V + topology-aware GIA + WJ;

10. W+TAGIA+WJ;

11. V+TAGIA+WJ(1): V + TAGIA + WJ with ω = 1

12. W+TAGIA+WJ(1);

13. V+TAGIA+SPAI-0;

14. W+TAGIA+SPAI-0;

15. V+TAGIA+RBSGS;

16. W+TAGIA+RBSGS;

17. V+TAGIA+RBSSOR;

18. W+TAGIA+RBSSOR (ours);

19. V+TAGIA+RBSSOR+SPAI-0: V + TAGIA with RBSSOR at the finest
and SPAI-0 at the coarser levels;
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Table 2: Evaluation of cycle, coarsening, and smoothing schemes within
AMGCG, at a resolution of 1283 and 1923. Numbers are formatted as: prepa-
ration time + CG solve time (CG iteration count). Timing is shown in seconds.
The best results in each column are highlighted in blue.

Scheme \ Res 1283 1923

V+SA+SPAI-0 0.64+0.71 (19.4) 2.06+2.69 (21.8)
W+SA+SPAI-0 0.64+0.85 (11.0) 2.04+2.75 (11.0)
V+GIA+SPAI-0 0.40+4.27 (152.2) 1.34+17.00 (174.8)
W+GIA+SPAI-0 0.40+2.22 (43.6) 1.30+8.47 (47.4)
V+GIA+RBSGS 0.40+2.89 (107.4) 1.32+11.67 (125.2)
W+GIA+RBSGS 0.39+1.31 (27.0) 1.30+5.22 (30.6)
V+GIA+RBSSOR 0.40+2.60 (96.2) 1.31+10.95 (117.6)
W+GIA+RBSSOR 0.39+1.25 (25.6) 1.28+5.08 (30.2)
V+TAGIA+WJ 0.43+1.64 (58.4) 1.37+6.25 (63.8)
W+TAGIA+WJ 0.42+0.71 (13.8) 1.36+2.33 (13.0)
V+TAGIA+WJ(1) 0.42+17.20 (595.8) 1.37+66.88 (686.2)
W+TAGIA+WJ(1) 0.42+0.77 (15.2) 1.39+2.65 (14.8)
V+TAGIA+SPAI-0 0.42+1.80 (63.4) 1.37+6.85 (70.4)
W+TAGIA+SPAI-0 0.42+0.74 (14.4) 1.37+2.44 (13.8)
V+TAGIA+RBSGS 0.45+1.19 (37.6) 1.37+3.81 (40.8)
W+TAGIA+RBSGS 0.42+0.37 (7.2) 1.37+1.21 (7.0)
V+TAGIA+RBSSOR 0.41+0.89 (31.0) 1.37+3.24 (34.2)
W+TAGIA+RBSSOR 0.42+0.34 (6.8) 1.40+1.14 (6.6)

V+TAGIA+RBSSOR+SPAI-0 0.42+1.27 (46.6) 1.37+4.94 (52.4)
W+TAGIA+RBSSOR+SPAI-0 0.42+0.61 (12.2) 1.40+1.99 (11.2)

20. W+TAGIA+RBSSOR+SPAI-0;

In this example, we set the termination relative residual to 10−8, maximum
CG iteration count 1, 000, and optimal parameters for WJ and SPAI-0, unless
otherwise mentioned. Table 2 summarizes the evaluation settings and results
(averaged over five frames).

Cycle: Similar to the previous experiment, W-cycle is quite effective and
improves the performance as both GIA and TAGIA are unsmoothed aggrega-
tion. In particular, while WJ(1) with the suboptimal parameter sometimes fails
to converge with V-cycle, it quickly converges with W-cycle, reducing the iter-
ation count from 686.2 to 14.8, which further demonstrates the effectiveness of
W-cycles.

Coarsening: As our topology-aware approaches generate more effective
coarser-level systems (similar to SA) with a very small extra cost, TAGIA im-
proves the performance due to the reduced number of CG iterations, compared
to topology-oblivious GIA. In particular, W+GIA+RBSSOR spends 5.08s with
30.2 iterations while our W+TAGIA+RBSSOR does 1.14s with 6.6 iterations
only, achieving the performance gain of 4.5× for the CG solve. In addition,
topology-aware approaches with W-cycle (W+SA and W+TAGIA) are scal-
able whereas W+GIA is not, as the required CG iterations increase by around
10-20% from the resolution 1283 to 1923.
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Table 3: Performance evaluation with single-precision floating-point. M denotes
the number of MPRGP iterations, C number of inner CG iterations on average,
and N number of Newton iterations, and T total time in seconds.

Scheme M C N T

SAAMG-MPRGP 74.0 4.96
IPM-PD (SAAMG-CG) 6.7 6.0 4.84
IPM-PD (GIAAMG-CG) 3.8 4.0 1.83

Smoother: While the hybrid smoother, RBSSOR+SPAI-0, has an advan-
tage that it can be applied to the system with red-black coloring available only
at the finest level, our dedicated coarsening scheme enables red-black coloring
from the finest to coarsest levels, allowing us to use RBSSOR entirely. Due to
the GS-type smoothing, our RBSSOR is more efficient than RBSSOR+SPAI-0,
proving that using GS-type smoothers not only at the finest but also the coarser
levels can further accelerate convergence.

In summary, we find that our W+TAGIA+RBSSOR is most efficient and
scalable in this topology-critical maze scenario.

2 IPM-PD with Single-Precision Floating-Point

To confirm the compatibility of our IPM-PD with single-precision floating-
point, we perform a simple experiment using our method, along with SAAMG-
MPRGP. We use a 3D cubic domain, where a source term is placed on the
domain center while the outermost boundaries are fixed with a zero pressure
Dirichlet boundary condition and an upper bound imposed on the solution. We
use a grid resolution of 1283, and compare the following schemes:

1. SAAMG-MPRGP: SAAMG-MPRGP with V-cycle and SPAI-0 [4];

2. IPM-PD (SAAMG-CG): IPM-PD with the inner linear solver, SAAMG-
CG using V-cycle and SPAI-0;

3. IPM-PD (GIAAMG-CG): GIAAMG-CG using W-cycle and RBSSOR.

Due to the limited accuracy with single-precision floating-point, it is necessary to
choose appropriate parameters for IPM-PD; we use barrier parameter µ = 10−8

and offset value ϵ = 10−6. In addition, as convergence of CG can be delayed with
single-precision floating-point [6], it is necessary to use slightly larger numbers
of inner CG iterations; we use 8 and 5 for SAAMG-CG and GIAAMG-CG,
respectively. Table 3 summarizes the performance results. IPM-PD (GIAAMG-
CG) is around 2.7× faster than SAAMG-MPRGP.
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