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Fig. 1. Our optimization-based solver enables efficient and robust simulations of three-way coupling among inviscid/viscous fluids with elastic and rigid solids.
A bunny-shaped inviscid (left) or viscous (right) liquid volume is dropped onto an elastic sheet, followed by multiple rigid bunnies thrown on top of them.

Simultaneous coupling of diverse physical systems poses significant compu-
tational challenges in terms of speed, quality, and stability. Rather than treat-
ing all components with a single discretization methodology (e.g., smoothed
particles, material point method, Eulerian grid, etc.) that is ill-suited to some
components, our solver, ElastoMonolith, addresses three-way interactions
among standard particle-in-cell-based viscous and inviscid fluids, Lagrangian
mesh-based deformable bodies, and rigid bodies. While prior methods often
treat some terms explicitly or in a decoupled fashion for efficiency, often
at the cost of robustness or stability, we demonstrate the effectiveness of a
strong coupling approach that expresses all of the relevant physics within
one consistent and unified optimization problem, including fluid pressure
and viscosity, elasticity of the deformables, frictional solid-solid contact, and
solid-fluid interface conditions. We further develop a numerical solver to
tackle this difficult optimization problem, incorporating projected Newton,
an active set method, and a transformation of the inner linear system matrix
to ensure symmetric positive definiteness. Our experimental evaluations
show that our framework can achieve high quality coupling results that
avoid artifacts such as volume loss, instability, sticky contacts, and spurious
interpenetrations.
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1 INTRODUCTION
Unified physical simulation of diverse materials within a single sys-
tem is a longstanding challenge in computer animation, and across
computational mechanics more broadly. From a user perspective,
providing seamless interaction of different scene components can
dramatically simplify the workflow, so that one need not cobble
together disparate tools or their outputs to achieve a desired re-
sult. From a computational perspective, properly accounting for
all interacting components in a tightly coupled fashion can yield
solutions with greater accuracy and numerical stability, which the
user experiences as higher quality and robustness.
However, realizing this lofty objective has been difficult, in part

because different materials tend to be best suited to very different
simulation methodologies. Among the many physical systems of
interest, we focus on interactions between volumetric solids (both
rigid and elastic) and fluids (both inviscid and viscous), as they rank
among the most fundamental. The Lagrangian viewpoint clearly
dominates for solids, while Eulerian or hybrid methods arguably
dominate for fluids. One coupling strategy, popular because it dis-
penses with careful integration of each distinct subcomponent, is to
treat all materials with essentially a single methodology (e.g., mate-
rial point method [Jiang et al. 2016], smoothed particle hydrodynam-
ics [Solenthaler et al. 2007], position-based dynamics [Macklin et al.
2014], pure Eulerian grids [Teng et al. 2016], etc.); however, this can
sacrifice significant advantages of the preferred individual methods
(e.g., treating a rigid body as a full finite element deformable can be
unwieldy and inefficient).

The natural alternative is to use appropriate, modern models for
each of the rigid, elastic, and fluid components. This too is a popular
approach, but has often fallen short for a few reasons. First, there
is a perception that a fully integrated implicit treatment is simply
too difficult; second, for the sake of speed and convenience, past
ostensibly strong fluid coupling work has still carved off some terms
to be treated explicitly or separately from fluid incompressibility,
such as elastic potential energy [Fang et al. 2020], fluid viscosity
[Takahashi and Lin 2019], or mutual solid contacts for rigid bodies
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[Batty et al. 2007] or deformables [Robinson-Mosher et al. 2008]
(Takahashi and Batty [2020] provide a recent exception for rigid bod-
ies); and third, no practical numerical treatment for such a strongly
coupled, unified approach has yet been demonstrated.
In this work we show that, given current standard models for

rigid bodies [Bender et al. 2014], elastic bodies [Kim and Eberle
2020; Smith et al. 2018], and liquids [Bridson 2015], such a mono-
lithic approach, while not trivial, is nevertheless viable and effective.
We propose a fully coupled optimization-based solver, ElastoMono-
lith, that robustly simulates hybrid particle/grid-based liquids, rigid
bodies, stable Neo-Hookean elastic bodies, and all of their mutual
coupling effects within one framework. Specifically, our formula-
tion consists of a single constrained minimization problem, unifying
the following physical components: incompressibility constraints
and implicit viscosity integration for liquids; large deformations of
hyperelastic solids; two-way fluid-solid coupling via pressure and
viscous stress; and frictional contacts among all solids. To tackle this
simultaneous formulation, we further propose a custom numerical
optimizer, featuring a transformation of the inner linear system
matrix to a sparse, symmetric positive definite (SPD) form designed
to efficiently handle contributions from elastic potentials.

2 RELATED WORK

2.1 Viscous Liquids
Reproducing the familiar behaviors of viscous liquids has tradition-
ally been a computational challenge. Early grid-based approaches
focused on improving stability using implicit integration [Stam
1999] with free surfaces [Carlson et al. 2002], addressing spatial
variations in viscosity [Rasmussen et al. 2004], and accounting for
rotational effects to capture buckling and coiling phenomena [Batty
and Bridson 2008; Larionov et al. 2017]. More recently there has
been interest in accelerating viscous fluid simulations with multigrid
solvers [Aanjaneya et al. 2019; Shao et al. 2022] or spatial adaptivity
[Batty and Houston 2011; Goldade et al. 2019]. Takahashi and Batty
[2020] also offered an extension for non-Newtonian viscosity.
We employ a unified pressure-viscosity formulation [Larionov

et al. 2017] within a staggered grid, particle-in-cell-style fluid solver
[Jiang et al. 2015; Zhu and Bridson 2005]. Other methodologies have
also been proposed for viscous flows, e.g., Material Point Method
(MPM) [Fang et al. 2019; Gao et al. 2017; Ram et al. 2015; Stom-
akhin et al. 2014; Su et al. 2021; Yue et al. 2015], Smoothed Particle
Hydrodynamics (SPH) [Liu et al. 2021; Peer et al. 2015; Peer and
Teschner 2017; Takahashi et al. 2015; Weiler et al. 2018], Finite Ele-
ment Method (FEM) [Bargteil et al. 2007; Clausen et al. 2013; Wicke
et al. 2010; Wojtan and Turk 2008], and Lagrangian simplicial ele-
ments [Batty et al. 2012; Bergou et al. 2010; Misztal and Bærentzen
2012; Misztal et al. 2014; Zhu et al. 2015].

2.2 Rigid-Body Contact Handling
Contact handling of rigid bodies has long been a key topic in com-
puter animation, and we refer to the course notes of Andrews and
Erleben [2021] for contact basics. To resolve rigid-body contacts
(with a pyramidal friction cone approximation), velocity-level linear
complementarity problem (LCP) formulations have been extensively
used [Stewart 2000]. The LCP is typically solved with projected
Gauss-Seidel (PGS) due to its simplicity, despite its slow convergence

rate (although acceleration techniques are available [Coevoet et al.
2020; Erleben 2007, 2017; Müller et al. 2017; Silcowitz et al. 2010b;
Tonge et al. 2012]). As a stationary iterative approach, the conver-
gence rate of PGS is fundamentally limited, and thus reformulations
of the LCP into quadratic programs (QPs) have been presented to
address contact handling as a minimization [Kaufman et al. 2008;
Renouf and Alart 2005]. To more accurately handle friction cone con-
straints, quadratically constrained QP (QCQP) formulations have
also been proposed and solved with various approaches, e.g., an
interior point method [Todorov 2011], accelerated projected gradi-
ent descent [Mazhar et al. 2015], the alternating direction method
of multipliers (ADMM) [Le Lidec et al. 2021], and an augmented
Lagrangian method [Takahashi and Batty 2021]. Yet another family
of approaches relies on nonlinear complementarity problem (NCP)
formulations [Silcowitz et al. 2009, 2010a; Todorov 2010].

While recently proposed position-level contact handling approaches
(e.g., [English et al. 2013; Ferguson et al. 2021; Müller et al. 2020])
tend to offer better robustness compared to velocity-level ones,
position-level approaches are typically more costly. As such, in our
framework, we adopt a velocity-level minimization formulation.

2.3 Elastic-Solid Contact Handling
The LCP-based contact handling formulation is also popular for
elastic solids (although some authors instead employ penalty-based
contact forces [Bridson et al. 2002; Fisher and Lin 2001; Tang et al.
2012; Xu et al. 2014], barrier methods [Lan et al. 2021; Li et al. 2020b,
2021], or a hybrid thereof [Wu et al. 2020]). Compared to the LCP
approach for rigid bodies, the unique challenge for elastic solids
is that it is non-trivial to form the Delassus operator [Duriez et al.
2006] because, unlike the rigid body mass matrix, the elastic stiffness
matrix is not (block-) diagonal and thus more difficult to invert ex-
plicitly. Consequently, elasticity handling has often been decoupled
from contact handling [Larionov et al. 2021], or the stiffness matrix
has been replaced with block-diagonal matrices [Galoppo et al. 2006,
2007] or warped compliance [Saupin et al. 2008], so that the LCP is
solved only approximately. Later, Otaduy et al. [2009] incorporated
the block-diagonal approximation for the stiffness matrix within GS
iterations, correctly solving the LCP. A similar approach was used
for hair contacts with frictional cone constraints [Daviet et al. 2011].
Macklin et al. [2019a] also presented a related approximation tech-
nique based on geometric stiffness (which arises in constraint-based
formulations) resulting in a quasi-Newton method.
Since approximating the stiffness matrix with a block-diagonal

matrix can significantly slow down the convergence of iterative
solvers in practice, recent approaches focus on solving the contact
problem without forming the Delassus operator. Li et al. [2015]
formulated a convex QP for non-penetration constraints (without
supporting friction) and solved it with an extension of the modified
proportioning with reduced gradient projections (MPRGP) method
[Dostal and Schoberl 2005]. While the original MPRGP handles only
box constraints, their extension supports linear constraints with a
strict requirement that a mesh vertex can be involved in at most one
contact constraint. However, their restricted contact configuration
can cause penetration artifacts. Similarly, Verschoor and Jalba [2019]
formulated a QP for frictional contacts and solved the corresponding
indefinite system (due to the presence of Lagrange multipliers) with
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their custom solver based on the conjugate residual (CR) method
[Saad 2003]. Narain et al. [2016] and Daviet [2020] proposed ADMM-
based operator splitting approaches which enable decoupling of
elasticity and contact problems while correctly accounting for both
elasticity and contacts. Overby et al. [2017] further extended the
ADMM approach to enable early termination with (sticky) contact
constraints via Uzawa iterations. Li et al. [2018] and Ly et al. [2020]
presented formulations that avoid forming the Delassus operator
by restricting contacts to be on the mesh vertices.

Our elastic-solid contact formulation is derived primarily from the
velocity-level LCP, but we augment the formulation to the position-
level to accurately evaluate elastic potentials and enable updating
contact information for robustness. Our proposed method requires
solving only sparse SPD systems, despite the presence of Lagrange
multipliers, and fully avoids construction of the Delassus operator.

2.4 Two-Way Fluid-Solid Coupling
Initial two-way coupling approaches for Eulerian fluids and La-
grangian solids typically focused on weak coupling (e.g., [Guen-
delman et al. 2005]), but more recent work has emphasized strong
coupling due to its relative robustness and stability [Batty et al.
2007; Chentanez et al. 2006; Klingner et al. 2006]. In particular, a
popular variational formulation based on pressure [Batty et al. 2007]
has been extended with viscosity [Hyde and Fedkiw 2019; Taka-
hashi and Batty 2020; Takahashi and Lin 2019], friction [Narain et al.
2010; Takahashi and Batty 2021], and surface tension [Ruan et al.
2021]. Robinson-Mosher et al. [2009, 2011, 2008] also augmented the
method of Batty et al. [2007] to include deformable objects, and this
approach was later extended with a cut-cell formulation [Zarifi and
Batty 2017] and to support reduced elastic solids [Lu et al. 2016].

Our new formulation shares the same fundamental goal with re-
cent unified contact-aware fluid coupling formulations of Takahashi
and Batty [2020, 2021], but their support for solid objects is limited
to rigid bodies. Our work contrasts starkly in that we enable strong,
implicit coupling of elastic solids with both inviscid/viscous liquids
and rigid bodies, all within a unified optimization framework. To
this end, unlike their formulations based on minimization of kinetic
energy with respect to the dual variables (i.e., forces or impulses),
we derive a more general formulation based on the minimization of
inertial terms, deformation rate, and elastic potential with respect
to primal variables under the incompressibility and frictional con-
tact constraints (see Appendix C for further discussion). We further
derive a reformulation that ensures strictly SPD matrices, thereby
avoiding the difficulties of solving indefinite systems. Compared to
the cut-cell coupling method of Zarifi and Batty [2017], we achieve
better conditioning, viscosity handling, awareness of all solid con-
tacts in the coupled fluid solve, and a consistent unified optimization
formulation.
Our focus is on the coupling of Eulerian fluids and Lagrangian

solids, which are natural choices for each. However, various other ap-
proaches and frameworks can achieve two-way coupling. MPM has
widely been employed due to its (semi-)automatic handling of con-
tacts [Ding and Schroeder 2020; Han et al. 2019; Hu et al. 2018; Jiang
et al. 2017; Klár et al. 2016; Stomakhin et al. 2013] with extensions for
free-slip boundaries [Fang et al. 2020]. SPH and particle-based meth-
ods, being fully Lagrangian, are also popular for two-way coupling

frameworks [Akinci et al. 2012; Band et al. 2018a,b; Becker et al.
2009; Gissler et al. 2019; Koschier and Bender 2017; Kugelstadt et al.
2021; Truong et al. 2021]. On the other extreme, a purely Eulerian
fluid-solid coupling approach was proposed by Teng et al. [2016].
In a related vein, variants of the traditional immersed boundary
method [Peskin 2002] smoothly spread the Lagrangian solid’s in-
fluence onto the Eulerian fluid grid [Brandt et al. 2019; Carlson et al.
2004; Guendelman et al. 2005]. Recent lattice Boltzmann solvers for
turbulent smoke flows also support two-way rigid-fluid coupling
[Li et al. 2020a; Lyu et al. 2021]. Lastly, Akbay et al. [2018] proposed
an extended partitioned method, offering a middle ground between
strong and weak coupling that uses a reduced order model to couple
different components.

3 ELASTOMONOLITH
Our framework employs an optimization-based integrator to handle
the fluid and solid systems and their coupling. For liquids, we adopt
the affine particle-in-cell (APIC) framework [Jiang et al. 2015] and
address the fully implicit update of grid-based dynamics on the
staggered grid [Goktekin et al. 2004] as an optimization problem that
relies on volume fractions [Larionov et al. 2017; Takahashi and Lin
2019]. For rigid bodies, we formulate velocity-level frictional contact
handling as an optimization problem. For elastic solids, we treat
their entire time integration process (including contact handling)
as a position-level optimization. An overview of our method’s steps
is listed in Algorithm 1.

Algorithm 1 ElastoMonolith
1: Map fluid velocity from particles to a grid
2: Add explicit external forces to the grid and solids
3: Solve the system with our custom optimizer (Algorithm 2)
4: Map fluid velocity from the grid to particles
5: Advect particles and update rigid body positions

To achieve stable integration and contact-aware coupling of in-
viscid/viscous liquids and rigid/elastic solids, and eliminate a range
of critical artifacts (e.g., loss of fluid volume, solid interpenetrations,
excessive loss of fluid and solid energies, and simulation instabil-
ities), we formulate a single unified minimization problem with
incompressibility and frictional contact constraints,

u, x𝑒 , v𝑟 = argmin
d(u,x𝑒 ,v𝑟 ) ∈D, h(x𝑒 ,v𝑟 ) ∈H

𝐸 (u, x𝑒 , v𝑟 ), (1)

𝐸 (u, x𝑒 , v𝑟 ) = 𝐸𝑓 (u) + 𝐸𝑒 (x𝑒 ) + 𝐸𝑟 (v𝑟 ), (2)

where u denotes the liquid velocity, x𝑒 the position of elastic solids,
v𝑟 the velocity of rigid bodies, d and h the incompressibility and fric-
tional contact constraint functions, respectively, and sets of vectors
D and H , satisfying their corresponding constraints. The objec-
tive function terms 𝐸𝑓 (u), 𝐸𝑒 (x𝑒 ), and 𝐸𝑟 (v𝑟 ) correspond to invis-
cid/viscous liquids, elastic solids, and rigid bodies, respectively. We
define these objectives and constraints in the following sections.

3.1 Rigid Body Formulation
Velocity-level contact handling of rigid bodies can be formulated
as an energy minimization. Considering contacts given as hard
constraints, the objective for rigid bodies can be written as the
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kinetic energy-norm of the difference between velocities before and
after contact handling:

𝐸𝑟 (v𝑟 ) =
1
2

v𝑟 − v∗𝑟 2𝛼M𝑟
, (3)

where v∗𝑟 and v𝑟 are the rigid body velocities before and after contact
handling, respectively, M𝑟 is the rigid body mass matrix, and 𝛼

(= 1/(Δ𝑥)3 in 3D, where Δ𝑥 is the grid cell size) is the solid mass
scaling for dimensional consistency in the fluid-solid coupled system
[Takahashi and Batty 2020]. The matrix-weighted vector norm ∥·∥W
is defined such that, for a vector y, ∥y∥W =

√
y𝑇Wy =

W 1
2 y


2
.

Given fluid viscous stress s, fluid pressure p, and solid contact forces
c, the implicit velocity update for rigid bodies can be computed as

v𝑟 = v∗𝑟 + Δ𝑡 (𝛼M𝑟 )−1
(
F𝑟,ss + F𝑟,pp + 𝛼J𝑇𝑟 c

)
, (4)

where Δ𝑡 denotes the timestep size, F𝑟,s and F𝑟,p the linear operators
integrating fluid stress and pressure on the rigid body surface using
liquid/air volume fractions [Takahashi and Batty 2020, 2021], and J𝑟
the Jacobian of the contact constraints for rigid bodies [Andrews and
Erleben 2021]. While some previous approaches decouple normal
and tangential components of the contact forces in the solver process
[Kaufman et al. 2008], we treat them in a unified way since we
observed no issues from doing so in our examples (and this approach
was also taken in other recent work [Macklin et al. 2019a; Todorov
2011; Verschoor and Jalba 2019]).

3.2 Elastic Solid Formulation
Implicit time integration for elastic solids can also be cast as an
energy minimization problem, which combines terms for inertia
and elastic potentials [Gast et al. 2015; Martin et al. 2011]. Given
elastic solids discretized with meshes, elastic potentials are typically
evaluated based on the positions of mesh vertices. Let us define the
vertex positions x∗𝑒 before time integration and contact handling as

x∗𝑒 = x𝑡𝑒 + Δ𝑡v𝑡𝑒 + Δ𝑡2a𝑡𝑒 , (5)

where x𝑡𝑒 , v𝑡𝑒 , and a𝑡𝑒 are vertex positions, velocities, and acceler-
ations at time 𝑡 , respectively. Then the objective based on vertex
positions x𝑒 is

𝐸𝑒 (x𝑒 ) =
1

2Δ𝑡2
x𝑒 − x∗𝑒2𝛼M𝑒

+ 𝛼Ψ(x𝑒 ), (6)

where M𝑒 is a diagonal mass matrix for elastic solids, and Ψ(x𝑒 ) is
the elastic potential function. Similar to the velocity update for rigid
bodies in (4), we can write the implicit position update for elastic
solids as

x𝑒 = x∗𝑒 + Δ𝑡2 (𝛼M𝑒 )−1
(
−𝛼∇Ψ(x𝑒 ) + F𝑒,ss + F𝑒,pp + 𝛼J𝑇𝑒 c

)
, (7)

where F𝑒,s and F𝑒,p are linear operators integrating the viscous stress
and fluid pressure on the elastic solid surface (further details in Sec.
3.2.2), respectively, and J𝑒 is the Jacobian of the contact constraints
for elastic solids [Verschoor and Jalba 2019].

3.2.1 Implementation and Discussion. While our approach can, in
principle, work with many choices of discretization, element type,
and constitutive law for elastic solids, we use tetrahedral meshes
with linear finite elements due to their popularity [Sifakis and Bar-
bic 2012] and employ the stable Neo-Hookean model due to its

Fig. 2. 2D illustration for the cut-cell approach over cells (control volumes)
for pressure p (left) and viscous stress s𝑥𝑦 (right). Left: The pink dot repre-
sents the pressure 𝑝 𝑗 in the cell. The gray area is an elastic solid domain, blue
dots are solid vertices (x0, x1, x2), and green segments are polygons inside
the cell (i.e., triangles clipped against the cell), with associated centroids
shown as purple dots and normals (n0, n1) drawn as black arrows. The
corresponding polygon areas are denoted �̂�0, �̂�1 in green. 𝛽00, 𝛽10, 𝛽11, 𝛽21
in orange represent the barycentric weights. Right: The orange dot rep-
resents s𝑥𝑦 𝑗

for stress cell 𝑗 (orange square), and pink (resp., green) dots
represent neighboring s𝑥𝑦 (resp., s𝑥𝑥 ). The red arrows indicate the unit
normals e𝑥 , e𝑦 .

robustness [Kim and Eberle 2020; Smith et al. 2018]. We use the
optimization form of implicit Euler, which is simple and robust to
large timesteps, with the tradeoff that the energy of the elastic solids
can dissipate relatively quickly. For better energy preservation, it
would be possible to employ higher order schemes (e.g., BDF2 [Ben-
der et al. 2017]), blended schemes [Dinev et al. 2018a], or energy
constraints [Dinev et al. 2018b; Kee et al. 2021]. Optimization-based
dampingmodels could also be incorporated (e.g., [Brown et al. 2018])
if desired.

3.2.2 Details of F𝑒,p and F𝑒,s for Cut-Cell Coupling. Fluid coupling
forces for rigid bodies are readily accumulated to their centers of
mass (via linear coupling operators F𝑟,s and F𝑟,p), but for elastic
solids, the relevant forces must instead be carefully distributed to
solid surface vertices. As such, the construction approach for F𝑟,s
and F𝑟,p using level-set-based volume evaluation is not applicable
to elastic solids, because one cannot identify the contributions of
each solid surface vertex onto fluid DOFs from the level-set values
(since they lack positional information about the surface vertices).
Thus, we instead assemble F𝑒,p and F𝑒,s using a cut-cell approach
based more directly on the solid geometry.

F𝑒,p is a linear operator (matrix) that applies fluid pressure forces
to elastic solids over their surfaces, taking into account fluid vs. solid
(F/S) and liquid vs. air (L/A) volume fractions [Larionov et al. 2017;
Takahashi and Lin 2019]. Assuming signed distance functions (SDFs)
to represent L/A domains [Zhu and Bridson 2005], we can compute
dimensionless volume fractions (e.g., using marching-cubes-style
volume evaluations [Takahashi and Batty 2022]) as diagonal matri-
ces corresponding to the locations of pressure, velocity, and viscous
stress DOFs defined on the staggered grid [Goktekin et al. 2004], i.e.,
W𝑝

𝐿
and W𝑝

𝐴
for pressure, W𝑢

𝐿
and W𝑢

𝐴
for velocity, and W𝑠

𝐿
and

W𝑠
𝐴
for viscous stress to account for L/A sub-grid geometry.
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Given the surface triangles of the solids’ tetrahedral FEM meshes
in pressure cell 𝑗 (see Figure 2 for 2D illustration), pressure p𝑗 is
applied to the elastic solids using a cut-cell approach. We account
for F/S sub-grid geometry via the polygons computed from the
surface triangles by clipping the triangles against the cell (using
the Sutherland–Hodgman algorithm). Then, taking both F/S and
L/A sub-grid geometry into account, F𝑒,p3×𝑖, 𝑗 (where 𝑖 denotes the
solid vertex index) in 3D can be computed by summing up the
contributions over all the polygons in the cell as

F𝑒,p3×𝑖, 𝑗 = −
W𝑝

𝐿 𝑗

Δ𝑥

∑
𝑘

𝛽𝑖𝑘𝐴𝑘n𝑘 , (8)

where 𝛽𝑖𝑘 denotes the barycentric weights at the centroid of poly-
gon 𝑘 with respect to vertex 𝑖 (and thus 𝛽𝑎𝑘 + 𝛽𝑏𝑘 + 𝛽𝑐𝑘 = 1 where
𝑎, 𝑏, 𝑐 indicate the vertices of the triangle (polygon) 𝑘), and 𝐴𝑘 and
n𝑘 are the normalized area and unit outward normal (with respect
to the solid) of polygon 𝑘 , respectively. We define the normalized
area 𝐴𝑘 given the actual area of the polygon 𝐴𝑘 as 𝐴𝑘 = 𝐴𝑘/(Δ𝑥)2
in 3D (𝐴𝑘 can exceed 1 for tilted polygons). In practice, sinceW𝑝

𝐿
is independent of the solid meshes, we can first assemble F𝑒,p only
with F/S geometry and then multiply byW𝑝

𝐿
(i.e., F𝑒,p ← F𝑒,pW

𝑝

𝐿
)

to account for L/A geometry. Our derivation of F𝑒,p based on the
application of pressure forces onto the solids ultimately leads to
an operator that is essentially equivalent to what Zarifi and Batty
[2017] derived from the divergence theorem; however, our deriva-
tion extends naturally to the more difficult staggered viscous stress
terms for the F𝑒,s operator (including the “stress reduction” to elimi-
nate one redundant diagonal stress component [Larionov et al. 2017;
Takahashi and Batty 2020]) as we explain below.

Given the viscous stress s = (s𝑇𝑥𝑥 , s𝑇𝑥𝑦, s𝑇𝑥𝑧 , s𝑇𝑦𝑧 , s𝑇𝑧𝑧 , s𝑇𝑦𝑦)𝑇 , we
wish to apply these stresses to the surface of the elastic solids. Since
s𝑥𝑥 (as well as s𝑦𝑦 and s𝑧𝑧 ) are defined at the center of the cell 𝑗 ,
similar to p, we can compute F𝑒,s𝑥𝑥 by

F𝑒,s𝑥𝑥 3×𝑖+0, 𝑗 =
W𝑠

𝐿 𝑗

Δ𝑥

∑
𝑘

𝛽𝑖𝑘𝐴𝑘n
𝑇
𝑘
e𝑥 , (9)

using the x-directional unit vector e𝑥 = (1, 0, 0)𝑇 . The outward
normal n𝑘 is projected onto e𝑥 because s𝑥𝑥 applies x-directional
forces only (i.e., but not y- or z-directional). We can define F𝑒,s𝑦𝑦
and F𝑒,s𝑧𝑧 analogously. Considering the y-directional force with
s𝑦𝑦 (which can be computed by F𝑒,s𝑦𝑦 s𝑦𝑦 ), the stress reduction can
simply be performed by substituting s𝑦𝑦 = −(s𝑥𝑥 + s𝑧𝑧), leading to
the y-directional force of −F𝑒,s𝑦𝑦 (s𝑥𝑥 + s𝑧𝑧).

Unlike the diagonal viscous stress components (s𝑥𝑥 , s𝑦𝑦, s𝑧𝑧 ), the
off-diagonal component s𝑥𝑦 is defined on the cell edges in 3D (cell
nodes in 2D, see Figure 2), exerting both x- and y-directional forces.
As the x-directional forces are applied to the elastic solids based
on the y-directional derivative of s𝑥𝑦 [Batty and Bridson 2008], we
can compute F𝑒,s𝑥𝑦 3×𝑖+0, 𝑗 with the outward normal n𝑘 projected
onto the y-directional unit vector e𝑦 = (0, 1, 0)𝑇 by summing up
the contributions from all the polygons in the s𝑥𝑦 cell 𝑗 as

F𝑒,s𝑥𝑦 3×𝑖+0, 𝑗 =
W𝑠

𝐿 𝑗

2Δ𝑥

∑
𝑘

𝛽𝑖𝑘𝐴𝑘n
𝑇
𝑘
e𝑦 . (10)

The scale factor 1
2 appears to ensure consistency in the force ex-

changes between fluids and solids [Takahashi and Batty 2020]. Sim-
ilarly, the y-directional forces can be computed based on the x-
directional derivative of s𝑥𝑦 , and thus we have

F𝑒,s𝑥𝑦 3×𝑖+1, 𝑗 =
W𝑠

𝐿 𝑗

2Δ𝑥

∑
𝑘

𝛽𝑖𝑘𝐴𝑘n
𝑇
𝑘
e𝑥 . (11)

These derivations naturally extend to defining F𝑒,s𝑥𝑧 and F𝑒,s𝑦𝑧 .

3.3 Viscous Liquid Formulation
The fluid velocity update with implicit integration of viscosity can
be formulated as a minimization problem [Batty and Bridson 2008],

u = argmin
u

∫
1
2

(
𝜌
u − u∗22 + 2Δ𝑡𝜂 ∇u + (∇u)𝑇2

2
𝐹

)
𝑑𝑉 , (12)

where u∗ and u denote the fluid velocity before and after time
integration, respectively, 𝜌 the fluid density, 𝜂 the dynamic viscosity,
and ∥·∥𝐹 the Frobenius norm. The first term accounts for inertia and
the second introduces viscosity by penalizing the deformation rate
(omitted for inviscid liquids). We discretize this objective using a
variational finite difference approach on a staggered grid [Goktekin
et al. 2004] with volume fractions [Larionov et al. 2017; Takahashi
and Lin 2019]. Similar to the L/A case, we can compute F/S volume
fractions, i.e., W𝑝

𝐹
and W𝑝

𝑆
for pressure, W𝑢

𝐹
and W𝑢

𝑆
for velocity,

and W𝑠
𝑆
and W𝑠

𝐹
for viscous stress. With the volume fractions,

we define a fluid mass matrix, M𝑓 = M̂𝑓 W𝑢
𝐹
W𝑢

𝐿
, where M̂𝑓 is a

diagonal fluid density matrix, and a block diagonal viscosity matrix,
N = H−1N̂(W𝑠

𝐹
W𝑠

𝐿
)−1, where N̂ is the diagonal dynamic viscosity

matrix, and H is the stress reduction matrix of Takahashi and Batty
[2020]. Then, we can independently discretize (12) for both F/S and
L/A domains and combine these forms into the discrete objective

𝐸𝑓 (u, x𝑒 , v𝑟 ) =
1
2

(u − u∗2M𝑓
+ 2Δ𝑡

f̂ (u, x𝑒 , v𝑟 )2
N

)
, (13)

f̂ (u, x𝑒 , v𝑟 ) = D𝑇 u − F𝑇𝑒,s
x𝑒 − x𝑡𝑒

Δ𝑡
− F𝑇𝑟,sv𝑟 , (14)

where f̂ (u, x𝑒 , v𝑟 ) denotes the deformation rate function, and D is
the discrete tensor divergence operator accounting for F/S and L/A
volume fractions [Takahashi and Batty 2020, 2021]. Contributions
from solid motion must be accounted for in the viscous deformation
as solid boundary conditions, yielding the last two terms of (14).

3.4 Constraints for Liquids
3.4.1 Incompressibility Constraint. The incompressibility (divergence-
free) constraint for fluid mass preservation is given as

∇ · u = 0. (15)

We can discretize this constraint in amanner that includes the effects
of solid motion, defining d as

d(u, x𝑒 , v𝑟 ) = G𝑇 u − F𝑇𝑒,p
x𝑒 − x𝑡𝑒

Δ𝑡
− F𝑇𝑟,pv𝑟 = 0, (16)

where G denotes a discrete gradient operator incorporating F/S and
L/A volume fractions. We enforce this condition as a hard constraint,
treating fluid pressure p as a Lagrange multiplier, and multiplying
by Δ𝑡 to treat p as a force rather than an impulse.
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3.4.2 Viscosity as a Compliant Constraint. In (13), we expressed
the effect of viscosity as a penalty on the deformation rate, where 𝜂
dictates the balance between fully rigid and fully inviscid. To put
this in a form more consistent with our other (hard) constraints,
we instead interpret it as a new hard constraint, but one that has
been “softened” with an amount of compliance (see e.g., [Macklin
and Muller 2021; Macklin et al. 2016; Servin et al. 2006; Tournier
et al. 2015]) governed by 𝜂. Since fluid viscous stress is defined in
the continuous setting as s = 2𝜂

(
∇u+(∇u)𝑇

2

)
, we can introduce the

corresponding discrete constraint as

f (u, x𝑒 , v𝑟 , s) = f̂ (u, x𝑒 , v𝑟 ) −
1
2
N−1s = 0, (17)

and enforce it using the viscous stress s itself as the Lagrange
multiplier (and once again scaling by Δ𝑡 ). Having separated out this
new constraint, we redefine the fluid objective simply as:

𝐸𝑓 (u) =
1
2

u − u∗2M𝑓
. (18)

This interpretation simplifies warm starting and removes some extra
computations, yet is exactly equivalent. (Compare the fluid terms of
our final formulation (20) to Equation 9 of Larionov et al. [2017].)

3.5 Frictional Contact Constraint
Wedefine frictional contact constraints, accounting for non-penetration
and dissipation between solids (both rigid and elastic), as

h(x𝑒 , v𝑟 ) = −𝛼J𝑒
x𝑒 − x𝑡𝑒

Δ𝑡
− 𝛼J𝑟v𝑟 = 0. (19)

To enforce this hard constraint, we treat the contact force c as a
Lagrange multiplier, scaled by Δ𝑡 . Letting c = (n𝑇 , z𝑇 )𝑇 , where n
and z are normal and tangential components of c, respectively, the
solution must satisfy the following conditions due to the Signorini-
Coulomb contact law: 0 ≤ n and

z𝑗 2 ≤ 𝝁 𝑗n𝑗 (where 𝝁 denotes
the friction coefficient, and 𝑗 is the contact index). This formulation
accounts for the maximal dissipation principle and supports the
take-off, stick, and slip cases of frictional contact [Daviet et al. 2011;
Li et al. 2018].

3.6 Monolithic System
Assembling our complete monolithic objective for fluids and solids
including the incompressibility, deformation rate penalty, and fric-
tional contact constraints, we obtain the following mixed minimiza-
tion/maximization problem:

u, x𝑒 , v𝑟 , s, p, c = argmin
u,x𝑒 ,v𝑟

argmax
s,p,0≤n,∥z𝑗 ∥2≤𝝁 𝑗n𝑗

𝐸 (u, x𝑒 , v𝑟 , s, p, c),

(20)
𝐸 (u, x𝑒 , v𝑟 , s, p, c) = 𝐸𝑓 (u) + 𝐸𝑒 (x𝑒 ) + 𝐸𝑟 (v𝑟 )

+Δ𝑡s𝑇 f (u, x𝑒 ,v𝑟 , s) + Δ𝑡p𝑇 d(u, x𝑒 , v𝑟 ) + Δ𝑡c𝑇 h(x𝑒 , v𝑟 ). (21)

While this optimization problem is linear and a constrained maxi-
mization with respect to the dual variables (Lagrange multipliers)
s, p, and c, we can find their optimality by extremizing the objec-
tive via the KKT conditions, alongside the minimization with re-
spect to the primal variables u, x𝑒 , and v𝑟 [Nocedal and Wright
2006]. As such, our aim in what follows is to minimize the objective
𝐸 (u, x𝑒 , v𝑟 , s, p, c) satisfying the KKT conditions.

3.7 Minimization with Our Custom Optimizer
Naturally, general purpose off-the-shelf nonlinear optimizers could
be applied here (e.g., sequential quadratic programming (SQP) or in-
terior point methodswith inner solvers, such as gradient descent and
L-BFGS [Nocedal andWright 2006]). However, tailoring one’s solver
strategy to the domain / problem at hand can often yield significant
computational advantages. We therefore present a custom-designed
optimizer for our monolithic problem, which seeks to efficiently
find a local minimum.

3.7.1 Projected Newton Method. To minimize the objective while
satisfying the KKT conditions, we employ a second-order Newton-
type method [Nocedal and Wright 2006]. Considering a variable
x = (u𝑇 , x𝑇𝑒 , v𝑇𝑟 , s𝑇 , p𝑇 , c𝑇 )𝑇 and its corresponding descent direction
Δx, we can compute Δx by minimizing the quadratic approxima-
tion of the objective 1

2 (Δx)
𝑇AΔx − b𝑇Δx (where A = ∇2𝐸 (x) and

b = −∇𝐸 (x)), or equivalently solving AΔx = b, while updating
and satisfying the corresponding box constraints [Takahashi and
Batty 2021] (we define the cone constraints on z based on n from
the previous time step or prior iterations). Appendix A explicitly
provides the first and second order derivatives of (20).
To ensure Δx is a descent direction, we perform Hessian projec-

tion on the elastic potential ∇2Ψ(x𝑒 ), defining the projected elastic
potential as K so that Hx𝑒x𝑒

(
=

𝛼M𝑒

Δ𝑡2
+ 𝛼K

)
is guaranteed to be SPD

[Kim and Eberle 2020; Smith et al. 2018].
For correctness, whenever the position of elastic solids x𝑒 is up-

dated within our Newton iterations, we also update the correspond-
ing contact information, SDFs, and volume fractions.

3.7.2 A Sparse SPD Reformulation. While the SPD-projected Hes-
sianK ensures that Δx is a valid descent direction, the entire Hessian
∇2𝐸 is still indefinite due to the Lagrange multipliers. One could
solve the indefinite system to obtain Δx (e.g., [Robinson-Mosher
et al. 2009, 2008]), but, all else being equal, SPD systems are prefer-
able for numerical efficiency, and effective solvers for them are
widely available. We therefore reformulate our system to be SPD.

One way to transform the symmetric indefinite system to be SPD
is to first eliminate the primal variables (Δu, Δx𝑒 , Δv𝑟 ) by Schur
complement substitutions, leaving only the dual variables (s, p, c)
to be solved. This manipulation is easily applied for rigid bodies in
contact [Baraff 1996] or immersed in inviscid fluid [Batty et al. 2007;
Klingner et al. 2006] as the only nontrivial matrix inversion required
is the block diagonal rigid body mass matrix, M𝑟 . Unfortunately,
doing so for elastic objects further requires explicit construction
of H−1x𝑒x𝑒 as a step towards forming the Delassus operator [Duriez
et al. 2006; Raghupathi and Faure 2006]; this inversion is prohibi-
tively expensive both to compute and store because Hx𝑒x𝑒 is not
(block) diagonal. Another alternative is to address this inversion as
a nested linear solve (e.g., using Cholesky decomposition and for-
ward/backward solves) [Overby et al. 2017]. However, this approach
requires such inversions for every inner iteration of the surrounding
iterative solver, and thus can also be rather expensive. The block
matrix operations presented by Zarifi and Batty [2017] could also
be used to form an SPD system. However, their reformulation intro-
duces extra additions and multiplications of K, which considerably
deteriorates the conditioning of the system, therefore delaying the
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convergence of iterative solvers. Similarly, forming an SPD system
using the normal equations based on the least squares method and
solving it using conjugate gradient (i.e., conjugate gradient on the
normal equations (CGNR) [Saad 2003], also known as conjugate
gradient least squares (CGLS)) can be extremely slow due to the
resulting ill-conditioned system with squared condition number.
Below, we outline our approach, motivated by the equivalence

between penalty and compliant constraints [Macklin and Muller
2021; Macklin et al. 2016; Tournier et al. 2015; Zhu et al. 2010]; it
requires a matrix factorization only once per Newton step (i.e., outer
iteration) and no sparse triangular solves, and in most cases retains
conditioning comparable to the original indefinite system.
Consider a KKT system of the general form[

𝑀 + 𝐵𝐷𝐵𝑇 𝐶

𝐶𝑇 −𝑆−1
] [

𝑥

𝜆

]
=

[
𝑎

𝑏

]
, (22)

where 𝑀 and 𝐷 are SPD (block-) diagonal matrices, 𝐶 represents
constraints, 𝑆−1 is an optional compliance matrix (and the inverse of
a (block-) diagonal constraint stiffness matrix 𝑆), 𝑥, 𝜆, 𝑎 and𝑏 are vec-
tors, and, in the case of elastic solids, 𝐵𝐷𝐵𝑇 is a block-decomposition
of the stiffness matrix K. We define a new variable 𝑧 = 𝐷𝐵𝑇 𝑥 to
form an augmented system

𝑀 𝐶 𝐵

𝐶𝑇 −𝑆−1 0
𝐵𝑇 0 −𝐷−1



𝑥

𝜆

𝑧

 =


𝑎

𝑏

0

 . (23)

Next we apply a Schur complement reduction [Benzi et al. 2005, §5]:
substitute the expression 𝑥 = 𝑀−1 (𝑎 −𝐶𝜆 − 𝐵𝑧) from the first row
into the lower rows (and negating), to get a smaller system,[
𝑆−1 +𝐶𝑇𝑀−1𝐶 𝐶𝑇𝑀−1𝐵

𝐵𝑇𝑀−1𝐶 𝐷−1 + 𝐵𝑇𝑀−1𝐵

] [
𝜆

𝑧

]
=

[
−𝑏 +𝐶𝑇𝑀−1𝑎

𝐵𝑇𝑀−1𝑎

]
,

(24)

which is indeed both sparse and SPD. After solving, one can straight-
forwardly recover 𝑥 . This SPD reformulation effectively replaces the
unknown variables (𝑥, 𝜆) with unknowns (𝜆, 𝑧), so the size of the sys-
tem will in general be different. Robinson-Mosher et al. [2011, §5.3]
proposed a similar transformation in the context of fluid viscosity
terms, though our derivation is simpler and more general.

3.7.3 Factorizing K. A challenge with this approach is that an ef-
fective factorization of the 𝐵𝐷𝐵𝑇 term is not always known a priori.
A natural 𝐵𝐷𝐵𝑇 factorization is (often) readily available for vis-
cous fluids [Goldade et al. 2019], solid damping [Robinson-Mosher
et al. 2011], and even for solid elasticity [Kim and Eberle 2020]. In
the elasticity case, the SPD-projected Hessian K can be factorized

with 𝐵 = vec
(
𝜕𝐹
𝜕x𝑒

)𝑇
and 𝐷 = vec

(
𝜕2Ψ(x𝑒 )
𝜕𝐹 2

)
, where vec denotes

vectorization, 𝐹 is the deformation gradient with 9(= 3 × 3) DOFs,
and 𝐷 is a block-diagonal matrix with block size 9 × 9 [Kim and
Eberle 2020]. Unfortunately, the size of 𝐷 is the product of the DOF
count of 𝐹 and the number of FEM elements (which outnumber
FEM vertices by about 4 − 6× for tetrahedra [Doran 2013; Labelle
and Shewchuk 2007]). Thus, the DOF count of the newly intro-
duced variable 𝑧 (= 𝐷𝐵𝑇 𝑥) in 3D becomes at least approximately
36𝑁 (= 9 × 4𝑁 ), for 𝑁 FEM vertices; this number far exceeds 3𝑁

(a) K

(b) NF

(c) IC

(d) LDLT (ours)

Fig. 3. An elastic beamhung from its fixed left end is simulatedwith different
schemes (see §4.1.1). The schemes K and LDLT (ours) generate comparable
results preserving sufficient energy while NF and IC quickly dissipate energy
leading to damped solid motions.

(which is the DOF count for the original variable 𝑥) leading to a
much larger system.
One possible approach to reduce the number of DOFs of this

natural factorization might be to ignore some eigenvalues in 𝐷 and
the corresponding blocks in 𝐵. While we can ignore eigenvalues
clamped to 0 during the Hessian projection without compromising
accuracy (we observed only around 15% of eigenvalues can be ig-
nored in the scenario in Figure 3), removing positive eigenvalues
makes 𝐵𝐷𝐵𝑇 deviate from K, thereby slowing the convergence of
Newton’s method. Similarly, since the singular values and invariants
(which have fewer DOFs compared to the deformation gradient) can-
not exactly express K for stable Neo-Hookean materials in the form
of 𝐵𝐷𝐵𝑇 without further introducing matrix blocks [Kim and Eberle
2020; Smith et al. 2018, 2019] (unlike other materials, such as as-
rigid-as-possible (ARAP) [Chao et al. 2010; Sorkine and Alexa 2007]),
the approximation accuracy needs to be compromised, which neg-
atively influences convergence. As a related scheme, Wang [2012]
presented a Gauss-Newton-style quadratic approximation of the
elastic potential to derive the 𝐵𝐷𝐵𝑇 form, which similarly suffers
from the large number of DOFs and slower convergence due to the
less accurate Hessian. Another DOF reduction approach might be
to employ hexahedral(-dominant) meshes as their element count
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is proportional to the vertex count, leading to approximately 9𝑁
DOFs for 𝑧. However, compared to hexahedral meshes, tetrahedral
meshes are much more extensively employed due to their simplic-
ity and ease of mesh generation. Given these issues of the natural
factorization, we instead rely on explicit LDLT factorization of K.

To address our specific setting, we introduce a new unknown vari-
able Δg = CQ𝑇Δx𝑒 using the LDLT decomposition of K given by
K = P𝑇 Q̂CQ̂𝑇 P = QCQ𝑇 , where P denotes a fill-reducing permuta-
tion matrix computed via approximate minimum degree reordering,
Q̂ a lower triangular matrix, C a diagonal matrix, and Q = P𝑇 Q̂
(which is not lower triangular in general). This factorization lets
us form the necessary augmented system, and then, because the
diagonal blocks for Δu,Δx𝑒 , and Δv𝑟 become (block) diagonal mass
matrices, we can eliminate these variables via Schur complement
substitutions. For brevity, we relegate the details of our SPD refor-
mulation of the complete monolithic system to Appendix B.

As the LDLT decomposition splits the square matrixK into square
matricesQ andC, the number of DOFs for Δg is exactly equal to that
of Δx𝑒 , i.e., after eliminating Δx𝑒 and introducing Δg, the system
size is the same. Since no box constraints are imposed on Δx𝑒 , the
new variable Δg also has no box constraints. In addition, this SPD
reformulation maintains the conditioning of the system at least for
the solid part (since the eigenvalues of the new system are equivalent
to the original eigenvalues scaled with 𝐷−1, whose ratio between
the minimum and maximum values is mostly within 100), and thus
will not adversely affect the convergence rate of iterative solvers
(see [Robinson-Mosher et al. 2011] for related discussions).

While Cholesky decomposition should in theory succeed when
decomposing K (as it is symmetric positive semidefinite), break-
down occurs frequently in practice due to small numerical errors
(leading to sqrt applied to negative values) [Herholz and Alexa
2018]. Instead, our use of the LDLT decomposition allows us to
identify any values in C smaller than 𝜖𝑐 (= 10−10) and clamp them
up to 𝜖𝑐 after the factorization.
The use of LDLT decomposition applied to K might lead one to

consider instead factorizing the entire original system (and then
solving it with forward and backward substitution) since LDLT
decomposition can handle symmetric indefinite systems. However,
this approach is impractical due to the prohibitively large number of
DOFs typically present in fluids, at least for scenarios we consider.
Moreover, LDLT-based direct linear solvers are not applicable to our
system because of the presence of non-negative and friction cone
constraints imposed on the contact force c.
With our SPD reformulation, the non-zero count can be larger

than that of the original system due to fill-in and matrix multiplica-
tion. To reduce non-zeros for computational and memory efficiency,
one might consider using an incomplete Cholesky decomposition, in
exchange for compromising the accuracy of the projected Hessian K.
Unfortunately, we found that the resulting decomposition deviates
too significantly from K, leading to stagnation of Newton’s method
in 3D and thus significant energy loss (see Figure 3).

3.7.4 Box-Constrained Convex QP Solver. Due to numerical error,
theAcc block in our final assembled system (32) (Appendix B) can be
slightly indefinite in practice; we fix it to be SPD by scaling diagonal
elements by (1 + 10−3) [Takahashi and Batty 2020; Tan et al. 2012].

After this correction, the system matrix is strictly SPD, and our goal
is to solve the box-constrained convex QP. We employ a variant
of MPRGP presented by Takahashi and Batty [2021], which is an
extension of the original MPRGP [Dostal and Schoberl 2005] and a
fast active-set expansion technique [Kružík et al. 2020]. We apply in-
complete Cholesky preconditioning to the sparse part of the system
to accelerate convergence of MPRGP (similar to conjugate gradient
(CG) [Shewchuk 1994]) and we address the low-rank dense sub-
matrices F𝑇𝑟,sM−1𝑟 F𝑟,s, F𝑇𝑟,sM−1𝑟 F𝑟,p, and F𝑇𝑟,pM−1𝑟 F𝑟,p (caused by rigid
body coupling) using the sequential multiplication (SM) approach
[Takahashi and Batty 2020].

3.7.5 Warm Starting. Initializing the Lagrange multipliers (i.e., dual
variables s, p, c) to 0 in each Newton iteration is essentially equiva-
lent to restarting the optimization from scratch. In addition, using
values far from the solution slows down progress towards con-
vergence or even makes Newton’s method diverge. To ensure and
accelerate convergence, wewarm start using u, x𝑒 , v𝑟 , s, p, c from the
previous simulation step (or Newton iteration) as their initial values.
We emphasize that since the contact information (pair of contacting
solids, contact position, normal, contact force, etc.) is updated along
with the elastic solid positions in each Newton iteration, we need
to explicitly track contact information for warm starting. When
previous results are unavailable (e.g., outside of liquid domains or
for new contacts), we initialize them to 0.

3.7.6 Line Search. While the theoretically ideal step size for the
Newton iteration is 1, it is typically necessary to use a smaller step
size due to the Hessian projection and nonlinearity of the elastic
potential. In addition, since our monolithic system (20) is a mixed
minimization/maximization, it is not possible to simply perform line
search with the objective 𝐸 (u, x𝑒 , v𝑟 , s, p, c) to find a local minimum.
Notably, prior mixed minimization/maximization formulations of
unsteady Stokes flow [Larionov et al. 2017] and linearized implicit
surface tension [Misztal et al. 2014] are free of this issue because a
single linear solve suffices to achieve optimality without line search,
owing to their quadratic objectives under linear equality constraints.
Therefore, we define a merit (objective) function for the line

search 𝐿(u, x𝑒 , v𝑟 ) based purely on kinetic energy minimization,
with only primal variables, as

𝐿(u, x𝑒 , v𝑟 ) = 𝐿𝑓 (u) + 𝐿𝑒 (x𝑒 ) + 𝐿𝑟 (v𝑟 ), (25)

𝐿𝑓 (u) =
1
2𝛼
∥u∥2M𝑓

, (26)

𝐿𝑒 (x𝑒 ) =
1

2Δ𝑡2
x𝑒 − x∗𝑒2M𝑒

+ Ψ(x𝑒 ), (27)

𝐿𝑟 (v𝑟 ) =
1
2
∥v𝑟 ∥2M𝑟

, (28)

where the merit function for fluids 𝐿𝑓 (u) is scaled by 1/𝛼 to ensure
energy consistency regardless of grid resolution. Notably, we can
use 𝐿𝑓 (u) defined above for both inviscid and viscous liquids. The
equivalence between our formulation (20) and the one based on
kinetic energy minimization is spelled out in Appendix C (for strong
two-way coupling of inviscid liquids and rigid bodies).
Although the dual variables are not used to find the step size in

the line search, the descent direction Δ𝑥 correctly computed based
on the KKT condition ensures a valid update of the dual variables
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given their linearity. In practice, Newton iterations at the early phase
are almost always performed with a step size of 1, and thus the hard
constraints are correctly satisfied.
To ensure the decrease of the objective 𝐿, we employ backtrack-

ing line search [Nocedal and Wright 2006]. For this purpose, the
norm of the gradient, ∥∇𝐿∥ (or ∥∇𝐸∥), has sometimes been used
as an alternative to 𝐿 in past work (since 𝐿 cannot be defined for
complementarity-based formulations [Macklin et al. 2019a]); how-
ever, the value of 𝐿 and ∥∇𝐿∥ are essentially unrelated [Nocedal and
Wright 2006]. To enable a valid line search, it is therefore essential
to formulate the optimization problem such that 𝐿 is well-defined.
In practice, updating the positions of elastic solids can change

which Eulerian fluid DOFs are valid (even though fluid particle
positions are fixed during the optimization) and introduces some
discontinuity that invalidates the value of 𝐿 computed in the pre-
vious Newton iteration. Thus, after we evaluate valid DOFs, we
compute 𝐿 so that line search can be performed.

3.7.7 Algorithm of Our Custom Optimizer. Algorithm 2 summarizes
the steps of our tailor-made solver for the constrained monolithic
optimization problem (20).
We terminate the Newton iterations based on the infinity norm

of the Newton step direction
Δx𝑘

∞
[Takahashi and Batty 2021]

or a maximum iteration count 𝑘max. In addition, we also end the
Newton iterations if we cannot make progress with the line search
(due to the discontinuity coming from the liquid DOF changes), i.e.,
when line search iteration count 𝑙 equals the max line search count
𝑙max.

Algorithm 2 Our custom optimizer
1: 𝑘 = 0
2: do
3: Compute fluid/solid and liquid/air domains
4: Evaluate volume fractions
5: Detect collisions between solids
6: Evaluate 𝐿𝑘
7: Assemble the system
8: (Δs𝑘+1,Δp𝑘+1,Δc𝑘+1,Δg𝑘+1) = 0
9: Solve the SPD system with box constraints (32)
10: Recover Δu𝑘+1,Δx𝑘+1𝑒 , v𝑘+1𝑟

11: Δx𝑘+1 = (Δu𝑘+1,Δx𝑘+1𝑒 ,Δv𝑘+1𝑟 ,Δs𝑘+1,Δp𝑘+1,Δc𝑘+1)
12: Compute x𝑘+1 and 𝑙 via line search with Δx𝑘+1 and 𝐿𝑘
13: 𝑘 = 𝑘 + 1
14: while 𝜖 <

Δx𝑘
∞
and 𝑘 < 𝑘max and 𝑙 < 𝑙max

15: return u𝑘 , x𝑘𝑒 , v𝑘𝑟 , s𝑘 , p𝑘 , c𝑘

4 RESULTS AND DISCUSSIONS
Ourmethod is implemented in C++17 and parallelized usingOpenMP.
All examples used adaptive timestepping with CFL numbers be-
tween 0.5 and 5.0 (empirically chosen based on visual quality), with
50 frames per second. For simplicity, we employ the pyramid approx-
imation for friction constraints with friction coefficient 𝝁 = 0.5. For
inviscid liquid simulations, we used cut-cell-based area weighting
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Fig. 4. Profiles of the total time to solve the elasticity optimization problem
per frame for Figure 3. LDLT (ours) is more expensive than the baseline K
given the absence of the contact constraints, but is faster than NF and IC.

Table 1. Simulation settings and results for Figure 3. The system size is
denoted by 𝑛, the number of non-zeros by 𝑧, and the condition number by 𝜅 .
The averaged Newton and MPRGP iteration counts per frame are denoted
by 𝑁iter and𝑀iter, respectively. The total time (s) per frame is denoted by𝑇
and the relative overhead with respect to the baseline K is denoted by 𝑟 .

Scheme 𝑛 𝑧 𝜅 𝑁iter 𝑀iter 𝑇 𝑟

K 5.6k 186.8k 2.7 × 103 10.7 1.1k 3.8
NF 79.6k 5,838.0k 1.5 × 1011 10.0 1.0k 145.7 38.3
IC 5.6k 712.8k 3.1 × 102 100.0 2.3k 52.3 13.8

LDLT (ours) 5.6k 7,169.1k 1.4 × 103 10.5 0.5k 20.3 5.3

forW𝑢
𝐹
andW𝑢

𝑆
[Ng et al. 2009] and the ghost-fluid method forW𝑝

𝐿
andW𝑢

𝐿
[Gibou et al. 2002] (instead of volume weights) for better

accuracy. To mitigate position-level errors, we employ Baumgarte
stabilization for solid contacts [Baumgarte 1972] (except for Figure
5), and use particle-level position correction once per frame [Mack-
lin et al. 2014]. While we use precomputed SDFs for rigid bodies, we
recompute SDFs for elastic solids based on the work of Fisher and
Lin [2001] if the query point is inside of the solids, and otherwise,
we compute the shortest distance to the nearest surface triangle.
To accelerate SDF updates, collision detection, and element and
triangle look-up, we use a bounding volume hierarchy. We detect
solid contacts by checking whether solid surface vertices are inside
of the other solids based on SDFs with a small collision margin. For
Newton’s method, we use up to two iterations unless otherwise
stated. To solve box-constrained convex QPs or SPD linear systems
as inner problems, we employ MPRGP with a termination relative
residual of 10−8 and maximum iteration count of 1, 000 (setting −∞
and∞ as lower and upper bounds, respectively, if box constraints
are unnecessary) unless otherwise stated. We used Symmetric Suc-
cessive Over Relaxation (SSOR) preconditioning for Figure 3 and 5
as SSOR was more efficient than incomplete Cholesky (IC) precon-
ditioning in these scenes, and in Figure 7 for comparison purposes.
We executed all our simulations using “e2-standard-8” (8 cores with
32GB RAM) provided by Google Compute Engine.

4.1 Elastic Solid
4.1.1 SPD Reformulation. As a basic test to evaluate the efficacy of
our SPD reformulation and justify the choice of the explicit LDLT
decomposition, we experimented with an elastic beam (2.3k vertices,
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(a) ADMM: frame 18 (b) UCG-Cholesky: frame 25 (c) UCG-MPRGP: frame 25 (d) ICA: frame 25 (e) LDLT (ours): frame 25

Fig. 5. An elastic bunny dropped onto a ground, simulated with different schemes (see §4.1.2). The ADMM scheme fails to satisfy the hard contact constraints,
UCG-Cholesky and UCG-MPRGP do not support the traditional frictional contact constraints, while ICA and LDLT (ours) successfully generate natural
contact response. LDLT (ours) is at least 6.2× faster than ICA.

8.8k elements, Young’s modulus 𝑒 = 104 (Pa), Poisson’s ratio 𝜈 =

0.49, and density 500 kg/m3) with its left part fixed while excluding
contacts, as shown in Figure 3. We evaluate the following four
schemes:

(1) K: baseline scheme using the projected Hessian K [Kim and
Eberle 2020; Smith et al. 2018], without applying our SPD
reformulation;

(2) NF: the natural factorization with K = 𝐵𝐷𝐵𝑇 is used to per-
form our SPD reformulation, computing 𝐷−1 directly from
the eigenvalues and eigenvectors [Kim and Eberle 2020; Smith
et al. 2018], without calculating 9 × 9 block inversions;

(3) IC: incomplete Cholesky factorization with no fill-in, approx-
imating K by K ≈ 𝐵𝐷𝐵𝑇 , is used to perform our SPD refor-
mulation;

(4) LDLT (ours): our LDLT-based SPD reformulation.

Because IC compromises the accuracy of K, the Newton descent
direction Δx does not correctly account for the residual (i.e., ∇𝐸). As
such, in this comparison, we use ∥∇𝐸∥∞ as a consistent termination
criterion for Newton iterations, and use 103 as a threshold (which
approximately corresponds to a relative residual of 10−4). To finish
the simulation within a reasonable time, we terminate the Newton
iterations at a maximum iteration count of 10 for NF and 100 for IC
while the schemes K and LDLT (ours) always converged within 100
iterations. Figure 4 compares profiles of computational costs, and
Table 1 summarizes the simulation settings and averaged results
over 200 frames.
For the tested scene, the baseline K is the fastest among these

schemes due to its smaller system size, smaller number of non-zeros,
and low condition number. However, if contacts were to become
involved, the K scheme would need to address indefinite systems,
unlike the other schemes under our SPD reformulation. While NF
is sparser and has fewer non-zeros than ours, the system size is
much larger, making the inner solver almost always fail to converge
and thus giving an insufficiently accurate Δx. Consequently, the
minimization was not fully solved leading to damped motion with
significant energy loss. Although the IC scheme can solve the inner
problem quickly due to its smaller system size, smaller number of
non-zeros, and low condition number, the resulting Δx is relatively
inaccurate, as K is only roughly approximated by the incomplete
Cholesky decomposition. As a result, the optimization was also
not sufficiently solved, leading again to damped motion. While our
LDLT-based approach generally has more non-zeros, the system size
is still small with a low condition number, and our inner solver was
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Fig. 6. Profiles of the total time for the elasticity-contact handling per frame
for Figure 5. LDLT (ours) is slower than UCG-Cholesky and UCG-MPRGP
which do not support the traditional contact constraints, but is significantly
faster than ADMM and ICA.

Table 2. Simulation setting and results for Figure 5. 𝑐 denotes the number of
contacts, 𝑛 system size, 𝑧 the number of non-zeros, separating numbers as
primal/dual for ICA. 𝑁iter and𝑀iter denote the averaged outer (Newton or
ADMM) and MPRGP iteration counts per frame, respectively. 𝐼iter denotes
iteration counts for UCG or ICA iterations.𝑇 denotes the total time (s) per
frame.

Scheme 𝑐 𝑛 𝑧 𝑁iter 𝐼iter 𝑀iter 𝑇

ADMM 183.2 15.1k 555.1k 47.8 10.7k 153.9
UCG-Cholesky 422.1 16.4k 557.3k 1.0 99.4 4.9
UCG-MPRGP 422.1 16.4k 557.3k 1.0 109.3 20.6k 22.4

ICA 326.5 15.1k/1.0k 555.0k/1.0k 1.0 1.4k 215.3k/112.4k 200.2
LDLT (ours) 492.8 16.6k 31.1M 1.0 422.0 32.5

able to quickly compute Δx. In addition, since Δx has the same accu-
racy as for scheme K, the Newton iteration also quickly converges,
giving significantly better performance compared to the other SPD-
reformulated schemes. The resulting behavior with our method is
comparable to the baseline K, though our method is somewhat more
expensive (5.3×), given the absence of contact constraints in this
scenario.

4.1.2 Elastic Solid Contacts. To evaluate the efficiency of our SPD
reformulation in contact handling with elastic solids, we experi-
mented with an elastic bunny (5.0k vertices and 20.0k elements,
Young’s modulus 𝑒 = 104 (Pa), Poisson’s ratio 𝜈 = 0.49, and density
500 kg/m3), as shown in Figure 5. We evaluate the following five
schemes:
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(1) ADMM: the baseline scheme K [Kim and Eberle 2020; Smith
et al. 2018] combined with hard contact constraints handled
via ADMM [Narain et al. 2016];

(2) UCG-Cholesky: Uzawa conjugate gradient, which solves the
KKT system ignoring box constraints, calculating H−1x𝑒x𝑒 via
precomputed Cholesky-based linear solve [Overby et al. 2017];

(3) UCG-MPRGP: same as UCG above except H−1x𝑒x𝑒 is addressed
via MPRGP-based linear solve;

(4) ICA: iterative constraint anticipation [Otaduy et al. 2009],
which iteratively solves primal and dual problems using the
diagonal approximation to form the Delassus operator;

(5) LDLT (ours): our LDLT-based SPD reformulation.

To perform comparisons as consistently as possible, we use these
schemes (except for ADMM) to solve the KKT system within the
Newton iteration, and use only one Newton iteration, since our
primary focus is to evaluate how these schemes efficiently enforce
the contact constraints (even with early termination) given the crit-
ical importance of resolving contacts for stability. With the ADMM
scheme, as it is necessary to perform sufficiently many ADMM itera-
tions to enforce the hard constraints [Overby et al. 2017], we use up
to 50 ADMM iterations (with manually adjusted ADMM parameters
for faster convergence). In addition, following Narain et al. [2016],
we treat the contacts as free-slip constraints to avoid further delay
in convergence [Kaufman et al. 2008]. Since UCG is not designed
to handle inequality constraints [Overby et al. 2017], we treat the
contacts as sticky contacts for UCG. For ICA, we employ MPRGP
instead of PGS (which was used by Otaduy et al. [2009]) to solve the
inner primal/dual problems (as PGS was much slower), and we use
up to 1,500 ICA iterations. In addition, we found that the (block-)
diagonal approximation of Hx𝑒x𝑒

(
=

𝛼M𝑒

Δ𝑡2
+ 𝛼K

)
using block GS de-

composition (instead of elementwise GS) was unstable with both
PGS and MPRGP, and therefore we use 𝛼M𝑒

Δ𝑡2
to approximate the

Delassus operator. Figure 6 compares profiles of the computational
cost, and Table 2 summarizes the simulation settings and averaged
results over 200 frames.
While the ADMM scheme preserves more energy of the bunny

due to the large number of ADMM iterations compared to the other
schemes, the non-penetration constraint is still violated because
ADMM needs to fully converge to enforce the hard constraints
[Overby et al. 2017]. The result is obvious ground penetrations.
Given the first-order convergence rate of ADMM, many more it-
erations (along with system assembly) are necessary for conver-
gence. As our method (with its second-order convergence rate) is
already around 4.7× faster at this stage, we believe that our method
is advantageous. Although both UCG-Cholesky and UCG-MPRGP
converged faster than ours in this example, UCG is essentially not
designed to handle box constraints and thus cannot support the
traditional contact forces due to the Signorini-Coulomb contact law
(note the bunny tail stuck to the ground). By contrast, our reformu-
lation transforms the indefinite KKT system to SPD form, making it
possible to handle the box constraints via MPRGP. While ICA can
also handle the box constraints via MPRGP, decomposing the indef-
inite KKT system into the SPD primal and dual problems via the
diagonal approximation significantly slows down the convergence
of ICA, so it frequently fails to converge. Consequently, our method

Table 3. Simulation settings and results for Figure 7. The system size is
denoted by 𝑛, the number of non-zeros by 𝑧, the condition number by 𝜅 ,
and the ratio of the condition number with respect to the original indefinite
system by 𝑟 . The averaged MPRGP iteration counts per frame are denoted
by𝑀iter. The total time (s) per frame is denoted by𝑇 .

Scheme 𝑛 𝑧 𝜅 𝑟 𝑀iter 𝑇

Z1-Z2 179.8k 2.1M 6.8 × 1018 3.5 × 103 7,255.6 270.7
LDLT SSOR 177.7k 8.8M 2.9 × 1011 1.5 × 10−4 3,511.4 166.2

LDLT IC (ours) 177.6k 8.7M 2.9 × 1011 1.5 × 10−4 599.0 58.0

is at least around 6.2× faster than ICA. Notably, as our method is
solving for the dual variable c but not primal variable x𝑒 , the bunny
can sink gradually due to the accumulated numerical error; this can
be prevented with a position-level feedback, e.g., using Baumgarte
stabilization [Baumgarte 1972].

4.2 Two-Way Fluid-Solid Coupling
We next evaluate our SPD reformulation for two-way fluid-solid
coupling (in the absence of solid-solid contacts) by placing an elastic
beam (2.2k vertices and 9.0k elements, Young’s modulus 𝑒 = 104 (Pa),
Poisson’s ratio 𝜈 = 0.49, and density 200 kg/m3) into a dambreak
scenario with fluid density of 1,000 kg/m3, grid resolution of 803,
and 967.7k particles, as shown in Figure 7. We compare our method
with the method of Zarifi and Batty [2017], which transforms the
indefinite system into a different SPD form via the decomposition
of Hx𝑒x𝑒

(
=

𝛼M𝑒

Δ𝑡2
+ 𝛼K

)
into Z1 and Z2 as Hx𝑒x𝑒 = Z1 + Z2, where

Z1 = 𝜎
𝛼M𝑒

Δ𝑡2
and Z2 = (1 − 𝜎) 𝛼M𝑒

Δ𝑡2
+ 𝛼K, and 𝜎 (0 < 𝜎 ≤ 1) is a

blending parameter. We use 𝜎 = 0.9 suggested in their paper as we
found that there is no clear performance benefit in using a smaller
𝜎 (although it leads to a slightly better conditioned system). We
call their method Z1-Z2. In this comparison, we perform only one
Newton iteration, use up to 5,000 MPRGP iterations, and evaluate
IC preconditioning for the Z1-Z2 approach and both IC and SSOR
preconditioning for our formulation. Figure 8 compares profiles of
computational costs and Table 3 summarizes the simulation settings
and averaged results over 200 frames.

As the SPD reformulation via Z1-Z2 involves addition and multi-
plication of Z2, the conditioning of the resulting SPD system is dete-
riorated (𝜅 = 6.8×1018), and the number of non-zeros increased (𝑧 =
2.1M) compared to the original indefinite system (𝜅 = 2.0× 1015 and
𝑧 = 1.2M) [Zarifi and Batty 2017]. Consequently, IC preconditioned
MPRGP fails to converge or requires many iterations. By contrast,
our reformulation keeps the condition number lower (𝜅 = 2.9×1011),
and IC preconditioned MPRGP quickly converged despite the larger
number of non-zeros (𝑧 = 8.7M), achieving a performance gain of
4.7×. Notably, the increased number of non-zeros using our SPD
reformulation is moderate compared to the solid-only scenario in
Sec. 4.1.1 (see Table 1) because our reformulation involves only the
sub-matrices related to elastic solids (Agp, Apg, and Agg), while the
fluid pressure block App (which is the largest component in the orig-
inal system) remains untouched. By contrast, SSOR preconditioning
with our formulation was not effective enough and almost always
failed to converge in this two-way fluid-solid coupling scenario; IC
preconditioned MPRGP was at least 2.9× faster.
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(a) Z1-Z2 (b) LDLT SSOR (c) LDLT IC (ours)

Fig. 7. An elastic beam (with its top fixed) deformed in a dam break scenario,
simulated with different schemes (see §4.2). These approaches generate
comparable visual results, but ours is at least 4.7× and 2.9× faster than
Z1-Z2 and LDLT SSOR, respectively.
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Fig. 8. Profiles of the total time for the entire pressure-elasticity handling
phase per frame for Figure 7. Our method outperforms Z1-Z2 and LDLT
SSOR at almost all the frames.

Table 4. Simulation settings and results for Figure 9. The system size is
denoted by 𝑛, the number of non-zeros by 𝑧, the number of UCG or block
GS iterations by𝐺iter, the number of MPRGP iterations by𝑀iter, and total
time (s) per frame by 𝑇 . (P/C) indicates the numbers associated with the
pressure/contact handling.

Scheme 𝑛 (P/C) 𝑧 (P/C) 𝐺iter 𝑀iter 𝑇 (P/C) 𝑇

PE-EC 35.9k/11.2k 17.0M/16.9M 211.6/244.7 80.4/50.0 130.4
EC-PE 35.8k/11.2k 17.0M/16.9M 204.3/397.5 81.6/91.3 173.0

PEC UCG 118.8k 824.3k 5,414.2 77.8
PEC LDLT GS 35.7k 19.3M 80.6 841.4/19,252.1 1062.9

PEC LDLT (ours) 35.9k 19.3M 1,900.1 253.2

4.3 Contact-Aware Coupling with Inviscid Liquids
Our next scenario examines our monolithic coupling approach when
frictional contacts occur. We demonstrate interactions among invis-
cid liquids (density 1,000 kg/m3), an elastic bowl (3.7k vertices and
12.8k elements, Young’s modulus 𝑒 = 3 × 104 (Pa), Poisson’s ratio
𝜈 = 0.49, and density 200 kg/m3), and the rigid ground, using a grid
resolution of 128× 64× 128 and 52.3k particles, as shown in Figure 9.
We evaluate the following five possible pressure-elasticity-contact
coupling schemes:

(1) PE-EC: pressure-elasticity solve followed by elasticity-contact
solve (once);

(2) EC-PE: elasticity-contact solve followed by pressure-elasticity
solve (once);

(3) PEC UCG: unified pressure-elasticity-contact solve with UCG
applied to the indefinite system (61);

(4) PEC LDLT GS: unified pressure-elasticity-contact solve using
our SPD reformulation and iterative block GS pressure and
elasticity-contact solve;

(5) PEC LDLT (ours): unified pressure-elasticity-contact solve
with our SPD reformulation.

We consider elasticity in both subproblems within PE-EC and EC-PE
schemes and apply our reformulation to make the subproblems SPD.
Within the UCG iterations of PEC UCG (see (61) in Appendix D),
while we directly invert the diagonal fluid mass matrix M𝑓 , we use
the Cholesky-based linear solve to address the inversion ofHx𝑒x𝑒 (as
it is faster than MPRGP-based linear solve, see Table 2). PEC LDLT
GS is equivalent to our proposed PEC LDLT (ours) except that the
inner SPD system is decomposed into pressure and elasticity-contact
subproblems and addressed using block GS (as splitting elasticity
and contact handling significantly delays convergence [Otaduy et al.
2009]) with up to 15 GS iterations to finish the simulation within a
reasonable time (while full convergence typically requires more than
100 GS iterations). In this example, we use a termination relative
residual of 10−6 for MPRGP. We summarize performance numbers
in Table 4 and compare profiles of total time in Figure 10.
PE-EC completely failed to handle the bowl-ground contacts

because the concluding elasticity-contact solve could not make any
progress due to a failure of the line search; this failure resulted from
a significant violation of contact constraints due to the update of the
solid positions after the contact-oblivious pressure-elasticity solve.
EC-PE also failed because the result of the first elasticity-contact
solve was completely spoiled by the concluding pressure-elasticity
solve. PEC UCG can efficiently prevent the penetration of the elastic
bowl into the ground, but it only supports sticky contact constraints.
Consequently, the lower parts of the elastic bowl continue sticking
to the ground. While PEC LDLT GS supports the proper contact
constraints, it almost always failed to converge due to the slow
convergence of block GS and was very costly. PEC LDLT (ours)
was able to efficiently and correctly handle the liquid flow, elastic
deformations, two-way liquid-solid interactions, and bowl-ground
contacts, achieving at least 4.2× faster performance versus PEC
LDLT GS.

4.4 Contact-Aware Coupling with Viscous Liquids
We next demonstrate our full monolithic formulation for simultane-
ous coupling of a viscous liquid (density 1, 000 kg/m3 and viscosity
100 kg/(s ·m)), an elastic beam (2.3k vertices and 8.8k elements,
Young’s modulus 𝑒 = 1 × 104 (Pa), Poisson’s ratio 𝜈 = 0.49, and
density 200 kg/m3), and rigid ground, using a grid resolution of
643 and 52.5k particles in Figure 11. We compare our method PVEC
LDLT (ours) against PVEC UCG, which solves the viscous stress-
eliminated indefinite system with SPD top-left block matrices to
enable adopting UCG (see (62) in Appendix D) but not the full indef-
inite system (31) with indefinite top-left blocks due to −Δ𝑡

2 N−1. We
invert the 2 × 2 top-left block matrices in (62) using MPRGP since
the Cholesky factorization is not applicable to these blocks due to
their excessive size. We summarize performance numbers in Table
5 and compare profiles of total time in Figure 12.
For PVEC UCG, we need a relatively more expensive MPRGP-

based linear solve to invert the SPD top-left block matrices, in con-
trast to the case for inviscid liquids where we can use amore efficient
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(a) PE-EC: frame 10 (b) EC-PE: frame 10 (c) PEC UCG: frame 40 (d) PEC LDLT GS: frame 40 (e) PEC LDLT (ours): frame 40

Fig. 9. A bunny-shaped inviscid liquid volume and an elastic bowl dropped onto the ground, simulated with different schemes (see §4.3). PE-EC fails to handle
bowl-ground contacts as the last elasticity-contact solve cannot recover the significant penetration due to the first pressure-elasticity solve. EC-PE also fails as
the first elasticity-contact handling is spoiled by the last pressure-elasticity solve. While PEC UCG can efficiently prevent the bowl-ground penetration, the
traditional contact handling cannot be supported. Although PEC LDLT GS can correctly handle the scene, it is quite slow due to the blockwise decomposition.
PEC LDLT (ours) can more efficiently address this coupling scenario, achieving at least a 4.2× performance gain over PEC LDLT GS.
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Fig. 10. Profiles of the total time for the entire pressure-elasticity-contact
handling per frame for Figure 9. While PEC LDLT (ours) is slower than PEC
UCG (which does not support the traditional contact handling), PEC LDLT
(ours) is significantly more efficient than PEC LDLT GS.

Table 5. Simulation settings and results for Figure 11. The system size is
denoted by 𝑛, the number of non-zeros by 𝑧, the number of UCG iterations
by𝐺iter, the number of MPRGP iterations by𝑀iter, and total time (s) per
frame by𝑇 .

Scheme 𝑛 𝑧 𝐺iter 𝑀iter 𝑇

PVEC UCG 57.0k 1.2M 1,537.3 117.6k 632.0
PVEC LDLT (ours) 84.7k 19.4M 559.4 84.4

precomputed Cholesky-based linear solve. As this MPRGP-based
linear solve is required in each UCG iteration, the total compu-
tational cost is quite expensive. In addition, PVEC UCG does not
support the traditional contact constraints, and thus the elastic beam
sticks to the ground and never separates even after viscous fluids
flow from the top of the beam to its side. By contrast, PVEC LDLT
(ours) can more efficiently support the coupling of the viscous fluids,
elastic beam, and the ground without artifacts, achieving a 7.5×
performance gain over PVEC UCG.

4.5 Complex Examples
We further demonstrate our method in a few more complex scenar-
ios. Figure 13 compares interactions of liquids and a bowl with dif-
ferent material combinations (inviscid or viscous for the liquids and
rigid or elastic for the bowl) dropped onto a rigid torus fixed in the
air. We use liquid density 1, 000 kg/m3 (and viscosity 100 kg/(s ·m)
for viscous fluids), solid density 200 kg/m3 (and 2.3k vertices, 8.8k

elements, Young’s modulus 𝑒 = 104 (Pa), Poisson’s ratio 𝜈 = 0.49
for the elastic bowl), and a grid resolution of 160 × 80 × 160 with
101.7k particles. The total simulation time per frame was 8.6 s for
(a) Inviscid and rigid, 352.0 s for (b) Inviscid and elastic, 12.4 s for (c)
Viscous and rigid, and 574.9 s for (d) Viscous and elastic. For (a) and
(c), the rigid bowl settles on top of the rigid torus supporting the
load of liquid. By contrast, for (b) and (d), the elastic bowl deforms
due to the liquid load, squeezes through the torus, and collides with
the ground. Figure 14 shows the performance breakdown for (c) and
(d) to illustrate the details of the computational cost.

Figure 1 demonstrates three-way coupling of bunny-shaped in-
viscid (left) or viscous (right) liquid volumes, multiple rigid bun-
nies, and an elastic sheet. This simulation used a liquid density of
1, 000 kg/m3 (and viscosity 100 kg/(s ·m) for viscous fluids) and
3.9k vertices, 12.2k elements, Young’s modulus 𝑒 = 104 (Pa), Pois-
son’s ratio 𝜈 = 0.49 for the elastic sheet, a solid density of 200 kg/m3

for the sheet and rigid bunnies, a grid resolution of 803, and 52.5k
particles. The total simulation time per frame was 225.3 s (left) and
211.7 s (right).

4.6 Discussions
4.6.1 Block Decomposition. In our experiments, it is typically ad-
vantageous to solve the system in a unified way rather than sepa-
rately and iteratively solving the subcomponents of the system (e.g.,
using block GS), because our system components (pressure, viscous
stress, elasticity, and contact forces) are algebraically tightly cou-
pled. However, if a particular decomposition of the system makes it
possible to efficiently solve the subcomponents [Bouaziz et al. 2014;
Overby et al. 2017; Takahashi and Batty 2021], such decomposition
approaches could be an effective alternative with sufficient outer
iterations. Thus, it is worthwhile investigating how unified systems
should be decomposed to maximize performance.

4.6.2 Time Step Size. While our optimization-based solver enables
taking much larger time step sizes (e.g., CFL numbers of 5.0 or
more), larger time steps do not necessarily lead to better overall
performance and quality; more Newton iterations are often required,
along with more inner solver iterations [Macklin et al. 2019b], addi-
tional SDF and volume fraction evaluations, and repeated contact
updates [Otaduy et al. 2009]. In addition, energy dissipation for
both fluids and solids can become significant. Instead, taking just
one Newton iteration with a smaller time step can sometimes be
more efficient and effective [Baraff andWitkin 1998; Kim and Eberle
2020]. Nonetheless, we believe that in practice, it is preferable for
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(a) PVEC UCG (b) PVEC LDLT (ours)

Fig. 11. A viscous bunny dropped onto an elastic beam with both its sides fixed, simulated with different schemes (see §4.4). PVEC UCG exhibits sticky
contacts between the beam and the ground while PVEC LDLT (ours) generate plausible contact response, achieving 7.5× performance gain.

25 50 75 100 125 150 175 200
Frames

0

200

400

600

800

1000

Ti
m

e 
(s

)

PVEC UCG
PVEC LDLT (ours)

Fig. 12. Profiles of the total time for the entire pressure-viscosity-elasticity-
contact handling per frame for Figure 11. PVEC LDLT (ours) is faster than
PVEC UCG by a factor of 7.5.
users if time steps can be (almost) arbitrarily chosen, albeit with
graceful performance degradation, compared to facing a sudden
simulation breakdown with larger time steps (as is more often the
case for weak or explicit coupling).

4.6.3 Inexact Newton Method. In general, performing more New-
ton iterations with relatively inaccurate descent directions can be
more efficient compared to spending more linear solver time to
find accurate descent directions [Nocedal and Wright 2006]. How-
ever, we observed that such inexact methods can frequently make
Newton iterations diverge or suffer delayed convergence [Yan et al.
2018]. To quickly compute sufficiently accurate descent directions,
it would be interesting to develop a variant of MPRGP based on,
e.g., CR [Saad 2003], which guarantees a monotonic decrease of the
residual [Fong and Saunders 2012; Macklin et al. 2019a] since the
original MPRGP [Dostal and Schoberl 2005] (being based on CG
[Shewchuk 1994]) does not provide this property. As an alternative
for efficiently computing the descent direction (at the cost of accu-
racy), it would be interesting to develop a strategy to periodically
skip re-evaluation of SDFs, volume fractions, and contact updates,
with an analysis on acceptable inaccuracy [Yan et al. 2018]. Another
interesting direction is to derive a sparse matrix decomposition with
the optimal amount of fill-in, e.g., using nested dissection.

4.6.4 Elastic Solids. To correctly evaluate the elastic potentials
and improve robustness (updating contact information), we allow
position updates for elastic solids within the Newton iterations. As
this position-level approach is typically more costly due to the re-
evaluation of SDFs and volume fractions in each Newton iteration,

velocity-level approaches might be beneficial, although they are
typically less accurate (unless the elastic potentials are quadratic [Ly
et al. 2020]) and less robust due to their outdated contact information
[Otaduy et al. 2009].

4.6.5 Rigid Body Contact Handling. In contrast to elastic solids, we
adopted velocity-level contact handling for rigid bodies, with their
positional coordinates fixed during the Newton iterations, as we
found it to be sufficiently robust. However, considering the improved
robustness offered by position-level contact handling [English et al.
2013; Ferguson et al. 2021; Müller et al. 2020], it could be worth
exploring these techniques despite their higher costs.

4.6.6 SPD Reformulation. Our SPD reformulation outperformed
previous approaches for elastic-solid contact handling [Otaduy et al.
2009] and two-way fluid-solid coupling [Zarifi and Batty 2017] in
our examples. However, unlike these approaches, our reformulation
requires LDLT decomposition for K (which is 𝑂 (𝑁 3) with 𝑁 DOFs)
and introduces additional non-zeros due to fill-in (especially for
high-resolution and intricately shaped solids), negatively affecting
efficiency and memory usage for subcomponents related to elastic
solids (e.g., the scene with fewer fluid particles in Figure 9 is more
costly than that in Figure 7 due to the elastic bowl which induces
more non-zeros compared to the elastic beam). Thus, if such elastic
solids are used, factorization-free scalable approaches might be
preferable although factorization is still in practical use in recent
simulators for complex deformable solids [Lan et al. 2021; Li et al.
2020b, 2021].

4.6.7 Preconditioning. In our experiments, IC preconditioning ac-
celerates the convergence of MPRGP and was typically more effi-
cient in the total solver time despite IC factorization being relatively
expensive compared to SSOR (except for Figure 3 and 5) and modi-
fied incomplete Cholesky (MIC) [Bridson 2015]. However, it is still
the most expensive part of our method, and it is worth investigating
advanced preconditioners supporting box constraints, e.g., based
on multiscale approaches [Aanjaneya 2018; Aanjaneya et al. 2019;
Chen et al. 2021; Chentanez and Müller 2012; Demidov 2019; Lai
et al. 2020; Shao et al. 2022].
In particular, when more and larger rigid bodies are involved,

the number of necessary MPRGP iterations becomes larger due to
the low-rank dense submatrices (which are not preconditioned). In

ACM Trans. Graph., Vol. 41, No. 6, Article 255. Publication date: December 2022.



ElastoMonolith: A Monolithic Optimization-based Liquid Solver for Contact-Aware Elastic-Solid Coupling • 255:15

(a) Inviscid and rigid (b) Inviscid and elastic

(c) Viscous and rigid (d) Viscous and elastic

Fig. 13. A liquid bunny and a bowl dropped onto a rigid static torus, with different materials (inviscid or viscous for the liquids and rigid or elastic for the bowl).
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Fig. 14. The performance breakdown for Figure 13 (c) and (d). “P2G” rep-
resents the particle-to-grid transfer, “Fill” is forming the various matrices,
“Assemble” is assembling the monolithic system, “Precond” is IC precondi-
tioning, and “MPRGP” is the MPRGP solve.

our early experiments, although we tried applying SSOR precondi-
tioning to the dense submatrices using SM [Takahashi and Batty
2020], the effect was not noticeable, probably because SSOR precon-
ditioning was not powerful enough. As such, we are interested in
exploring more effective preconditioning strategies which can be
applied to the low-rank dense submatrices (e.g., [Aanjaneya 2018]).

4.6.8 Indefinite System. While we reformulated an indefinite sys-
tem to be SPD due to the efficiency and wide availability of effective
SPD solvers (e.g., CG [Shewchuk 1994] and MPRGP [Dostal and
Schoberl 2005]), our reformulation can have some undesirable effects
(e.g., denser non-zero patterns due to fill-in and matrix multiplica-
tions, and low-rank dense submatrices). As such, similar to some
previous work [Robinson-Mosher et al. 2009, 2008], it will be inter-
esting to investigate efficient indefinite solvers [Benzi et al. 2005],
such as CR [Saad 2003] with extensions for constraint handling [Ver-
schoor and Jalba 2019], and Uzawa iterations with preconditioning
and inequality constraint handling [Gräser and Kornhuber 2007].

4.6.9 Level Set Representation. To efficiently treat liquids and solids
in a unified framework, we mainly used a grid-based level set repre-
sentation and evaluated SDFs, volume fractions, and contacts based
on those level sets (alongwith the cut-cell approach for F𝑒,p and F𝑒,s).
However, the accuracy of these evaluations is fundamentally limited
by the grid resolution, and these evaluations can be inconsistent (see
e.g., [Takahashi and Lin 2019; Zarifi and Batty 2017]). Consistent

use of exact solid geometry for volume evaluations [Azevedo et al.
2016] and contact detection [Ferguson et al. 2021; Li et al. 2020b,
2021] may be preferable (e.g., for coupling with cloth and hair).

4.6.10 Contacts. Our contact constraint formulation is derived
from the velocity-level LCP and augmented with Baumgarte stabi-
lization [Baumgarte 1972] to compensate for accumulated position-
level errors. However, Baumgarte stabilization can introduce extra
energy, causing stability issues unless the stabilization parameters
are carefully tuned. As an alternative, post-stabilization was de-
veloped for rigid bodies to address constraint drift [Cline and Pai
2003]; extending this technique to elastic solids and rigid-elastic
solid coupling could address position-level constraint violations.
While we explicitly track persistent contacts for warm starting,

there is no guarantee that the previous contact information is suf-
ficiently helpful unless they are resting contacts. In general, there
exist multiple pairs of contact forces and configurations that lead
to the same global results, i.e., contact forces due to the Lagrange
multipliers for the dual formulation can be ambiguous [Macklin
et al. 2020; Zheng and James 2011]. Thus, it would be promising to
explore primal formulations which are less likely to be affected by
contact configurations [Li et al. 2020b, 2021; Macklin et al. 2020; Pan
et al. 2019].

5 CONCLUSIONS
We proposed ElastoMonolith, a monolithic framework for challeng-
ing contact-aware coupling of inviscid/viscous fluids and rigid/elastic
solids that can handle, in a unified way, fluid incompressibility, im-
plicit viscosity integration, elastic deformations, frictional contacts,
and mutual fluid-solid force exchanges due to pressure and viscous
stress. To efficiently and robustly solve the constrained monolithic
optimization problem, we presented our customized solver and eval-
uated its performance. Finally, we demonstrated our monolithic
solver on difficult scenarios, showing that it eliminates artifacts and
surpasses the capabilities of prior or alternative schemes.
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A FIRST AND SECOND ORDER DERIVATIVES
The first order derivatives of the monolithic system (20) are

𝜕𝐸
𝜕u
𝜕𝐸
𝜕x𝑒
𝜕𝐸
𝜕v𝑟
𝜕𝐸
𝜕s
𝜕𝐸
𝜕p
𝜕𝐸
𝜕c


=



M𝑓 (u − u∗) + Δ𝑡Ds + Δ𝑡Gp
𝛼M𝑒

Δ𝑡2
(x𝑒 − x∗𝑒 ) + 𝛼∇Ψ(x𝑒 ) − F𝑒,ss − F𝑒,pp − 𝛼J𝑇𝑒 c
𝛼M𝑟 (v𝑟 − v∗𝑟 ) − Δ𝑡F𝑟,ss − Δ𝑡F𝑟,pp − Δ𝑡𝛼J𝑇𝑟 c
Δ𝑡D𝑇 u − F𝑇𝑒,s (x𝑒 − x𝑡𝑒 ) − Δ𝑡F𝑇𝑟,sv𝑟 − Δ𝑡

2 N−1s
Δ𝑡G𝑇 u − F𝑇𝑒,p (x𝑒 − x𝑡𝑒 ) − Δ𝑡F𝑇𝑟,pv𝑟

−𝛼J𝑒 (x𝑒 − x𝑡𝑒 ) − Δ𝑡𝛼J𝑟v𝑟


.

(29)

The second order derivatives of the monolithic system (20) are
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=



M𝑓 𝑂 𝑂 Δ𝑡D Δ𝑡G 𝑂

𝑂 Ĥx𝑒x𝑒 𝑂 −F𝑒,s −F𝑒,p −𝛼J𝑇𝑒
𝑂 𝑂 𝛼M𝑟 −Δ𝑡F𝑟,s −Δ𝑡F𝑟,p −Δ𝑡𝛼J𝑇𝑟

Δ𝑡D𝑇 −F𝑇𝑒,s −Δ𝑡F𝑇𝑒,p − Δ𝑡
2 N−1 𝑂 𝑂

Δ𝑡G𝑇 −F𝑇𝑒,p −Δ𝑡F𝑇𝑟,p 𝑂 𝑂 𝑂

𝑂 −𝛼J𝑒 −Δ𝑡𝛼J𝑟 𝑂 𝑂 𝑂


,

Ĥx𝑒x𝑒 =
𝛼M𝑒

Δ𝑡2
+ 𝛼∇2Ψ(x𝑒 ) . (30)

B MONOLITHIC SPD REFORMULATION
The system matrix due to the second order derivatives (30) is sym-
metric but indefinite due to the presence of Lagrange multipliers
(even after the Hessian projection). To derive an SPD formulation,
we first augment the system with a newly introduced unknown

variable Δg, using K = QCQ𝑇 via LDLT decomposition:



M𝑓 𝑂 𝑂 Δ𝑡D Δ𝑡G 𝑂 𝑂

𝑂
𝛼M𝑒

Δ𝑡2
𝑂 −F𝑒,s −F𝑒,p −𝛼J𝑇𝑒 𝛼Q

𝑂 𝑂 𝛼M𝑟 −Δ𝑡F𝑟,s −Δ𝑡F𝑟,p −Δ𝑡𝛼J𝑇𝑟 𝑂

Δ𝑡D𝑇 −F𝑇𝑒,s −Δ𝑡F𝑇𝑒,p −Δ𝑡
2 N−1 𝑂 𝑂 𝑂

Δ𝑡G𝑇 −F𝑇𝑒,p −Δ𝑡F𝑇𝑟,p 𝑂 𝑂 𝑂 𝑂

𝑂 −𝛼J𝑒 −Δ𝑡𝛼J𝑟 𝑂 𝑂 𝑂 𝑂

𝑂 𝛼Q𝑇 𝑂 𝑂 𝑂 𝑂 −𝛼C−1

[
Δu𝑇 Δx𝑇𝑒 Δv𝑇𝑟 Δs𝑇 Δp𝑇 Δc𝑇 Δg𝑇

]𝑇
=

[
−

(
𝜕𝐸
𝜕u

)𝑇
−

(
𝜕𝐸
𝜕x𝑒

)𝑇
−

(
𝜕𝐸
𝜕v𝑟

)𝑇
−

(
𝜕𝐸
𝜕s

)𝑇
−

(
𝜕𝐸
𝜕p

)𝑇
−

(
𝜕𝐸
𝜕c

)𝑇
𝑂

]𝑇
.

(31)

By eliminating Δu,Δx𝑒 , and Δv𝑟 from this system via substitution,
we obtain an SPD and much smaller system:


Ass Asp Asc Asg
Aps App Apc Apg
Acs Acp Acc Acg
Ags Agp Agc Agg




Δs
Δp
Δc
Δg

 =


bs
bp
bc
bg

 ,
Aps = A𝑇

sp,Acs = A𝑇
sc,Acp = A𝑇

pc,Ags = A𝑇
sg,Agp = A𝑇

pg,Agc = A𝑇
cg,

(32)

Ass =
1

2Δ𝑡
N−1 + D𝑇M−1

𝑓
D + 1

𝛼
F𝑇𝑒,sM

−1
𝑒 F𝑒,s +

1
𝛼
F𝑇𝑟,sM

−1
𝑟 F𝑟,s, (33)

Asp = D𝑇M−1
𝑓
G + 1

𝛼
F𝑇𝑒,sM

−1
𝑒 F𝑒,p +

1
𝛼
F𝑇𝑟,sM

−1
𝑟 F𝑟,p, (34)

Asc = F𝑇𝑒,sM
−1
𝑒 J𝑇𝑒 + F𝑇𝑟,sM−1𝑟 J𝑇𝑟 , (35)

Asg = −F𝑇𝑒,sM−1𝑒 Q, (36)

App = G𝑇M−1
𝑓
G + 1

𝛼
F𝑇𝑒,pM

−1
𝑒 F𝑒,p +

1
𝛼
F𝑇𝑟,pM

−1
𝑟 F𝑟,p, (37)

Apc = F𝑇𝑒,pM
−1
𝑒 J𝑇𝑒 + F𝑇𝑟,pM−1𝑟 J𝑇𝑟 , (38)

Apg = −F𝑇𝑒,pM−1𝑒 Q, (39)

Acc = 𝛼J𝑒M−1𝑒 J𝑇𝑒 + 𝛼J𝑟M−1𝑟 J𝑇𝑟 , (40)

Acg = −𝛼J𝑒M−1𝑒 Q, (41)

Agg =
𝛼

Δ𝑡2
C−1 + 𝛼Q𝑇M−1𝑒 Q, (42)

bs =
1
Δ𝑡2

𝜕𝐸

𝜕s
− 1

Δ𝑡
D𝑇M−1

𝑓

𝜕𝐸

𝜕u
+ 1
𝛼
F𝑇𝑒,sM

−1
𝑒

𝜕𝐸

𝜕x𝑒
+ 1
Δ𝑡𝛼

F𝑇𝑟,sM
−1
𝑟

𝜕𝐸

𝜕v𝑟

=
1
Δ𝑡

D𝑇 u∗ − 1
Δ𝑡2

F𝑇𝑒,s (x∗𝑒 − x𝑡𝑒 ) −
1
Δ𝑡

F𝑇𝑟,sv
∗
𝑟 + F𝑇𝑒,sM−1𝑒 ∇Ψ(x𝑒 )

− Asss − Aspp − Ascc, (43)

bp =
1
Δ𝑡2

𝜕𝐸

𝜕p
− 1

Δ𝑡
G𝑇M−1

𝑓

𝜕𝐸

𝜕u
+ 1
𝛼
F𝑇𝑒,pM

−1
𝑒

𝜕𝐸

𝜕x𝑒
+ 1
Δ𝑡𝛼

F𝑇𝑟,pM
−1
𝑟

𝜕𝐸

𝜕v𝑟
,

=
1
Δ𝑡

G𝑇 u∗ − 1
Δ𝑡2

F𝑇𝑒,p (x∗𝑒 − x𝑡𝑒 ) −
1
Δ𝑡

F𝑇𝑟,pv
∗ + F𝑇𝑒,pM−1𝑒 ∇Ψ(x𝑒 )

− Apss − Appp − Apcc, (44)
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bc =
1
Δ𝑡2

𝜕𝐸

𝜕c
+ J𝑒M−1𝑒

𝜕𝐸

𝜕x𝑒
+ 1
Δ𝑡

J𝑟M−1𝑟
𝜕𝐸

𝜕v𝑟
(45)

= − 𝛼

Δ𝑡2
J𝑒 (x∗𝑒 − x𝑡𝑒 ) −

𝛼

Δ𝑡
J𝑟v∗𝑟 + 𝛼J𝑒M−1𝑒 ∇Ψ(x𝑒 ) (46)

− Acss − Acpp − Accc, (47)

bg = −Q𝑇M−1𝑒
𝜕𝐸

𝜕x𝑒
(48)

=
𝛼

Δ𝑡2
Q𝑇 x∗𝑒 −

𝛼

Δ𝑡2
Q𝑇 x𝑒 − 𝛼Q𝑇M−1𝑒 ∇Ψ(x𝑒 ) (49)

− Agss − Agpp − Agcc. (50)

After we solve this SPD system, we can obtain Δu,Δx𝑒 , Δv𝑟 by

Δu = M−1
𝑓

(
− 𝜕𝐸
𝜕u
− Δ𝑡DΔs − Δ𝑡GΔp

)
(51)

= −(u − u∗) − Δ𝑡M−1
𝑓
(D(s + Δs) + G(p + Δp)) , (52)

Δx𝑒 = Δ𝑡2M−1𝑒

(
− 1
𝛼

𝜕𝐸

𝜕x𝑒
+ 1
𝛼
F𝑒,sΔs +

1
𝛼
F𝑒,pΔp + J𝑇𝑒 Δc − QΔg

)
= −(x𝑒 − x∗𝑒 ) + Δ𝑡2M−1𝑒(
−∇Ψ(x𝑒 ) +

1
𝛼
F𝑒,s (s + Δs) +

1
𝛼
F𝑒,p (p + Δp) + J𝑇𝑒 (c + Δc) − QΔg

)
,

Δv𝑟 = M−1𝑟

(
− 1
𝛼

𝜕𝐸

𝜕v𝑟
+ Δ𝑡

𝛼
F𝑟,sΔs +

Δ𝑡

𝛼
F𝑟,pΔp + Δ𝑡J𝑇𝑟 Δc

)
(53)

= −(v𝑟 − v∗𝑟 ) + Δ𝑡M−1𝑟(
1
𝛼
F𝑟,s (s + Δs) +

1
𝛼
F𝑟,p (p + Δp) + J𝑇𝑟 (c + Δc)

)
. (54)

C DISCUSSIONS ON KINETIC ENERGY MINIMIZATION
FORMULATION AND OURS

For the strong two-way coupling of inviscid fluids and rigid bodies,
previous works (e.g., [Batty et al. 2007; Takahashi and Batty 2020,
2021]) derived their formulations based on the kinetic energy mini-
mization with pressure forces (or impulses), i.e., dual variables or
Lagrange multipliers:

p = argmin
p

1
2

(
∥u∥2M𝑓

+ ∥v𝑟 ∥2M𝑟

)
, (55)

u = u∗ − Δ𝑡M−1
𝑓
Gp, v𝑟 = v∗𝑟 + Δ𝑡M−1𝑟 F𝑟,pp. (56)

This minimization problem is quadratic and can be handled by
solving the linear system for unknown pressure forces p:(

G𝑇M−1
𝑓
G + F𝑇𝑟,pM−1𝑟 F𝑟,p

)
p =

1
Δ𝑡

(
G𝑇 u∗ − F𝑇𝑟,pv∗𝑟

)
. (57)

While we focus on inviscid liquids here for simplicity, viscous flu-
ids can also be addressed in the same way with viscous stress s
[Takahashi and Batty 2020].
However, unfortunately, this approach based on the kinetic en-

ergy minimization with forces (dual variables) cannot incorporate
elastic solids [Bridson 2015] because there is no explicit relation
from p to x𝑒 (i.e., it is defined only implicitly due to the elastic
potential), unlike liquids and rigid bodies (56), preventing us from
expressing the kinetic energyminimization for elastic solids through

the dual variables. Thus, we take a different approach that mini-
mizes the inertia and elastic potential on primal variables under the
incompressibility and frictional contact constraints, which in the
end leads to the minimization on primal variables and maximization
on dual variables (Lagrange multipliers).

As a sub-component of the monolithic system (20), our formula-
tion for the strong coupling of inviscid liquids and rigid bodies can
be given in the mixed minimization/maximization form as

u, v𝑟 , p = argmin
u,v𝑟

argmax
p

𝐸 (u, v𝑟 , p), (58)

𝐸 (u, v𝑟 , p) =
1
2

(u − u∗2M𝑓
+

v𝑟 − v∗𝑟 2M𝑟

)
+ Δ𝑡p

(
G𝑇 u − F𝑇𝑟,pv𝑟

)
.

(59)

Since this optimization problem is a quadratic minimization with
respect to the primal variables (u and v𝑟 ) and a linear maximization
with respect to the dual variables (p), we can find the optimality
by extremizing the objective and solving the resulting symmetric
indefinite system due to the KKT condition once (without using
Newton’s method):

M𝑓 𝑂 Δ𝑡G
𝑂 M𝑟 −Δ𝑡F𝑟,p

Δ𝑡G𝑇 −Δ𝑡F𝑇𝑟,p 𝑂




u
v𝑟
p

 =


M𝑓 u∗

M𝑟v∗𝑟
0

 . (60)

The first and second rows can be eliminated by Schur complement
substitutions into the third row, and we arrive at the SPD linear
system (57) derived from the kinetic energy minimization approach,
proving the equivalence between the kinetic energy minimization
formulation (55) and ours (58) when primal variables can be ex-
plicitly expressed with dual variables. As such, since the kinetic
energy minimization formulation is a subset of our formulation, our
approach is more general, enabling us to handle the case that the
relation between primal and dual variables is defined only implicitly,
e.g., for elastic solids.

D PEC UCG AND PVEC UCG FORMULATIONS
The indefinite system used with PEC UCG in Sec. 4.3 is given as

M𝑓 𝑂 Δ𝑡G 𝑂

𝑂 Hx𝑒x𝑒 −F𝑒,p −𝛼J𝑇𝑒
Δ𝑡G𝑇 −F𝑇𝑒,p 𝑂 𝑂

𝑂 −𝛼J𝑒 𝑂 𝑂




Δu
Δx𝑒
Δp
Δc

 =


− 𝜕𝐸

𝜕u
− 𝜕𝐸

𝜕x𝑒
− 𝜕𝐸

𝜕p
− 𝜕𝐸

𝜕c

 . (61)

The indefinite system used with PVEC UCG in Sec. 4.4 is given as
M𝑓 + 2Δ𝑡DND𝑇 −2DNF𝑇𝑒,s Δ𝑡G 𝑂

−2F𝑒,sND𝑇 Hx𝑒x𝑒 + 2
Δ𝑡 F𝑒,sNF

𝑇
𝑒,s −F𝑒,p −𝛼J𝑇𝑒

Δ𝑡G𝑇 −F𝑇𝑒,p 𝑂 𝑂

𝑂 −𝛼J𝑒 𝑂 𝑂




Δu
Δx𝑒
Δp
Δc


=


− 𝜕𝐸

𝜕u − 2DN
𝜕𝐸
𝜕s

− 𝜕𝐸
𝜕x𝑒 +

2
Δ𝑡 F𝑒,sN

𝜕𝐸
𝜕s
− 𝜕𝐸

𝜕p
− 𝜕𝐸

𝜕c


.

(62)
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