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Fig. 1. Our unified solver, FrictionalMonolith, enables efficient and robust simulations of granular materials with strong, contact-aware, two-way coupling with
rigid bodies. (Left) Granular materials flowing between several bunnies stuck in the middle of an hourglass due to frictional contacts. (Right) A rotating drum
mixing granular materials with rigid bunnies.

We propose FrictionalMonolith, a monolithic pressure-friction-contact solver
for more accurately, robustly, and efficiently simulating two-way interac-
tions of rigid bodies with continuum granular materials or inviscid liquids.
By carefully formulating the components of such systems within a single uni-
fied minimization problem, our solver can simultaneously handle unilateral
incompressibility and implicit integration of friction for the interior of the
continuum, frictional contact resolution among the rigid bodies, and mutual
force exchanges between the continuum and rigid bodies. Our monolithic
approach eliminates various problematic artifacts in existing weakly coupled
approaches, including loss of volume in the continuum material, artificial
drift and slip of the continuum at solid boundaries, interpenetrations of rigid
bodies, and simulation instabilities. To efficiently handle this challenging
monolithic minimization problem, we present a customized solver for the re-
sulting quadratically constrained quadratic program that combines elements
of staggered projections, augmented Lagrangian methods, inexact projected
Newton, and active-set methods. We demonstrate the critical importance of
a unified treatment and the effectiveness of our proposed solver in a range
of practical scenarios.

CCS Concepts: • Computing methodologies→ Physically-based sim-
ulation;Monolithic coupling.

Authors’ addresses: Tetsuya Takahashi, Adobe, USA, ttakahas@adobe.com; Christopher
Batty, University of Waterloo, Canada, christopher.batty@uwaterloo.ca.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0730-0301/2021/12-ART206 $15.00
https://doi.org/10.1145/3478513.3480539

Additional Key Words and Phrases: Fluid simulation, monolithic coupling,
friction

ACM Reference Format:
Tetsuya Takahashi and Christopher Batty. 2021. FrictionalMonolith: AMono-
lithic Optimization-based Approach for Granular Flow with Contact-Aware
Rigid-Body Coupling . ACM Trans. Graph. 40, 6, Article 206 (December 2021),
20 pages. https://doi.org/10.1145/3478513.3480539

1 INTRODUCTION
The dynamics of granular materials (e.g., sand, sugar, salt, rice,
grains, etc.) and their interactions with other objects are critical
to a huge range of common physical phenomena: consider sugar
being scooped with a tea spoon, pack animals carrying their burdens
across a vast desert, grain piling up in a silo, or children playing
with toys on a sandy beach. The ability to simulate these phenom-
ena both stably and efficiently is critical for practical applications
in various industries, including animation, augmented and virtual
reality, robotics, engineering, food processing, and medicine.
Because of the demand for simulating large-scale scenarios, a

common approach in the literature is to treat the dynamics of gran-
ular materials at the macroscopic scale rather than attempting to
resolve the myriad tiny individual grains that they are composed of.
This is done by approximating the granular medium as a continuum,
allowing one to significantly reduce computational cost and mem-
ory usage [Daviet and Bertails-Descoubes 2016; Ihmsen et al. 2013;
Klár et al. 2016; Narain et al. 2010; Zhu and Bridson 2005]. Some of
these prior approaches, based on this continuum perspective, offer
mechanisms for two-way coupling between the granular material
and individual rigid bodies, with mutual contact among rigid bodies
handled in a distinct step. However, as was recently observed in
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the context of viscous fluid / rigid body interaction [Takahashi and
Batty 2020], such lagged or weakly coupled approaches can have dis-
astrous effects on simulation quality and stability when the contact
graph is non-trivial. For example, fluid-oblivious rigid-body contact
resolution can induce severe fluid volume loss when a rigid body
ends up overlapping the fluid; conversely, if fluid-solid coupling
is computed while ignoring rigid-rigid contacts, rigid bodies can
be pushed into each other, leading to numerical explosions. The
same fundamental issue arises for granular media, but is made more
difficult from a numerical perspective due to their comparatively
complex constitutive and contact behavior.
To address this challenge, we propose a novel monolithic treat-

ment of pressure, friction, and contact forces for complex granular-
rigid interactions. Our formulation simultaneously considers: unilat-
eral incompressibility and implicit integration of frictional stress for
continuum granular media; frictional contact handling among rigid
bodies; and pressure and frictional forces between the grains and
rigid bodies. Our approach is variational in nature, relying on a uni-
fied kinetic energy minimization formulation wherein each physical
component contributes terms to the system’s total energy, leading
to a correct and globally coupled exchange of forces. Furthermore,
to overcome artificial anisotropy artifacts induced by the common
pyramidal approximation of the friction cone, for both rigid bodies
and granular media, we propose to enforce exact friction cone con-
straints; our monolithic formulation thus becomes a Quadratically
Constrained Quadratic Program (QCQP). To efficiently solve this
QCQP, we present a customized solver that combines staggered pro-
jections, augmented Lagrangian methods, inexact projected Newton,
and active-set methods. In summary, our key contributions are

• A unified pressure-friction solver to accurately simulate
continuum granular materials under unilateral incompress-
ibility and exact friction cone constraints with sub-grid detail.

• Strong two-way rigid-fluid coupling to robustly capture
two-way interactions of granular materials and individual
rigid bodies within our unified pressure-friction solver.

• Amonolithic contact-aware rigid-rigid rigid-fluid cou-
pling method that improves robustness by simultaneously
handling all momentum exchanges among fluids and solids
due to pressure, frictional stress, and frictional contact forces.

2 RELATED WORK

2.1 Granular Materials
Given that granular materials consist of many tiny grains, a nat-
ural choice is to simulate them as individual particles. This leads
to a range of approaches usually referred to as Discrete Element
Methods (DEM), which often make use of penalty forces [Bell et al.
2005] or constraints [Macklin et al. 2014; Mazhar et al. 2015]. These
approaches offer an impressive level of fidelity and detail, but the
simulation costs can quickly become prohibitive as the material
volume increases or the grain size shrinks. One partial solution is
the use of secondary simulations which can improve visual quality
and reduce simulation cost [Alduan et al. 2009]. Continuum-based
approaches have instead been proposed to approximate granular
flows at a coarser scale. Zhu and Bridson [2005] modeled sand as
an incompressible continuum augmented with simplified friction

handling on the interior and at boundaries. Narain et al. [2010]
further adapted the continuum-based approach of Zhu and Bridson
to simulate dry sand by enforcing friction pyramid constraints and
unilateral incompressibility using Linear Complementarity Problem
(LCP) formulations, allowing grains to freely separate from bound-
aries and one another. They also incorporated two-way rigid-body
coupling, extending the fluid-solid coupling of Batty et al. [2007].
Our granular flow formulation is related to that of Narain et al.

[2010], with several key differences. First, we enable exact friction
cone constraints to eliminate artificial anisotropy induced by pyra-
midal friction cone approximations. Second, we derive a unified
optimization formulation at the continuous level for the coupled
pressure and frictional stress, whereas Narain et al. [2010] devel-
oped two discrete optimizations. Our formulation enables greater
consistency, handling boundaries with both fluid/solid and liquid/air
volume fractions (similar to Larionov et al. [2017] for viscous liquids)
and yielding a more accurate discretization that prevents oscilla-
tion artifacts at free surfaces. Furthermore, our unified formulation
enables two-way contact-aware coupling with multiple rigid bodies.

Recently, the material point method (MPM) has been widely used
to simulate granular materials as a continuum, e.g., for dry sand
[Daviet and Bertails-Descoubes 2016; Han et al. 2019; Jiang et al.
2017, 2020; Klár et al. 2016] and sand-fluid mixtures [Gao et al. 2018;
Tampubolon et al. 2017]. The elastoplastic constitutive laws used
in these MPM methods are effective in approximating granular
flows [Klár et al. 2016; Yue et al. 2018], but they typically adopt a
weakly compressible model and use explicit time integration, and
thus can suffer from bouncing/compression artifacts and stabil-
ity issues, in contrast to our strictly incompressible formulation.
MPM schemes also often require larger quadratic or cubic stencils
to avoid cell-crossing instabilities [Jiang et al. 2016], with some
exceptions [Daviet and Bertails-Descoubes 2016; Yue et al. 2018].
To faithfully capture granular dynamics that depend critically on
individual grains (e.g., clogging effects), Yue et al. [2018] presented
a hybrid solver that combines MPM and DEM.
At the continuous level, our granular flow formulation has con-

nections to the constraint-based MPM formulation of Daviet and
Bertails-Descoubes [2016]. A key difference lies in the discretization
approach. Their method is based on MPM using a purely colocated
grid; the authors note that since they enforce constraints at discrete
points (e.g., for unilateral incompressibility), this can lead to volume
loss. By contrast, our method uses a hybrid grid that combines the
traditional finite-volume-style staggered grid discretization with
a colocated stress arrangement. Our approach can thus enforce
incompressibility more naturally, without suffering from volume
loss, in exchange for slightly larger stencils. Another notable dif-
ference is that Daviet and Bertails-Descoubes [2016] formulate the
cone constraints as a complementarity problem using the modified
Fischer-Burmeister function based on the Jordan algebras [Daviet
et al. 2011]. Our method instead employs a variational minimiza-
tion approach (whose Karush–Kuhn–Tucker (KKT) conditions are
equivalent to the complementarity-based formulation [Anitescu
and Tasora 2010]), directly addressing the cone constraints with our
customized solver. Moreover, their approach does not consider the
highly contact-dependent two-way coupled rigid body scenarios
targeted by our monolithic framework.
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Smoothed particle hydrodynamics (SPH) offers another possi-
ble treatment of continuum-based granular materials. For example,
Lenaerts and Dutré [2009] adapted the model of Zhu and Bridson
[2005] to SPH. Later, Alduán and Otaduy [2011] extended their
method with unilateral incompressibility and friction constraints
following Narain et al. [2010], and Ihmsen et al. [2013] incorporated
a secondary simulation for finer details [Alduan et al. 2009].

Lastly, although they sacrifice intrinsically three-dimensional ef-
fects for efficiency, height field approaches have also been proposed
for granular simulation, e.g., [Sumner et al. 1999; Zhu et al. 2021].
To improve visual quality with minimal increased cost, Onoue and
Nishita [2003] introduced multi-valued height fields, and Zhu and
Yang [2010] added 3D effects using surface DEM particles.

2.2 Contact Handling
Velocity-level LCP formulations have been extensively used for con-
tact handling of rigid bodies [Stewart 2000]. While various numeri-
cal schemes can be used to solve the LCP, for increasingly complex
scenarios with greater numbers of contacts, iterative solvers tend to
be preferred because of their scalability and lower memory usage,
as compared to direct solvers. In particular, Projected Gauss-Seidel
(PGS) has been widely used due to its simplicity and flexibility de-
spite its slow convergence. To improve the efficiency of PGS, various
techniques have been presented, e.g., shock propagation [Erleben
2007], dimension reduction in Gauss-Seidel iterations [Silcowitz
et al. 2010], mass splitting [Tonge et al. 2012], proximal algorithms
[Erleben 2017], and long range constraints [Müller et al. 2017].

For greater efficiency and accuracy, researchers have investigated
alternative reformulations and numerical solvers. Renouf and Alart
[2005] reformulated the LCP as a QP and solved it using a conjugate
projected gradient algorithm. Kaufman et al. [2008] presented the
staggered projections approach, formulating the non-penetration
and friction constraint problems as separate convex QPs and solving
them in alternating fashion to convergence. Later, Le Lidec et al.
[2021] solved QCQP friction problems within the staggered projec-
tions framework to handle the cone constraints, employing the Alter-
nating Direction Method of Multipliers (ADMM) [Boyd et al. 2011].
Reformulation as a Nonlinear Complementarity Problem (NCP) us-
ing the Fischer-Burmeister formulationwas also shown to accurately
handle friction cone constraints; this form has been solved using
a non-smooth Newton method [Silcowitz et al. 2009], non-smooth
Gauss-Newton method [Todorov 2010], and non-smooth nonlin-
ear conjugate gradient (NCG) [Silcowitz-Hansen et al. 2010]. Later,
Todorov [2011] formulated the frictional contact problem as a con-
strained minimization problem and solved it using an interior point
method with Newton’s method. To solve a similar constrained min-
imization problem, Mazhar et al. [2015] proposed accelerated pro-
jected gradient descent (APGD), which exploits Nesterov’s method,
and demonstrated its efficiency over PGS. To evaluate efficiency,
Melanz et al. [2017] and De et al. [2019] compared various first order
methods, such as PGS and APGD, and second order methods, such
as interior point methods with Newton’s method.
Recently, these techniques have been augmented to handle fric-

tional contacts of deformable solids, using the conjugate residual
method with dynamic constraint updates [Verschoor and Jalba

2019], non-smooth Newton with geometric stiffness approxima-
tions [Macklin et al. 2019], the primal interior point method with
incremental potentials [Li et al. 2020a,b], nodal contact assumptions
for primal solvers [Li et al. 2018; Ly et al. 2020], ADMM to split
elasticity and contact problems [Daviet 2020], and implicit surface
representations of smooth contact geometry [Larionov et al. 2021].

2.3 Two-Way Fluid-Solid Coupling
Initial two-way coupling approaches for Eulerian fluids and La-
grangian solids employed weak two-way coupling (e.g., [Guendel-
man et al. 2005]), alternatingly solving the fluid and solid in isola-
tion, with appropriate boundary condition updates; this approach is
generally less robust than strong two-way coupling which simulta-
neously considers both fluid and solid dynamics (e.g., [Klingner et al.
2006]). While strong coupling is often formulated as a single uni-
fied system, iterating weak coupling to convergence is a valid form
of strong coupling since it amounts to solving the unified system
in block Gauss-Seidel fashion. This approach can converge slowly,
although Akbay et al. [2018] presented a technique to accelerate it.

Batty et al. [2007] proposed a grid-based strong two-way pressure
coupling method based on a variational principle, later augmented
with friction [Narain et al. 2010] and viscosity [Takahashi and Lin
2019]. Robinson-Mosher et al. [2008] presented a different coupling
approach for both rigid and deformable solids, including free-slip
boundary conditions [Robinson-Mosher et al. 2009]. Later work
reformulated this method to ensure symmetric positive definite
(SPD) systems [Robinson-Mosher et al. 2011] and to incorporate drag
on sub-grid solids [Hyde and Fedkiw 2019]. Takahashi and Batty
[2020] developed a monolithic “contact-aware” coupling strategy,
unifying rigid body frictional contact handling [Kaufman et al. 2008]
with a Stokes-based solver for viscous liquids [Larionov et al. 2017].

Our two-way coupling strategy builds on the granular flow scheme
of Narain et al. [2010] and the contact-aware coupling method of
Takahashi and Batty [2020]. In contrast to Narain’s work, we for-
mulate a single unified formulation for implicit integration and
fluid-solid force exchange of pressure and frictional stress under
the true friction cone constraints, and further consider monolithic
contact-aware coupling with rigid bodies. In contrast to Takahashi’s
method, we consider granular flow rather than viscous liquids, lead-
ing to a more challenging constrained optimization problem.
Variations on the immersed boundary method of Peskin [2002],

which treats fluids and solids as a single incompressible medium,
have also been used to animate two-way interactions, e.g., the rigid-
fluid method [Carlson et al. 2004] or the purely Eulerian coupling
method of Teng et al. [2016]. Recently, the immersed boundary
method was augmented with a reduced elasticity solver to simulate
fluid-solid coupling in real time [Brandt et al. 2019].

MPM schemes provide another natural mechanism for two-way
coupling of different materials through the shared underlying grid
structure [Ding and Schroeder 2020; Hu et al. 2018; Klár et al. 2016;
Yue et al. 2018]. Recently, Fang et al. [2020] proposed using particle
quadratures at the interface to handle free-slip boundary conditions.
Similarly, a range of SPH methods have been derived to support
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two-way coupling, in many cases exploiting a unified particle repre-
sentation for fluids and solids [Akinci et al. 2012; Band et al. 2018a,b;
Becker et al. 2009; Gissler et al. 2019; Koschier and Bender 2017].

3 FUNDAMENTALS
To establish important context and consistent notation, we summa-
rize previous formulations, with some natural extensions, as the
starting point for our work. We discuss granular material dynamics
(§3.1), frictional contact handling for rigid bodies (§3.2), and strong
two-way fluid-solid coupling in the absence of rigid-rigid contacts
(§3.3). (For brevity we refer to our granular continuum as a "fluid".)

3.1 Granular Material Dynamics
We model granular materials as a fluid-like continuum based on the
Cauchy momentum equation and continuity equation,

𝜌
𝐷u
𝐷𝑡

= ∇ · 𝝈 + f𝑓 and
𝑑𝜌

𝑑𝑡
+ ∇ · (𝜌u) = 0, (1)

where 𝑡 denotes time, 𝐷
𝐷𝑡

the material derivative, u velocity, 𝜌 den-
sity, 𝝈 the symmetric Cauchy stress tensor, and f𝑓 any external
forces. Cauchy stress 𝝈 can be decomposed into an isotropic mean
stress given by the pressure 𝑝 , and a traceless deviatoric compo-
nent given by the frictional stress s (s𝑥𝑥 , s𝑥𝑦, s𝑥𝑧 , s𝑦𝑦, s𝑦𝑧 , s𝑧𝑧 ) with
s𝑥𝑥 + s𝑦𝑦 + s𝑧𝑧 = 0, i.e., 𝝈 = −𝑝I + s where I is the identity matrix.
We use the affine particle-in-cell (APIC) framework [Jiang et al.

2015] to handle advection of velocity and density (i.e., particle mo-
mentum and mass) and to advance the simulation. To update mo-
mentum on the grid, we first apply any external forces, and then
apply pressure and friction forces using implicit time integration,

𝜌𝑡
(
u𝑡+Δ𝑡 − u∗

Δ𝑡

)
= −∇𝑝𝑡+Δ𝑡 + ∇ · s𝑡+Δ𝑡 , (2)

where u∗ and u𝑡+Δ𝑡 denote the velocities before and after implicit
integration, respectively, and Δ𝑡 denotes the time step size. This
stage will be the primary focus of our work.

3.1.1 Staggered Projections. To address the integration of pressure
and friction forces in (2), one can split this task into two subproblems,
and combine them using Staggered Projections (SP) [Kaufman et al.
2008; Narain et al. 2010]. Specifically, one can first compute frictional
stress s to update u∗, then use the updated u∗ to compute pressure
p and update u∗ again, and alternate these steps until convergence.

3.1.2 Pressure Formulation. The compression and expansion be-
haviors of non-cohesive dry granular flows (or splashing liquids
with wall separation) can be modeled with three conditions relating
pressure and density:

1. density 𝜌 should not exceed the rest density 𝜌0: 𝜌 ≤ 𝜌0,
2. pressure is non-negative to prevent attraction: 0 ≤ 𝑝 ,
3. pressure acts (i.e., is non-zero) only when the density equals

the rest density: 𝑝 (1 − 𝜌/𝜌0) = 0.
These conditions can be encoded as a discrete LCP (or equivalent
QP), as prior work has shown [Gerszewski and Bargteil 2013; Narain
et al. 2010]. For consistency during discretization, we instead formu-
late a continuous version over the simulation domain Ω, introducing

constraint stabilization (with a parameter 𝛽𝑓 ) that acts to correct
densities that have exceeded 𝜌0:

p = arg min
0≤p

∫
Ω

(
1
2
𝜌

u∗ − Δ𝑡

𝜌
∇p

2

2
+ Δ𝑡p

(
𝛽𝑓

Δ𝑡
min

(
1 − 𝜌

𝜌0
, 0

)))
𝑑Ω.

(3)

The min operator ensures that the stabilization effect is active only
when density 𝜌 > 𝜌0 (i.e., due to numerical advection error) since
min(1− 𝜌

𝜌0
, 0) is non-positive. This yields a source term that induces

(only) expansionwhere needed, analogous to rigid body stabilization
that pushes overlapping solids apart [Anitescu and Hart 2004; Cline
and Pai 2003]. Equation 3 extends the variational formulation of
Batty et al. [2007] to take our three required conditions into account,
along with stabilization, and naturally supports wall-separation.

3.1.3 Friction Formulation. The frictional stress must satisfy a yield
condition. We choose the popular Drucker-Prager yield criterion
[Klár et al. 2016; Narain et al. 2010],

∥s∥𝐹 ≤ 𝛼p, (4)

where ∥·∥𝐹 denotes the Frobenius norm and 𝛼 denotes the friction
coefficient, related to the angle of repose 𝜃 by 𝛼 =

√
2 sin𝜃 .

To model friction within our continuum granular material, one
can formulate a minimization problem subject to the Drucker-Prager
yield criterion (4) using the maximum dissipation principle:

s = arg min
∥s∥𝐹 ≤𝛼p

∫
Ω

(
1
2
𝜌

u∗ + Δ𝑡

𝜌
∇ · s

2

2

)
𝑑Ω. (5)

A possible simplification of this problem, suggested by Narain et al.
[2010], is achieved by approximating the friction cone with a pyra-
mid, applying pressure bounds to each frictional stress compo-
nent separately as box constraints, i.e., −𝛼p ≤ s𝑒 ≤ 𝛼p (where
𝑒 ∈ 𝑥𝑥, 𝑥𝑦, 𝑥𝑧,𝑦𝑦,𝑦𝑧, 𝑧𝑧) . This simplification further allows straight-
forward splitting of the problem into smaller componentwise sub-
problems using SP. In addition, due to the traceless property of s,
we can eliminate one subproblem on the diagonal components, e.g.,
via s𝑧𝑧 = −(s𝑥𝑥 + s𝑦𝑦); however, this introduces additional axis-
dependent artificial anisotropy since the pressure bound cannot be
enforced on the eliminated component, leading to −2𝛼p ≤ s𝑧𝑧 ≤
2𝛼p if s𝑧𝑧 is eliminated.

3.1.4 Spatial Discretization with Sub-Grid Details. For spatial dis-
cretization, we employ a variational finite difference approach using
the staggered grid [Goktekin et al. 2004] and volume fractions [Lar-
ionov et al. 2017]. Given a signed distance function to represent
fluid/solid domains, we compute dimensionless volume fractions
of fluids and solids as diagonal matricesW𝑢

𝐹
andW𝑢

𝑆
, respectively,

with a range of [0, 1]. Here, the superscript and subscript indicate
weight matrices for velocity variables 𝑢, and fluid domain 𝐹 or solid
domain 𝑆 , respectively. Similarly, we define W𝑝

𝐹
and W𝑝

𝑆
for pres-

sure, andW𝑠
𝐹
andW𝑠

𝑆
for frictional stress. Likewise, using signed

distance functions (approximated from particles [Zhu and Bridson
2005]) to represent liquid/air (L/A) domains, we define volume frac-
tions for pressureW𝑝

𝐿
andW𝑝

𝐴
, velocityW𝑢

𝐿
andW𝑢

𝐴
, and frictional

stressW𝑠
𝐿
andW𝑠

𝐴
. With these volume fractions, the minimization
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(a) Voxel-based (b) Volume-based (ours)

Fig. 2. An initially trapezoid-shaped inviscid liquid simulated with voxel-
and volume-based computations for liquid/air volume fractions (see §5.1.2).
The voxel-based approach (a) suffers from non-physical oscillatory behav-
iors due to voxelization, while our volume-based approach (b) generates
smoother waves by more accurately resolving the surface position.

problems on pressure (3) and frictional stress (5) can be indepen-
dently discretized for solid boundaries and free surfaces, leading to
a combined form of

p = arg min
0≤p

𝐸𝑓 ,𝑝 (p) and s = arg min
∥s∥𝐹 ≤𝛼p

𝐸𝑓 ,𝑠 (s)

𝐸𝑓 ,𝑝 (p) =
1
2

u∗ − Δ𝑡 (P𝑢W𝑢
𝐿)

−1GW𝑝

𝐿
p
2

M𝑓

+ Δ𝑡p𝑇W𝑝 �̂�, (6)

𝐸𝑓 ,𝑠 (s) =
1
2

u∗ − Δ𝑡 (P𝑢W𝑢
𝐿)

−1DW𝑠
𝐿s

2
M𝑓

, (7)

where the diagonal matrix P denotes fluid density with superscripts
to represent its grid location (𝑢 or 𝑝), G is the discrete (scalar) gradi-
ent operator, D is the discrete (tensor) divergence operator, and the
matrix-weighted vector norm ∥·∥W is defined such that ∥y∥W =√
y𝑇Wy =

W 1
2 y


2
. We have also made use of the following diag-

onal matrix definitions: M𝑓 = P𝑢W𝑢 (where the units of M𝑓 are
kg/m3), W𝑢 = W𝑢

𝐹
W𝑢

𝐿
, and W𝑝 = W𝑝

𝐹
W𝑝

𝐿
. In addition, �̂� is a den-

sity constraint vector defined such that �̂�𝑖 =
𝛽𝑓
Δ𝑡 min

(
1 − P𝑝

𝑖
(P𝑝0,𝑖 )

−1, 0
)

for grid index 𝑖 , and the diagonal matrix P𝑝0 denotes the fluid rest
density with its grid location (𝑝).

3.1.5 Discussion. The fundamental formulations summarized above
build directly on the prior work [Narain et al. 2010], but we em-
phasize several key differences. First, while Narain et al. [2010]
mitigated the ill-conditioned stress system due to a variable density
formulation by rescaling the stress system with the occupation ratio
of each cell, we only include voxels with fluid density exceeding a
threshold in the optimization to maintain consistency for pressure
and stress systems (see §4.1.1). Second, to more accurately account
for free surface locations, we incorporate liquid/air volume frac-
tions into our formulation (see Figure 2). Third, Narain et al. [2010]
derived discretized QP formulations for pressure and stress whereas
we derived analogous continuous QPs; this allows us to consistently
discretize the formulations with both fluid/solid and liquid/air vol-
ume fractions, using variational finite differences [Larionov et al.
2017]. In addition, unlike the direct density correction of Narain
et al. [2010], we will instead correct particle positions to adjust the
density, ensuring consistency between the density and particle posi-
tions (see §4.1.2). Here, we address only the fluid compression case
(𝜌0 < 𝜌) to emphasize the analogy of pressure for fluids in (3) and
normal forces for rigid body contacts in (8).

3.2 Frictional Contact Dynamics for Rigid Bodies
For consistency with the fluid solver, we formulate the resolution
of frictional contacts at the velocity-level [Stewart 2000; Tan et al.
2012]; this allows us to hold the position and orientation of rigid
bodies fixed and avoid repeated evaluations of volume fractions
within a time step. Given rigid bodies with generalized positions x,
generalized velocities v (v∗ denotes velocities before the contact),
mass matrix M𝑟 , contact basis matrix B(= [B𝝀,Bz]) of size 6𝑁𝑟 ×
3𝑁𝑐 in 3D (where 𝑁𝑟 and 𝑁𝑐 denote the number of rigid bodies
and contacts, respectively), friction coefficient 𝜼, and contact index
𝑗 , resolving rigid body contacts requires satisfying the following
constraints due to the Signorini-Coulomb contact law:

1. normal contact forces 𝝀 are non-negative: 0 ≤ 𝝀𝑡+Δ𝑡 ,
2. relative velocities of colliding rigid bodies are non-penetrative:

−B𝑇 v∗ ≤ B𝑇 v𝑡+Δ𝑡 ,
3. tangential (frictional) contact forces z lie within their respec-

tive friction cones:
z𝑡+Δ𝑡𝑗


2
≤ 𝜼 𝑗𝝀

𝑡+Δ𝑡
𝑗 .

Incorporating position-level stabilization with a collision constraint
vector 𝝍 (x) ≥ 0 [Anitescu and Hart 2004; Cline and Pai 2003],
we can formulate contact handling as a constrained minimization
problem [Todorov 2011]:

𝝀, z = arg min
0≤𝝀,

∥z𝑗 ∥2≤𝜼 𝑗𝝀 𝑗

(
1
2

v∗ + Δ𝑡M−1
𝑟 (B𝝀𝝀 + Bzz)

2
M𝑟

+ Δ𝑡𝝀𝑇 �̂�

)
,

(8)

where �̂� =
𝛽𝑟
Δ𝑡 min(𝝍 (x), 0), and 𝛽𝑟 is a stabilization parameter for

position correction. The second (stabilization) term on the right
hand side of (8) behaves in much the same manner as the density
correction for fluids in (3). The minimization formulation (8) also
accounts for the maximal dissipation principle, and supports the
take-off, stick, and slip cases of frictional contact [Daviet et al. 2011;
Li et al. 2018; Ly et al. 2020].

3.3 Two-Way Fluid-Solid Coupling
We review force exchange mechanisms for strong two-way fluid-
solid coupling (without mutual rigid body contacts) via pressure
[Batty et al. 2007] and frictional stress [Narain et al. 2010], including
augmentations with both fluid/solid and liquid/air volume fractions
[Larionov et al. 2017], mass scaling for dimensional consistency, and
consistent force exchange formulations [Takahashi and Batty 2020].

3.3.1 Pressure. Considering the fluid pressure force on rigid bodies,
we can update the rigid body velocities using volume fractions as

v𝑡+Δ𝑡 = v∗ + Δ𝑡M−1
𝑟 F𝑝W

𝑝

𝐿
p𝑡+Δ𝑡 , (9)

where F𝑝 denotes a linear operator integrating the fluid pressure
on the rigid body surface(s) [Bridson 2015]. Scaling the solid mass
with 𝜏 = 1/(Δ𝑥)3 (Δ𝑥 : cell width) to ensure consistent physical
dimensions of the coupled systems [Takahashi and Batty 2020], we
can extend the minimization problem of (6) to get:

p = arg min
0≤p

(
𝐸𝑓 ,𝑝 (p) +

1
2

v∗ + Δ𝑡 (𝜏M𝑟 )−1F𝑝W
𝑝

𝐿
p
2

𝜏M𝑟

)
. (10)
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3.3.2 Friction. Similar to pressure forces, friction forces can be
applied to rigid bodies using

v𝑡+Δ𝑡 = v∗ + Δ𝑡M−1
𝑟 F𝑠W𝑠

𝐿s
𝑡+Δ𝑡 , (11)

where F𝑠 denotes a linear function to integrate frictional stress (anal-
ogous to F𝑝 ), ensuring consistent force exchange [Takahashi and
Batty 2020], and one can formulate a corresponding minimization
problem extending (7):

s = arg min
∥s∥𝐹 ≤𝛼p

(
𝐸𝑓 ,𝑠 (s) +

1
2

v∗ + Δ𝑡 (𝜏M𝑟 )−1F𝑠W𝑠
𝐿s

2
𝜏M𝑟

)
. (12)

4 FRICTIONALMONOLITH
To eliminate a range of serious artifacts (e.g., loss of fluid volume,
artificial drift of granular materials, and simulation instabilities), we
propose a novel unified treatment of pressure, frictional stress, and
frictional contact handling for fluids and rigid bodies by formulating
a single monolithic constrained minimization problem:

s, p,𝝀, z = arg min
0≤p, 0≤c(s,p),
0≤𝝀, 0≤d(𝝀,z)

𝐸 (s, p,𝝀, z), (13)

𝐸 (s, p,𝝀, z) = 𝐸𝑓 (s, p) + 𝐸𝑟 (s, p,𝝀, z) . (14)

The terms 𝐸𝑓 (s, p) and 𝐸𝑟 (s, p,𝝀, z) are the objective functions for
fluids and rigid bodies, respectively, and c(s, p) and d(𝝀, z) denote
the dimensionless friction cone constraint functions for fluids and
rigid bodies, respectively. We will define each of these terms explic-
itly in the sections that follow, assembling and further extending
the formulations described in §3.

4.1 Monolithic Granular Material Formulation
Given pressure and friction forces, the fluid velocity update is

u𝑡+Δ𝑡 = u∗ − Δ𝑡 (P𝑢W𝑢
𝐿)

−1
(
Ĝp𝑡+Δ𝑡 + D̂s𝑡+Δ𝑡

)
, (15)

where Ĝ = GW𝑝

𝐿
and D̂ = DW𝑠

𝐿
. Thus, we can formulate an objec-

tive function as

𝐸𝑓 (s, p) =
1
2

u∗ − Δ𝑡 (P𝑢W𝑢
𝐿)

−1
(
Ĝp + D̂s

)2

M𝑓

. (16)

This variational minimization formulation seeks pressure and fric-
tional stress fields that maximally dissipate kinetic energy (similar
to perfectly inelastic collisions [Bridson 2015]), and thus must be
dissipative without increasing energy to ensure stability of the en-
tire system. Since the density correction term Δ𝑡p𝑇W𝑝 �̂� in (6) can
inject energy into the system, causing stability issues [Kugelstadt
et al. 2019], we instead exclude this term from (16), replacing it with
particle position correction (§4.1.2).

4.1.1 Density Computation. To account for the material distribu-
tions, we use variable densities (along with the fluid/solid and liq-
uid/air volume fractions) for the fluid density defined at the velocity
locations P𝑢 within the APIC framework [Jiang et al. 2015]. The
variable density formulation is known to give rise to too small den-
sities that cause simulation and numerical stability issues [Bridson
2015; Gerszewski and Bargteil 2013; Narain et al. 2010] because
the density plays a role in the fluid velocity update (15) and the
objective function (16). While Narain et al. [2010] rescaled the stress
system using volume occupancy to mitigate the issue, this approach

introduces inconsistency between the computations for pressure
and stress. Thus, similar to [Bridson 2015; Gerszewski and Bargteil
2013], we take into account only pressure and stress samples where
the computed density exceeds a threshold 𝜌𝑡 (we set 𝜌𝑡 = 0.4𝜌0).

To evaluate the densities at pressure and stress samples, we com-
pute and use the fluid densities defined at the cell centers P𝑝 , in-
terpolating where necessary. Unlike P𝑢 (on faces), since P𝑝 is used
to evaluate how much fluid occupies each cell, it is necessary to
incorporate the density contributed by rigid bodies, distinguishing
solid boundaries and free surfaces (particles cannot be both inside
rigid bodies and in the air domain). Gerszewski and Bargteil [2013]
addressed this issue with additional particles sampled within the
solid objects at an extra cost. In our work, we instead reuse the
already computed solid volume fractionW𝑝

𝑆
, calculating the density

contributed by the solid asW𝑝

𝑆
P𝑝0 .

4.1.2 Density Correction. Due to gradually accumulated numerical
error, particle distributions can become non-uniform (i.e., violating
the density constraints) after advection even under divergence-free
velocities. Although Narain et al. [2010] and Gerszewski and Bargteil
[2013] directly corrected the density with pseudo-pressures as a
post-stabilization, this approach causes a discrepancy between the
corrected density and the actual particle distribution. Taking a simi-
lar stabilization approach, Kugelstadt et al. [2019] corrected particle
positions to fix the density, avoiding the discrepancy and stability is-
sues. However, we experimentally observed that grid-based density
correction cannot strictly enforce uniform particle distributions at a
sub-grid level [Kugelstadt et al. 2019]. We also found that grid-based
density correction introduces artificial drift for granular materials.
Therefore, we perform particle-level density correction based on
SPH at each frame [Macklin et al. 2014; Takahashi and Lin 2019].

4.1.3 Cone Constraints. While Narain et al. [2010] approximated
the friction cone as a pyramid using box (or plane) constraints,
this approach leads to artificial anisotropy [Daviet and Bertails-
Descoubes 2016], as also observed for solid frictional contacts [Daviet
et al. 2011; Le Lidec et al. 2021; Li et al. 2018]. Narain et al. [2010]
suggested that adopting more plane constraints can improve the
approximation accuracy, but achieving sufficient accuracy requires
significantly increasing the number of plane constraints, with a
correspondingly large increase in computational cost. As such, we
prefer to employ the true cone constraints.
We impose the true cone constraints given by (4) at the center

of each cell. While off-diagonal stress variables (s𝑥𝑦, s𝑥𝑧 , s𝑦𝑧 ) have
been traditionally defined on the cell edges based on finite differenc-
ing of face-based quantities [Goktekin et al. 2004; Narain et al. 2010],
this staggered arrangement makes it unwieldy to enforce the cone
constraints, unless we interpolate s𝑥𝑦, s𝑥𝑧 , s𝑦𝑧 to the cell center.
However, we have found that such an approach leads to smaller and
smaller off-diagonal stress values because these stress variables are
shared via interpolation and constrained independently by multiple
distinct cone constraints; the result is an undesired reduction in the
observed friction forces (see Figure 3(b)).
We instead take essentially the reverse approach. We colocate

the off-diagonal stress components s𝑥𝑦, s𝑥𝑧 , s𝑦𝑧 at cell centers, and
for each cell with index 𝑖 , define an associated dimensionless cone
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(a) Stag. & pyramid (b) Stag. & cone (c) Colo. & pyramid (d) Colo. & cone (only)

(e) Colo. & cone (tight) (f) Colo. & cone (ls) (g) Colo. & cone (4iter) (h) Colo. & cone (ours)

Fig. 3. A sand column released on the ground, simulated with various solver options (see §5.2.2 for details). Stag. & pyramid generates granular flow with
artificial anisotropy due to the pyramid constraints although the flow is stable. Stag. & cone fails to enforce the cone constraints, generating unstable and
anisotropic behaviors. Colo. & pyramid generates stable but anisotropic flow due to the pyramid constraints. Colo. & cone (only) generates stable granular
flow without suffering from the artificial anisotropy at convergence. Colo. & cone (tight) generates stable but anistropic behaviors due to the too tight pyramid
constraints. Colo. & cone (ls) fails to generate stable granular flows due to failures of line search. Both Colo. & cone (4iter) and Colo. & cone (ours) generate
stable granular flow without the artificial anisotropy while ours is 2.3× faster.

constraint c𝑖 (s, p). Thus each stress sample is touched by only one
constraint. Our cone constraint is formed by squaring both sides of
(4) and rearranging to get

c𝑖 (s, p) =
1
2

©«1 −
s2
𝑥𝑥,𝑖

+ s2
𝑦𝑦,𝑖

+ s2
𝑧𝑧,𝑖

+ 2
(
s2
𝑥𝑦,𝑖

+ s2
𝑥𝑧,𝑖

+ s2
𝑦𝑧,𝑖

)
𝛼2p2

𝑖

ª®®¬ .
(17)

Then, to apply the frictional stress back onto the fluid, we first
map the colocated off-diagonal stresses to the staggered arrange-
ment before employing the traditional finite-difference approach.
Specifically, we introduce a change-of-basis (or transition) matrix
T = (I𝑇 ,T𝑇𝑥𝑦,T𝑇𝑥𝑧 , I𝑇 ,T𝑇𝑦𝑧 , I𝑇 )𝑇 which interpolates the s𝑥𝑦, s𝑥𝑧 , s𝑦𝑧
components defined at cell centers to their corresponding cell edge
locations, treating inactive stress variables (e.g., outside of the liquid
domain) as having a value of zero. The finite difference operator ap-
plying stress after mapping with T is then redefined as D̂ = DW𝑠

𝐿
T.

4.1.4 Stress Reduction. Using the traceless property of s under
the divergence-free constraint, we can reduce the system size by
eliminating one of the diagonal components in s. In practice, we
eliminate s𝑦𝑦 via s𝑦𝑦 = −(s𝑥𝑥 + s𝑧𝑧) and modify W𝑠

𝐹
,W𝑠

𝐿
,D, F𝑠 ,

and T to account for the eliminated s𝑦𝑦 . The cone constraint is thus
redefined as

c𝑖 (s, p) =
1
2

(
1 − 2

s2
𝑥𝑥,𝑖

+ s2
𝑧𝑧,𝑖

+ s𝑥𝑥,𝑖s𝑧𝑧,𝑖 + s2
𝑥𝑦,𝑖

+ s2
𝑥𝑧,𝑖

+ s2
𝑦𝑧,𝑖

𝛼2p2
𝑖

)
.

(18)

This differs from the approach of Narain et al. [2010] since the
reduced system itself needs to be reformulated taking into account
the contributions of the removed stress. By contrast, Narain et al.
simply substitute s𝑧𝑧 = −(s𝑥𝑥 + s𝑦𝑦) after s𝑥𝑥 and s𝑦𝑦 have been
determined. Our stress reduction also differs from the prior work
on viscous liquids [Larionov et al. 2017; Takahashi and Batty 2020]:
since s is independent of u (while u depends on s in (2)), unlike
the case of viscous fluids, we can embed the influence of the stress
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reduction within D and F𝑠 without introducing additional auxiliary
matrices. An alternative, similar to the approach of Daviet and
Bertails-Descoubes [2016], would be to replace s𝑥𝑥 , s𝑦𝑦, s𝑧𝑧 with
new stress variables s𝑎, s𝑏 via s𝑥𝑥 = s𝑎 + s𝑏 , s𝑦𝑦 = s𝑎 − s𝑏 , and
s𝑧𝑧 = −2s𝑎 , making the Hessian of the cone constraints slightly
sparser. However, since this approach makes W𝑠

𝐹
,W𝑠

𝐿
,D and F𝑠 ,

much denser with significant modifications to the original system,
we prefer our stress reduction method.

4.2 Monolithic Rigid Body Formulation
Considering all relevant forces for rigid bodies, their full velocity
update can be written as

v𝑡+Δ𝑡 = v∗ + Δ𝑡 (𝜏M𝑟 )−1
(
F̂𝑝p𝑡+Δ𝑡 + F̂𝑠s𝑡+Δ𝑡 + B𝝀𝜏𝝀

𝑡+Δ𝑡 + Bz𝜏z𝑡+Δ𝑡
)
,

(19)

where F̂𝑝 = F𝑝W
𝑝

𝐿
and F̂𝑠 = F𝑠W𝑠

𝐿
T. Similarly, we can formulate

an objective function for rigid bodies as

𝐸𝑟 (s, p,𝝀, z) =
1
2

v∗ + Δ𝑡 (𝜏M𝑟 )−1
(
F̂𝑝p + F̂𝑠s + B𝝀𝜏𝝀 + Bz𝜏z

)2

𝜏M𝑟

.

(20)

Aswe noted for fluids, position-level stabilizationwithin the velocity-
level formulation can inject extra energy into the system, causing
stability issues (e.g., popping and jittering of rigid bodies) and nega-
tively affecting the convergence of optimization solvers. We there-
fore exclude the stabilization term from (20). Instead, we employ
post-stabilization [Cline and Pai 2003] to address position-level
penetrations due to linearization and numerical errors.

Since each friction cone is independent of the other contacts, we
can naturally define the cone constraint d𝑗 (𝝀, z) as

d𝑗 (𝝀, z) =
1
2

(
1 −

z𝑗 2
2

𝜼2
𝑗
𝝀2
𝑗

)
. (21)

4.3 Minimization with Our Customized Solver
Having described our monolithic formulation and its discretization,
we proceed to the design of an appropriate numerical solver. One
could directly apply a general purpose off-the-shelf solver (e.g., se-
quential quadratic programming (SQP) or interior point methods)
to the full QCQP (13) to find a local minimum. However, Kaufman
et al. [2009; 2008] showed that the resulting local minima often
violate either the Signorini conditions or the maximum dissipation
principle, yielding unsatisfactory behavior; yet solvers possessing a
particular fixed-point property are robust and can consistently pro-
duce superior solutions in a wide range of frictional scenarios. More
generally, it is oftenmore efficient to employ a specialized solver that
utilizes knowledge of the problem, compared to general gradient-
based optimizers (e.g., gradient descent and L-BFGS) applied to solve
subproblems derived from (13). We therefore propose a customized
optimization solver specifically designed to address our QCQP. Since
there are multiple minimizers satisfying ∇𝐸 (s, p,𝝀, z) = 0, we seek
an appropriate local minimum.

4.3.1 Staggered Projections. The key to reasonable and consistent
contact solutions is the fixed-point property described by Kaufman
[2009], so we adapt the staggered projections approach [Kaufman

et al. 2008; Narain et al. 2010]. Specifically, we decompose (13) into
two subproblems, a QCQP on (s, z) with cone constraints and a QP
on (p,𝝀) with simpler non-negativity (i.e., box) constraints:

s𝑘+1, z𝑘+1 = arg min
0≤c(s,p𝑘 ), 0≤d(𝝀𝑘 ,z)

𝐸 (s, p𝑘 ,𝝀𝑘 , z), (22)

p𝑘+1,𝝀𝑘+1 = arg min
0≤p, 0≤𝝀

𝐸 (s𝑘+1, p,𝝀, z𝑘+1) . (23)

We alternate solving these two problems, with 𝑘 denoting the it-
eration index for these staggered projections. We intentionally
solve for (s, z) first within the cone constraints with fixed upper
bounds dictated by (p𝑘 ,𝝀𝑘 ), and conclude the iterationwith updated
(p𝑘+1,𝝀𝑘+1); we do so because (p,𝝀) are generally more critical for
stability of the entire system, and all the residuals can be shifted
to the less critical components (s, z) if early termination is desired.
These two subproblems are non-expansive (typically contractive)
projections, and thus alternating iterations of these projections con-
verge to the solution of (13) [Kaufman et al. 2008; Narain et al. 2010].
In the following, we first explain how to address the box-constrained
QP subproblem (23) before discussing solvers for the QCQP sub-
problem (22), since additional box-constrained QP subproblems also
arise within the QCQP solver.

4.3.2 Box-Constrained QP Solver for (p,𝝀). The objective function
for the box-constrained QP subproblem (23) can be rewritten as

𝐸 (s𝑘+1, p,𝝀, z𝑘+1) =
1
2

[
p𝑇 ,𝝀𝑇

] [
App Ap𝝀

(Ap𝝀)𝑇 A𝝀𝝀

] [
p
𝝀

]
−

[
(b𝑘p)𝑇 , (b𝑘𝝀)

𝑇
] [

p
𝝀

]
.

(24)

We refer to Appendix A for details of App,Ap𝝀,A𝝀𝝀, b𝑘p, b𝑘𝝀 . Al-
though A𝝀𝝀 (which is structurally guaranteed to be symmetric
positive semi-definite) can be slightly indefinite due to numerical
error, we can correct it to be SPD by scaling the diagonal elements
by (1+ 𝜉) (we use 𝜉 = 10−3) [Smith 2008; Tan et al. 2012]. The result-
ing system is a box-constrained convex QP (equivalent to an LCP
[Takahashi and Batty 2020]) and has a unique solution. Takahashi
and Batty [2020] demonstrated that solving this box-constrained
convex QP as a whole is more efficient compared to using a block de-
composition separating p and 𝝀 (i.e., block GS); however, we found
that the block GS approach (we used 4 iterations) can actually be
more efficient in our framework because it is unnecessary to strictly
solve each of the box-constrained QPs (23) due to the surrounding
global SP iterations, thereby allowing more efficient solves for the
smaller block subcomponents.

One popular approach to solving the box-constrained convex QP
(or its subcomponents) is MPRGP [Dostal and Schoberl 2005] (which
is based on an active-set method and gradient projections) due to its
relative efficiency in large-scale sparse problems [Gerszewski and
Bargteil 2013; Narain et al. 2010]. However, we observed that the
original MPRGP can be inefficient due to its conservative update of
the active sets. This issue had led Kružík et al. [2020] to present an
aggressive active-set expansion technique to improve the expansion
efficiency, although we encountered convergence failure and sta-
bility issues with their approach. Fortunately, having noticed that
the active-set update happens more frequently at early stages, we
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(a) CG (b) ADMM (c) PIP (1 ls) (d) AugLag (1 ls) (e) MPRGP (ours)

Fig. 4. Inviscid liquid in contact with the top of a spherical container falls due to gravity, with various solver options applied for unilateral incompressibility
and wall separation (see §5.1.1 for details). CG does not support wall separation while ADMM fails to preserve the liquid volume due to slow convergence. PIP
(1 ls), AugLag (1 ls), and MPRGP (ours) generate comparable results, but MPRGP (ours) is 5.8× and 2.3× faster than PIP (1 ls) and AugLag (1 ls), respectively.

compromise by using their aggressive active-set expansion until
the residual falls below 10𝜖 (𝜖 : termination residual), and using the
conservative, original MPRGP near convergence.
Since the convergence rate of MPRGP can be accelerated with

a preconditioner, similar to Conjugate Gradient (CG), we employ
Modified Incomplete Cholesky (MIC) preconditioning. In addition,
as MPRGP can be used without explicitly forming the system ma-
trix, we handle the dense submatrices for p using the sequential
multiplication technique [Bridson 2015; Takahashi and Batty 2020].
One issue that could arise is that the updated p and 𝝀 can more

severely violate the cone constraints, thereby increasing the objec-
tive function value, since we do not consider the cone constraints
when solving the box-constrained QP (23) nor use line search when
updating p and 𝝀 to ensure the decrease of the objective function.
Fortunately, each QCQP (22) and box-constrained QP (23) has a
nearly unique global minimum, and they are (nearly) dissipative
and contractive projections [Kaufman 2009; Narain et al. 2010]. Con-
sequently, the update of p and 𝝀 did not introduce any stability
issues in practice. This stable behavior is not surprising, considering
that the extreme cases for continuum (i.e., inviscid liquids with pres-
sure only and rigid materials with stress only) are still stable, and
thus materials with blended pressure and stress are stable as well.
In our experiments, we have also tested solving (23) taking the cone
constraints into account and using line search when updating p and
𝝀. However, we found that the line search frequently failed leading
to volume loss and stability issues since the incompressibility and
non-penetration constraints could not be satisfied.
Other constrained optimization solvers, such as the augmented

Lagrangian method [Nocedal and Wright 2006] and the primal in-
terior point (PIP) method [Forsgren et al. 2002] (also known as a
log-barrier method [Nocedal and Wright 2006]), can also be used
to solve the box-constrained convex QP for (p,𝝀). However, we
found that these approaches are less ideal because the augmented
Lagrangian method would converge to a minimum slightly different
from the global minimum unless the penalty parameter is infinitely
large, and PIP can be unstable depending on parameters. In addition,
these approaches are slower to converge and require more iterations
to satisfy the box constraints since these constraints are satisfied
only at convergence. By contrast, MPRGP can exactly satisfy these

constraints at each iteration, allowing for early termination if de-
sired, and thus we prefer our custom MPRGP. Figure 4 compares
various box-constrained QP solvers in a wall-separation scenario.

4.3.3 Componentwise Staggered Projections. Because of the stag-
gered projections formulation applied to (13), our method possesses
the desired fixed point property. Hence, one could apply various
optimizers to solve the QCQP subproblem (22). However, this QCQP
subproblem involves all of the stress variables (s𝑥𝑥 , s𝑥𝑦, s𝑥𝑧 , s𝑦𝑧 , s𝑧𝑧 ),
and thus it is numerically challenging to efficiently solve them all
simultaneously due to the slow convergence of iterative solvers.
In addition, due to numerical errors (similar to rigid body contact
formulations [Smith 2008; Tan et al. 2012]), the resulting system
can be indefinite even though the system is structurally guaranteed
to be SPD. While this indefinite system can be fixed to be SPD by
increasing the diagonal elements (as done for rigid body contacts),
this corresponds to introducing a regularization term to stress (anal-
ogous to variational viscosity treatments [Larionov et al. 2017]),
thus generating viscous fluid-like behaviors, i.e., artificial melting
of granular piles (see Figure 5). To address these issues, we further
apply staggered projections to (22) to obtain smaller componentwise
subproblems on each stress variable, similar to Narain et al. [2010].
There are multiple ways one could split the QCQP subproblem

(22). We employ a block Jacobi-like decomposition, which indepen-
dently processes the componentwise subproblems, achieving perfect
symmetry among the frictional stress s. We call this approach Jacobi
componentwise SP (JCSP). By first addressing the friction forces
using staggered projections for simplicity, JCSP can be written as

z𝑘+1 = arg min
0≤d(𝝀𝑘 ,z)

𝐸 (s𝑘 , p𝑘 ,𝝀𝑘 , z), (25)

s𝑘+1
𝑒 = arg min

0≤c(s̄𝑘𝑒 ,p)
𝐸 (s̄𝑘𝑒 , p𝑘 ,𝝀𝑘 , z𝑘+1), (26)

where 𝑒 ∈ (𝑥𝑥, 𝑥𝑦, 𝑥𝑧,𝑦𝑧, 𝑧𝑧), and s̄𝑘𝑥𝑥 = (s𝑥𝑥 , s𝑘𝑥𝑦, s𝑘𝑥𝑧 , s𝑘𝑦𝑧 , s𝑘𝑧𝑧).
Each of the resulting new QCQP subproblems is much smaller
than the original QCQP subproblem (22) and thus can be more
efficiently solved. Surprisingly, the convergence rate of JCSP in
terms of iteration counts is comparable to an approach that di-
rectly solves the QCQP subproblem (22) (with all the stress variables
s𝑥𝑥 , s𝑥𝑦, s𝑥𝑧 , s𝑦𝑧 , s𝑧𝑧 together), giving a significant performance ben-
efit to JCSP. In addition, the decomposed subproblems in JCSP do
not suffer from numerical issues in the system entries and thus
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(a) SP (b) JCSP (ours)

Fig. 5. An initially box-shaped granular volume being released from rest, simulated using staggered stresses and pyramid constraints with different pressure-
friction solvers (see §5.2.1 for details). Due to the regularization term, Staggered Projections (SP) suffers from artificial melting effects so the flow does not
come to rest. Our Jacobi Componentwise Staggered Projections (JCSP) approach stably simulates the granular flow and is 3.7× faster than SP.

(a) Without pyramid (b) With pyramid (ours)

Fig. 6. A column of granular material released on the ground, simulated
using only 2 SP iterations. Without the auxiliary pyramid constraints used
in our method, the simulation explodes; using the auxiliary pyramid enables
stable granular flows that do not suffer from artificial anisotropy.

are strictly SPD, making extra regularization unnecessary. Further-
more, since the subproblems in JCSP are projection operations, JCSP
maintains the fixed-point property [Narain et al. 2010].

4.3.4 Augmented Lagrangian Method for Cone Constraints. Consid-
ering that the unique source of the quadratic constraints is the set of
friction cones for contacts and stress in (25) and (26), we aim to han-
dle these cone constraints using the augmented Lagrangian method
[Nocedal and Wright 2006], which typically converts solving the
constrained QCQP problem into the iterative solution of a series
of unconstrained subproblems involving appropriate penalty terms
for the cone constraints. However, we found that when treating
these subproblems as unconstrained, the solutions can significantly
deviate and cause convergence failure, especially with inaccurate
initial guesses (see Figure 6). Hence, we introduce auxiliary box
(pyramid) constraints on the subproblems that fully encompass the
cone constraints (by treating other stress variables as 0) to avoid
divergent solutions. In practice, since we found that overly tight box
constraints can still cause artificial anisotropy (see Figure 3(e)), we
employ loose box constraints here. Accordingly, the QCQP subprob-
lems (25) and (26) are modified with a penalty parameter 𝜇 (we use
𝜇 = 106), Lagrange multipliers g and h for c(s, p) and d(𝝀, z), respec-
tively, loosening parameter 𝜅 (we use 𝜅 = 3.0), and iteration index
for the augmented Lagrangian 𝑙 , into the following box-constrained

minimization problem [Narain et al. 2012; Nocedal andWright 2006]:

z𝑘+1 = arg min
−𝜅𝜼𝝀𝑘 ≤z≤𝜅𝜼𝝀𝑘

(
𝐸𝑟 (s𝑘 , p𝑘 ,𝝀𝑘 , z) + 𝐸𝑑 (𝝀𝑘 , z, h𝑙 )

)
,

(27)

𝐸𝑑 (𝝀𝑘 , z, h𝑙 ) =
1
2

©«𝜇
d̃(𝝀𝑘 , z, h𝑙 )2

2
−

h𝑙 2

2
𝜇

ª®®¬ , (28)

s𝑘+1
𝑒 = arg min

− 1√
2
𝜅𝛼p𝑘 ≤s𝑒 ≤ 1√

2
𝜅𝛼p𝑘(

𝐸𝑓 (s̄𝑘𝑒 , p𝑘 ) + 𝐸𝑟 (s̄𝑘𝑒 , p𝑘 ,𝝀𝑘 , z𝑘+1) + 𝐸𝑐 (s̄𝑘𝑒 , p𝑘 , g𝑙 )
)
,

(29)

𝐸𝑐 (s̄𝑘𝑒 , p𝑘 , g𝑙 ) =
1
2

©«𝜇
c̃(s̄𝑘𝑒 , p𝑘 , g𝑙 )2

2
−

g𝑙 2

2
𝜇

ª®®¬ , (30)

wherewe define c̃(s̄𝑘𝑒 , p𝑘 , g𝑙 ) = min(c(s̄𝑘𝑒 , p𝑘 )−
g𝑙
𝜇 , 0) and d̃(𝝀

𝑘 , z, h𝑙 ) =
min(d(𝝀𝑘 , z) − h𝑙

𝜇 , 0). The update rule for the Lagrange multipliers
becomes

g𝑙+1 = −𝜇c̃(s𝑙+1, p𝑘 , g𝑙 ), and h𝑙+1 = −𝜇d̃(𝝀𝑘 , z𝑙+1, h𝑙 ) . (31)

While PIP could also be used to handle the cone constraints, we
found that the augmented Lagrangian method is more efficient and
also convenient since it does not require that the constraints be
strictly satisfied at all times. By contrast, PIP requires constraint
projections for violated constraints [Forsgren et al. 2002], e.g., after
the update of s, z, and p,𝝀 as well.

4.3.5 Inexact Projected Newton Method. To address the subprob-
lems (27) and (29) of the augmented Lagrangian method, it is nec-
essary to iteratively solve box-constrained minimization problems.
While various solvers can be applied, given the quadratic property,
we prefer to employ a Newton-type method for its associated qua-
dratic convergence rate. Since the subproblems must be updated for
the constraint Hessian and Lagrange multipliers in each Newton
iteration, it is not necessary to exactly solve each subproblem; per-
forming more Newton steps with less accurate descent directions
is typically more efficient than spending more time finding better
descent directions [Yan et al. 2018]. As such, we use the Inexact
Projected Newton (IPN) method [Nocedal and Wright 2006], taking
the box constraints into account.
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Considering the update of an optimization variable x with the
Newton step x𝑙+1 = x𝑙 + 𝛾Δx𝑙+1 (where Δx denotes the step di-
rection, 𝑙 the iteration index, and 𝛾 the step size), our first goal is
to obtain Δx𝑙+1 by solving ∇2𝐸 (x𝑙 )Δx𝑙+1 = −∇𝐸 (x𝑙 ), or equiva-
lently by minimizing the quadratic approximation of the objec-
tive 1

2 (Δx
𝑙+1)𝑇A𝑙Δx𝑙+1 − (b𝑙 )𝑇Δx𝑙+1 where A𝑙 = ∇2𝐸 (x𝑙 ) and

b𝑙 = −∇𝐸 (x𝑙 ), respecting the box constraints. These hold for each
of s𝑥𝑥 , s𝑥𝑦, s𝑥𝑧 , s𝑦𝑧 , s𝑧𝑧 , z; see Appendix B for details of A𝑙 and b𝑙 .
Hessian projection. To ensure Δx is a descent direction to de-

crease 𝐸 (x), A𝑙 needs to be SPD. Since the Hessian of the cone
constraint can be indefinite, following Teran et al. [2005], we project
each of the constraint Hessians to be SPD. Specifically, since the
Hessians of the cone constraints for s𝑥𝑥 , s𝑥𝑦, s𝑥𝑧 , s𝑦𝑧 , s𝑧𝑧 are one-
dimensional due to our componentwise application of SP, we sim-
ply clamp negative values to zero. For the solid frictional contacts,
the constraint Hessian is 2 × 2, and we project it to be SPD via
eigendecomposition. In addition, since Azz can be indefinite due to
numerical error, we also adjust it to be SPD as done for A𝝀𝝀 .

Box constraints. Given the lower bound xmin and upper bound
xmax of the box constraint for x (xmin ≤ x ≤ xmax), the ideal
step size (𝛾 = 1) gives xmin ≤ x𝑙 + Δx𝑙+1 ≤ xmax. Thus, we can
define the box constraints for Δx𝑙+1 (Δx𝑙+1

min ≤ Δx𝑙+1 ≤ Δx𝑙+1
max) as

Δx𝑙+1
min = xmin − x𝑙 and Δx𝑙+1

max = xmax − x𝑙 .
Box-constrained convex QP solver. Having applied the Hes-

sian projection and box constraint update in the Newton iteration,
we have reduced finding the descent direction to solving a box-
constrained convex QP, i.e., the same type of problem as for p,𝝀. As
such, we again employ our custom MPRGP method (§4.3.2) for s, z.
Step size. While the ideal step size is 𝛾 = 1 when updating s, we

found that, due to the block Jacobi decomposition and cone con-
straints with the Hessian projection, it is necessary to use a smaller
step size. Although backtracking line search has been traditionally
used for Newton’s method [Nocedal and Wright 2006], in our for-
mulation, line search attempts failed very frequently, leading to less
frictional behaviors (see Figure 3(f)), and this procedure was too
costly. As such, we employ damped Newton (which uses a fixed
step size) with 𝛾 = 0.5. Compared to s, the influence of the Hessian
projection is more significant for z, and it was typically necessary
to use much smaller step sizes to avoid stability issues. Thus, we
use backtracking line search for z.

4.3.6 Choice of Termination Criteria. As a termination criterion,
the norm of ∇𝐸 has been widely used. However, we found that this
norm is usually too strict since reasonable solutions can be obtained
even if this norm is not so small [Zhu et al. 2018]. In addition, the
penalty parameter for the cone constraints makes it difficult to
achieve convergence with this termination criterion, and the box
constraints are not considered within ∇𝐸 since they are addressed
with the active-set method. While the objective function value itself
has also been used as a termination criterion [Kaufman et al. 2008],
we found that it can stagnate, causing termination with insufficient
iterations [Zhu et al. 2018]. Instead, we use the infinity norm of the
Newton step direction ∥Δx∥∞ as a termination criterion (similar to
[Li et al. 2020a]) since Δx is computed based on ∇𝐸 and respects box

and cone constraints, and we were able to reliably obtain converged
visual results in our experiments.

4.3.7 Warm Start. To accelerate convergence of the staggered pro-
jections, we warm start using the pressure and frictional stress from
the previous time step (or iterations) as their initial values. Since the
number of rigid body contacts is much smaller than the number of
degrees of freedoms (DOFs) for fluid pressure and stress, there was
no clear benefit for warm starting contact forces. As such, we ini-
tialize them to zero. In our experiments, warm starting accelerated
the time to convergence by up to two orders of magnitude.

4.3.8 Algorithm of Our Customized Solver. Algorithm 1 summarizes
the steps of our tailor-made solver for the QCQP (13).

Algorithm 1 Our customized solver

1: 𝑘 = 0, 𝐸curr = 𝐸 (s𝑘 , p𝑘 ,𝝀𝑘 , z𝑘 )
2: do
3: z𝑘+1 = arg min0≤d(𝝀𝑘 ,z) 𝐸 (s

𝑘 , p𝑘 ,𝝀𝑘 , z)
4: s𝑘+1

𝑒 = arg min0≤c(s̄𝑘𝑒 ,p) 𝐸 (s̄
𝑘
𝑒 , p𝑘 ,𝝀

𝑘 , z𝑘+1)
5: p𝑘+1,𝝀𝑘+1 = arg min0≤p, 0≤𝝀 𝐸 (s𝑘+1, p,𝝀, z𝑘+1) .
6: 𝐸curr = 𝐸 (s𝑘+1, p𝑘+1,𝝀𝑘+1, z𝑘+1)
7: Δx𝑘+1 = (Δs𝑘+1,Δp𝑘+1,Δ𝝀𝑘+1,Δz𝑘+1)
8: 𝑘 = 𝑘 + 1
9: while 𝜖 <

Δx𝑘
∞

10: return s𝑘 , p𝑘 ,𝝀𝑘 , z𝑘

4.4 Algorithm
Algorithm 2 summarizes our complete solver.

Algorithm 2 FrictionalMonolith solver
1: Map velocity and density from particles to grid
2: Add external forces to grid and rigid bodies
3: Compute fluid/solid and liquid/air domains
4: Evaluate volume fractions
5: Detect collisions between rigid bodies
6: Assemble the system
7: Solve the system with our customized solver (Algorithm 1)
8: Apply forces to fluids and solids
9: Update solid positions and signed distance using stabilization
10: Advect particles with position corrections

5 RESULTS AND DISCUSSION
Our method is implemented in C++ and parallelized using OpenMP.
All examples used adaptive timestepping with CFL numbers be-
tween 1.0 and 3.0, with 50 frames per second. For inviscid liquid
simulations except for Figure 2, we used cut-cell-based area weight-
ing for W𝑢

𝐹
and W𝑢

𝑆
[Ng et al. 2009] and the ghost-fluid method

for W𝑝

𝐿
and W𝑢

𝐿
[Gibou et al. 2002] (instead of volume weights) for

better accuracy, and enforced non-negative pressures to allow wall
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separation [Gerszewski and Bargteil 2013] while using constant den-
sity. We did not use preconditioning for the independent normal and
friction force problems (due to their relatively small DOF counts) but
we applied MIC preconditioning to CG and MPRGP for larger prob-
lems, except where specifically mentioned. We used a termination
residual 𝜖 between 10−3 and 10−5. In addition to the termination
criteria mentioned in §4.3.6, we also set the maximum SP iteration
count to either 20 or 30 depending on the scenario. For each friction
force problem within SP, we use up to 10 iterations to accurately
solve it while we use 1 iteration to solve the frictional stress problem
for efficiency, except Figure 5 (where we use 10 iterations for accu-
racy). We executed all our simulations using “e2-standard-8” (8 cores
with 32GB RAM) provided by Google Compute Engine. All reported
statistics are averaged over the effective simulation length. In the
Tables below, pouter, SPiter, sinner, pinner, pninner, ninner, and tinner
denote the total number of outer pressure, SP, inner stress, inner
pressure, inner pressure-normal, inner normal, and inner tangent
solve iterations per frame, respectively. sdof , pdof , ndof , and tdof de-
note the number of stress, pressure, normal force, and tangent force
DOFs, respectively. The number of substeps per frame is denoted by
n. Tp, Tc, Tpf , Tpc, and Tpfcdenote the total time in seconds for the
pressure, contact, pressure-friction, pressure-contact, and pressure-
friction-contact handling phases, respectively. Gray rows indicate
early-terminated simulations due to failures.

5.1 Inviscid Liquids
5.1.1 Wall Separation. Since efficiently and robustly enforcing non-
negativity constraints for pressure is an essential component in our
framework, we first isolate this aspect by evaluating various box-
constrained convex QP solvers and techniques in an inviscid liquid
wall separation scenario (Figure 4) with 1.2M particles and a grid
resolution of 128 × 128 × 128. We compared the following solvers:

(1) CG: reference linear solverwithout non-negativity constraints;
(2) ADMM;
(3) PIP (1 ls): PIP with up to 1 line search (ls);
(4) PIP (5 ls);
(5) AugLag (1 ls): Augmented Lagrangian method;
(6) AugLag (5 ls);
(7) MPRGP (original): [Dostal and Schoberl 2005];
(8) MPRGP (ours): our custom MPRGP (explained in §4.3.2).

As the inner loop solver for the unconstrained minimization within
ADMM, PIP, and AugLag, we employ a CG solver. Since the box-
constrained convex QP has a unique solution, it is possible to take
larger steps (without using multiple line searches), as long as the
constraints are satisfied when necessary. Since PIP requires that
constraints always be satisfied, we clamp negative pressures to zero
if the constraint is violated. While we have also tested clamping for
ADMM and AugLag, it resulted in these solvers stagnating, and thus
we do not apply clamping to them. We used up to 5,000 iterations
for CG and MPRGP and 100 outer iterations for ADMM, PIP, and
AugLag. Performance numbers are given in Table 1, and profiles of
total time for the pressure solve are compared in Figure 7.

Due to the non-negativity constraints for pressure, wall separat-
ing behaviors are observed for ADMM, PIP, AugLag, and MPRGP,
in contrast to CG. However, ADMM failed to satisfy the unilateral

Table 1. Performance numbers for Figure 4. F denotes the convergence
failure rate of the solver.

Solver pouter pinner pdof n Tp F (%)
CG 0.3k 293.4k 5.1 3.9 0.0

ADMM 361.5 1.1k 91.7k 3.9 14.5 85.4
PIP (1 ls) 113.4 1.1k 231.0k 3.7 20.8 1.0
PIP (5 ls) 383.7 10.5k 234.0k 3.9 128.2 95.0

AugLag (1 ls) 43.9 0.5k 229.5k 3.7 8.4 0.0
AugLag (5 ls) 190.8 2.4k 227.1k 3.9 38.0 0.1

MPRGP (original) 5.5k 240.6k 3.8 58.1 1.3
MPRGP (ours) 0.3k 232.8k 3.8 3.6 0.0
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Fig. 7. Profiles of the total time for the entire pressure handling phase per
frame for Figure 4. The performance of MPRGP (ours) is comparable to the
reference CG, and at least 2× faster than the others.

incompressibility constraints due to its slow convergence [Boyd
et al. 2011]. By contrast, since this problem has a unique solution,
PIP, AugLag, and MPRGP generated qualitatively consistent results,
albeit with minor differences due to solver tolerances/residuals. For
PIP and AugLag, trying multiple line searches slows down con-
vergence due to the smaller step size for the Newton iterations.
Because of the more efficient active-set expansion we used, our
custom MPRGP is more than one order of magnitude faster than the
original MPRGP [Dostal and Schoberl 2005], and is 5.8× and 2.3×
faster than PIP (1 ls) and AugLag (1 ls), respectively.

5.1.2 Sub-Grid Details for Free Surfaces. To demonstrate the effec-
tiveness of our free surface handling with liquid/air volume frac-
tions for sub-grid details, we compare voxel-based (binary weights)
free-surface handling (e.g., as used by Narain et al. [2010]) against
our approach, using an initially trapezoid-shaped liquid volume, as
shown in Figure 2. Here, we applied only minimal surface smoothing
to better expose the surface motion. Since the voxel-based approach
cannot accurately resolve the location of the free surface, the liquid
surface suffers from significant oscillations. By contrast, our volume-
based approach considers the free surface location at a sub-grid level
and hence generates smoother flows.

5.2 Granular Materials
5.2.1 Unified Pressure-Friction Formulation. To demonstrate the ef-
ficiency and importance of our JCSP approach over SP in the unified
pressure-friction formulation, we compare these two schemes by
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Table 2. Performance numbers for Figure 5.

Solver SPiter sinner pinner sdof pdof n Tpf

SP 30.7 9.8k 1.2k 117.8k 22.3k 1.5 165.95
JCSP (ours) 19.6 54.9k 1.0k 118.2k 22.4k 1.5 45.34
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Fig. 8. Profiles of the total time for the entire pressure-friction handling
phase per frame for Figure 5. Our JCSP is 3.7× faster than SP.

releasing two initially box-shaped granular volumes under gravity,
as shown in Figure 5, with a grid resolution of 96×96×96 and 138.6k
particles. For this scene, to avoid the complicating factors of the true
friction cone, we use the pyramidal approximation with staggered
stress arrangement. Since the friction problem for SP considers all
the stress variables at once and we found MIC preconditioning less
effective [Takahashi and Batty 2020], we employ Successive-Over-
Relaxation (SOR) preconditioning for SP. In addition, the friction
problem for SP can be indefinite due to small numerical errors (sim-
ilar to the rigid body contact problem), so we correct the system
to be SPD by slightly increasing diagonal entries [Smith 2008; Tan
et al. 2012]. Table 2 summarizes performance numbers and Figure 8
profiles the total time for the pressure-friction handling phase.
SP and JCSP generate comparable results in the initial frames.

However, we observe that the increased diagonal entries needed
to ensure positive definiteness are equivalent to the regularization
term in variational viscosity formulations [Larionov et al. 2017]. The
result is that particles simulated with SP exhibit an artificial melting
effect as time goes on and fail to come to rest. Moreover, solving
the stress system is more costly for SP due to its 5× larger system
than that of JCSP, and the convergence of staggered projections for
SP was inefficient compared to JCSP. Consequently, JCSP was 3.7×
faster than SP. We have also tested higher resolutions to evaluate
the scalability and found that the cost of SP becomes superlinearly
more expensive (due to less effective SOR preconditioning); SP took
more than 20 minutes for 128 × 128 × 128 while JCSP took less than
2 minutes, demonstrating its significant advantage in scalability.

5.2.2 Friction Cone. To evaluate our friction cone formulation, we
considered various possible schemes:

(1) Stag. & pyramid: staggered stress with the friction pyramid;
(2) Stag. & cone: staggered stress with the friction cone using

s𝑥𝑦, s𝑥𝑧 , s𝑦𝑧 interpolated to the cell center;
(3) Colo. & pyramid: colocated stress with the friction pyramid;

Table 3. Performance numbers for Figure 3.

Solver SPiter sinner pinner sdof pdof n Tpf

Stag. & pyramid 6.1 0.4k 59.0 23.6k 5.6k 1.0 0.23
Stag. & cone 34.6 6.7k 328.6 26.3k 6.5k 1.2 2.68

Colo. & pyramid 5.3 2.5k 66.5 22.6k 4.5k 1.0 1.16
Colo. & cone (only) 9.9 0.7k 107.1 20.8k 4.2k 1.0 0.73
Colo. & cone (tight) 6.5 2.0k 74.6 22.5k 4.5k 1.0 1.20
Colo. & cone (ls) 36.1 2.6k 635.9 29.1k 5.8k 1.2 3.02

Colo. & cone (4iter) 6.3 2.7k 62.5 20.8k 4.2k 1.0 1.62
Colo. & cone (ours) 7.3 0.8k 79.9 20.9k 4.2k 1.0 0.69

(4) Colo. & cone (only): colocated stress with the friction cone,
without the auxiliary pyramid;

(5) Colo. & cone (tight): colocated stress with the friction cone,
with a tight auxiliary pyramid (𝜅 = 1.0);

(6) Colo. & cone (ls): colocated stress with the cone and auxiliary
pyramid, using line search-based update;

(7) Colo. & cone (4iter): colocated stress with the cone and auxil-
iary pyramid, using 4 iterations for each friction solve;

(8) Colo. & cone (ours): colocated stress with the cone and auxil-
iary pyramid (1 iteration per friction solve).

In this experiment, we release a column of granular material on
the ground, as shown in Figure 3, with a grid resolution of 80×80×80
and 26.0k particles. We used up to 30 SP iterations. Performance
numbers are summarized in Table 3, and profiles of total time for
the full pressure-friction handling phase are compared in Figure 10.

While Stag. & pyramid efficiently generated stable granular flows,
the flows exhibit artificial anisotropy due to the pyramid constraints.
Unfortunately simply interpolating s𝑥𝑦, s𝑥𝑧 , s𝑦𝑧 to the cell center
did not resolve the issue, and Stag. & cone failed to avoid artificial
anisotropy because the cone constraints could not be sufficiently
satisfied with the interpolated values. In addition, since off-diagonal
stresses are restricted by multiple, independently defined cone con-
straints, these stress values are likely to be smaller, generating less-
frictional behaviors. Colo. & pyramid generated stable granular
piles, albeit with artificial anisotropy due to the pyramid constraints.
With sufficiently many SP iterations, Colo. & cone (only) success-
fully generated stable piles without artificial anisotropy. Colo. &
cone (tight) used a tight auxiliary pyramid constraint to improve
stability. However, because of the overly tight pyramid constraints,
this approach also suffered from artificial anisotropy. Colo. & cone
(ls) employs line search to ensure a decrease of the objective func-
tion. However, this approach failed to effectively satisfy the cone
constraints since line search was almost always unsuccessful, lead-
ing to unstable and less-frictional behaviors. While Colo. & cone
(4iter) (which performs 4 iterations for each friction solve to ensure
a more accurate solution) successfully generated stable granular
flows without artificial anisotropy, Colo. & cone (ours) (with just 1
iteration for each friction solve) was able to generate comparable
results, validating that extra iterations for the friction solve are un-
necessary due to the outer SP iterations; thus it is 2.3× faster than
Colo. & cone (4iter) for the same quality.

Next, to demonstrate the necessity of our auxiliary pyramid con-
straints, we compare the method with and without them in Figure
6 using only 2 SP iterations. In this experiment, granular material
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(a) 𝛼 = 0.1 (b) 𝛼 = 0.3 (c) 𝛼 = 0.5 (d) 𝛼 = 0.7

Fig. 9. A column of granular materials released on the ground, simulated with different friction coefficients 𝛼 .

50 100 150 200 250 300
Frames

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ti
m

e 
(s

)

Stag. & pyramid
Stag. & cone
Colo. & pyramid
Colo. & cone (only)
Colo. & cone (tight)
Colo. & cone (ls)
Colo. & cone (4iter)
Colo. & cone (ours)

Fig. 10. Profiles of the total time for the entire pressure-friction handling
phase per frame for Figure 3. Colo. & cone (ours, in green) eliminates the
friction pyramid’s artificial anisotropy artifact at a cost of around 3.0× Stag.
& pyramid (in black).

simulated without the auxiliary pyramid scattered unstably since
the frictional stress can significantly deviate from the desired solu-
tion; to prevent this issue without the auxiliary pyramid, up to 30
SP iterations are required to achieve sufficient convergence (Figure
3(d)). By contrast, our use of the auxiliary pyramid enabled stable
granular flows, preventing the explosion, without suffering from
artificial anisotropy (which is typically introduced by overly tight
pyramid constraints), even with just 2 SP iterations.

We also evaluated different friction coefficients 𝛼 to demonstrate
varying frictional behaviors of granular materials, as shown in Fig-
ure 9. With smaller 𝛼 , the material flows and scatters more smoothly,
similar to inviscid liquids. As 𝛼 increases, the material forms stable
circular piles of increasing height.

5.2.3 JCSP Convergence. To evaluate the convergence behavior of
JCSP for strictly granular scenes, we experimented with different
arrangements (staggered with the friction pyramid and colocated
with the friction cone) and SP iterations, using a bunny-shaped
granular volume (density 1,600 kg/m3) dropped onto the ground
with a grid resolution of 80 × 80 × 80 and 176.5k particles, as shown

Table 4. Performance numbers for Figure 11.

Solver SPiter sinner pinner sdof pdof n Tpf

Stag. (2iter) 1.9 181.2 26.1 132.1k 28.8k 1.1 0.95
Stag. (20iter) 5.8 746.5 101.7 128.3k 27.5k 1.1 1.63
Colo. (2iter) 2.8 430.0 59.3 145.4k 29.1k 1.4 4.75
Colo. (20iter) 8.1 1,243.1 169.5 141.9k 28.4k 1.0 6.60

in Figure 11. Performance numbers are summarized in Table 4, and
timing profiles are compared in Figure 12.

While Stag. (2iter) generated stable granular flows overall, some
particles are scattered due to the early-terminated pressure-friction
computation. Stag. (20iter) successfully generated a stable pile with-
out particle scattering due to the additional SP iterations. Similarly,
Colo. (2iter) suffered from particle scattering due to an insufficiently
accurate pressure-friction force balance while Colo. (20iter) gener-
ated a stable and tall pile. In this example, performing 20 iterations
increased cost only slightly (around 1.5×).

We additionally evaluated the critical importance of performing
enough SP iterations for accurate pressure-friction solutions in two-
way coupling scenarios involving granular material (density 1,600
kg/m3) and a (single) dynamic rigid body (density 2,000 kg/m3). We
considered both the staggered stress (Figure 13) and colocated stress
(Figure 14) arrangements with a grid resolution of 64 × 64 × 64 with
173.7k particles. Performance numbers are listed in Table 5.

With Stag. (2iter) the rigid bunny dropped onto the pile jitters,
while Stag. (20iter) enables the lighter pile to stably support the
denser bunny. Granularmaterial simulatedwith Colo. (2iter) exhibits
artificial melting, and the rigid block gradually (and erroneously)
sinks into the pile. By contrast, granular material with Colo. (20iter)
stably supports the rigid block. In each case, the increased cost for
the additional iterations is relatively modest (∼1.4× on average).

5.3 Contact-Aware Coupling with Inviscid Liquids
To demonstrate the benefits of our monolithic coupling framework
even in the absence of frictional (fluid) stress, we experiment with
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(a) Stag. (2iter) (b) Stag. (20iter) (c) Colo. (2iter) (d) Colo. (20iter)

Fig. 11. An initially bunny-shaped volume of granular material dropped onto the ground, simulated with different stress arrangements and maximum SP
iterations. Stag. (2iter) generates stable granular flows with some scattered particles due to non-converged frictional stress while Stag. (20iter) produce more
stable and consistent piles of granular materials. Colo. (2iter) suffers from particle scattering due to the early-terminated stress computations while Colo.
(20iter) generates a stable and tall pile of granular materials.
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Fig. 12. Profiles of the total time for the entire pressure-friction handling
phase per frame for Figure 11.

(a) Stag. (2iter) (b) Stag. (20iter)

Fig. 13. A hemisphere of granular material on the ground is released from
rest and a rigid bunny is dropped onto the resulting granular pile, simulated
with the staggered stress arrangement and different maximum SP itera-
tions. The rigid bunny on the pile with Stag. (2iter) jitters due to inaccurate
pressure-friction coupling while Stag. (20iter) generates stable behavior for
both the grains and the bunny.

Table 5. Performance numbers for Figures 13 and 14.

Solver SPiter sinner pinner sdof pdof n Tpf

Stag. (2iter) 4.6 888.9 100.3 124.5k 26.5k 2.3 2.57
Stag. (20iter) 11.9 1868.5 240.5 122.6k 25.8k 1.2 3.08
Colo. (2iter) 3.3 285.6 73.1 128.2k 25.6k 1.7 4.76
Colo. (20iter) 16.5 1,416.5 338.2 126.4k 25.3k 1.1 7.95

interactions of inviscid liquids and rigid bodies involving frictional
contacts. Concretely, in the case of inviscid liquids the differences
between our method (involving a QCQP) and the method of Taka-
hashi and Batty [2020] (involving only an LCP) are that our rigid
body contacts consider the true friction cone and our liquid supports

(a) Colo. (2iter) (b) Colo. (20iter)

Fig. 14. A hemisphere of granular material on the ground is released from
rest and a two-way coupled rigid block is dropped onto the resulting pile,
simulated with the colocated stress arrangement and different maximum
SP iterations. With Colo. (2iter) the flow exhibits artificial melting effects
due to the less accurate pressure-friction coupling; with Colo. (20iter) the
grains correctly (and stably) support the block.

wall-separation via unilateral incompressibility. We evaluate four
pressure-contact coupling schemes:

(1) P-C: pressure solve followed by contact solve (once);
(2) C-P: contact solve followed by pressure solve (once);
(3) T-PN unified: staggered projections of friction (tangential)

force and unified pressure-normal force solve;
(4) T-P-N iter: staggered projections of tangential force and iter-

ative block GS pressure and normal force solves (ours).
In Figure 15, we dropped a hollow glass cube (density 500 kg/m3)
containing a bunny-shaped volume of inviscid liquid (density 1,000
kg/m3) onto a slope, using a grid resolution of 192 × 144 × 96 and
177.2k particles. We summarize performance numbers in Table 6 and
compare profiles of total time for the entire pressure and frictional
contact handling phase in Figure 16.
For P-C, while contacts between the slope and glass cube are

properly addressed by the concluding contact solve, the liquid suf-
fers from significant volume loss due to the neglected unilateral
incompressibility constraints. For C-P, due to the neglected con-
tact handling, the cube slips more on the slope, and inconsistent
solid velocities cause some liquid volume loss. By contrast, both
T-PN unified and T-P-N iter correctly enforce the unilateral incom-
pressibility constraints while appropriately handling the frictional
contacts, with similar computational costs.

5.4 Contact-Aware Coupling with Granular Materials
We next demonstrate our full monolithic formulation for simultane-
ous coupling of granular materials and multiple rigid bodies with
frictional contacts. We evaluate four possible schemes:

(1) PF-C: pressure-friction solve followed by contact solve (once);
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(a) P-C (b) C-P (c) T-PN unified (d) T-P-N iter

Fig. 15. A hollow glass cube containing initially bunny-shaped inviscid liquid dropped onto a slope, with various solver options (see §5.3 for details). P-C fails
to enforce the fluid incompressibility losing the volume. C-P also fails to preserve the volume due to the inconsistent solid velocity and causes more slips of
the cube due to neglected contact handling. Both T-PN unified and T-P-N iter correctly preserve fluid volume and handle frictional contacts.

Table 6. Performance numbers for Figure 15.

Solver SPiter pinner pninner ninner tinner pdof ndof tdof n Tp Tc Tpc

P-C 26.2 82.1 112.8 10.3k 18.6k 4.0 7.9 5.3 0.28 0.38 0.66
C-P 26.7 86.0 111.1 1.6k 26.8k 4.0 7.9 5.1 0.33 0.08 0.42

T-PN unified 58.7 3,267.9 1.6k 47.8k 4.0 7.9 6.2 50.4
T-P-N iter 73.0 7,208.5 2,091.9 28.4k 48.8k 4.0 7.9 8.3 49.5
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Fig. 16. Profiles of the total time for the entire pressure-contact handling
phase per frame for Figure 15.

(2) C-PF: contact solve followed by pressure-friction solve (once);
(3) T-F-PN unified: SP of tangential force, friction, and unified

pressure-normal force solves;
(4) T-F-P-N iter: SP of tangential force, friction, and iterative

block GS pressure and normal force solves (ours).
In Figure 17, we released a hemisphere of granular material (density
1,600 kg/m3) on the ground, dropped a two-way coupled block
(density 500 kg/m3) onto the pile, and a rigid bunny (density 500
kg/m3) on top of the block. We used a grid resolution of 64× 64× 64
and 90.2k particles. We summarize performance numbers in Table 7
and compare profiles of total time for the entire pressure-friction-
contact handling phase in Figure 18.

Due to the neglected unilateral incompressibility constraints with
PF-C, the rigid bunny incorrectly pushes the board into the granular
materials. C-PF neglects the contacts between the bunny and the
board, causing the simulation to explode. T-F-PN unified and T-F-P-
N iter generate plausible and comparable granular flows satisfying
both the unilateral incompressibility and friction cone constraints
simultaneously with rigid body frictional contacts.

5.5 Complex Examples
The following more complex examples further demonstrate the ca-
pabilities of our method for friction-critical scenarios. Figure 19
demonstrates a hollow glass cube containing a bunny-shaped in-
viscid liquid volume pinched by a static block (left) and a two-way
coupled block (right) with a constant leftward body force applied on
the right block. We compare simulations with 𝜼 = 0.05 and 𝜼 = 0.20
at a grid resolution of 128 × 128 × 64 with 144.0k particles; the total
simulation times per frame are 35.40 s and 48.22 s, respectively. With
𝜼 = 0.05 the cube is initially slowed when pinched, but ultimately
continues sliding downward due to the weight of the splashing liq-
uid inside. By contrast, with 𝜼 = 0.20 the stronger frictional contact
forces successfully halt the cube and keep it suspended in the air.
Figure 1 (left) simulates granular material flowing through a

collection of bunnies that are stuck in the middle of an hourglass
due to frictional contacts. This simulation used a grid resolution of
80 × 160 × 80 with 463.4k particles. In this example, we employed
the staggered stress arrangement with friction pyramid constraints
to demonstrate that our monolithic formulation is effective in this
setting. The total simulation time per frame is 368.95 s.
Lastly, in Figure 1 (right), we simulate a rotating drum mixing

multiple bunnies and granular material together. This simulation
used a grid resolution of 64×64×64 with 70.2k particles, employing
the colocated stress arrangement with friction cone constraints. The
total simulation time per frame is 161.92s.

5.6 Discussion
In our experiments, we found that performing more iterations with
appropriate granularity of the subproblems is typically more effi-
cient (e.g., block GS for the pressure-normal force problem vs. its
unified variant) since it is unnecessary to strictly solve each subprob-
lem due to the outer SP iterations. However, if early termination of
SP is desired, one would prefer accurately solving each subproblem
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(a) PF-C (b) C-PF (c) T-F-PN unified (d) T-F-P-N iter

Fig. 17. A hemisphere of granular material on the ground is released from rest and a two-way coupled board and a rigid bunny are dropped onto the resting
pile, simulated with various solver options (see §5.4 for details). PF-C fails to preserve the volume of granular materials while neglected contacts with C-PF
cause a explosion at frame 69. By contrast, both T-F-PN unified and T-F-P-N iter generate plausible behaviors of the granular materials, board, and bunny.

Table 7. Performance numbers for Figure 17. SPiterdenotes the number of SP iterations for granular materials/contacts for PF-C and C-PF.

Solver SPiter sinner pinner pninner ninner tinner sdof pdof ndof tdof n Tpf Tc Tpfc

PF-C 78.2/9.8 3.2k 2.6k 74.5 768.9 60.6k 12.0k 4.3 8.6 2.6 10.8 0.03 10.9
C-PF 37.0/2.4 3.0k 0.5k 5.8 26.6 67.0k 13.4k 0.7 1.4 1.3 6.96 0.0 6.96

T-F-PN unified 39.9 3.3k 0.7k 1,542.2 68.8k 13.8k 2.5 5.1 1.3 28.6
T-F-P-N iter 33.9 3.0k 1.6k 297.9 1,325.8 68.6k 13.7k 2.5 5.1 1.1 25.2
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Fig. 18. Profiles of the total time for the entire pressure-friction-contact
handling phase per frame for Figure 17.

for numerical stability; thus investigating optimal subproblem gran-
ularity (and computational ordering) along with solver parameters
would be beneficial.

While our formulation for friction cone constraints with the colo-
cated stress arrangement removes the artificial anisotropy effect,
as shown in Figure 3, employing cone constraints increases the re-
quired number of SP iterations for sufficient convergence if one is to
avoid stability issues (as compared to pyramid constraints, addressed
with MPRGP without the augmented Lagrangian). The colocated
stress arrangement enlarges the stencil size for s𝑥𝑦, s𝑥𝑧 , s𝑦𝑧 leading
to a denser system with more nonzeros. In addition, the transition
matrix that is necessary to combine standard finite differencing with
our hybrid grid introduces numerical averaging in the frictional
stress, resulting in slightly smoothed velocity fields.

Since MPRGP supports preconditioning, and given recent multi-
grid treatments for fluid pressure LCPs [Chentanez and Mueller-
Fischer 2012; Lai et al. 2020] and viscosity linear systems [Aanjaneya

et al. 2019], it could be valuable to develop amultigrid preconditioner
specialized to further accelerate our granular flow formulation.

To visualize the granular flow, we directly rendered the underly-
ing APIC particles. To further improve the visual quality, it would be
worthwhile exploring secondary simulations [Ihmsen et al. 2013] or
split/merge operations to resolve finer details [Daviet and Bertails-
Descoubes 2016; Narain et al. 2010].

6 CONCLUSIONS
We have proposed FrictionalMonolith, a monolithic framework for
challenging pressure-friction-contact problems that can treat, in a
unified way, unilateral fluid incompressibility constraints, implicit
granular friction integration under friction cone constraints, fric-
tional contact resolution among rigid bodies, and the interactions
among liquid/granular materials and rigid bodies. To efficiently and
robustly solve the QCQP resulting from this formulation, we pre-
sented our customized solver and evaluated its performance. Finally,
we demonstrated the efficacy of our monolithic solver on a range
of difficult granular/rigid interaction scenarios in which it elimi-
nates artifacts and surpasses the capabilities of prior or alternative
schemes.
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A DETAILS OF App,Ap𝝀,A𝝀𝝀, b𝑘p, b𝑘𝝀
App,Ap𝝀,A𝝀𝝀, b𝑘p, b𝑘𝝀 in (24) can be written as

App = Δ𝑡Ĝ𝑇W𝑢
𝐹 (P

𝑢W𝑢
𝐿)

−1Ĝ + Δ𝑡

𝜏
F̂𝑇𝑝M

−1
𝑟 F̂𝑝 , (32)

Ap𝝀 = Δ𝑡 F̂𝑇𝑝M
−1
𝑟 B𝝀, (33)

A𝝀𝝀 = Δ𝑡𝜏B𝑇𝝀M
−1
𝑟 B𝝀, (34)

b𝑘p = Ĝ𝑇W𝑢
𝐹u

∗ − F̂𝑇𝑝 v
∗ − A𝑇

sps
𝑘+1 − Apzz𝑘+1, (35)

b𝑘𝝀 = −𝜏B𝑇𝝀v
∗ − A𝑇

s𝝀s
𝑘+1 − A𝝀zz

𝑘+1 . (36)

We note that while App,Ap𝝀,A𝝀𝝀 are constant within the staggered
projections at each time step, b𝑘p and b𝑘

𝝀
need to be updated with

the already computed s𝑘+1 and z𝑘+1.

B DETAILS OF A𝑙 AND b𝑙

To obtain the descent direction for z within the Newton iteration,
we first need to assemble A𝑙

zz and b𝑙z, and these can be computed by

A𝑙
zz = Δ𝑡𝜏B𝑇z M

−1
𝑟 Bz + ∇2𝐸𝑑 (𝝀𝑘 , z𝑙 , h𝑙 ), (37)

b𝑙z = −𝜏B𝑇z v∗ − A𝑇
sz,0s

𝑘 − A𝑇
pz,0p

𝑘 − A𝑇
𝝀z,0𝝀

𝑘 − Azz,0z𝑙

− ∇𝐸𝑑 (𝝀𝑘 , z𝑙 , h𝑙 ) . (38)

Similarly, we can assemble A𝑙
s𝑥𝑥 s𝑥𝑥 and b𝑙s𝑥𝑥 as

A𝑙
s𝑥𝑥 s𝑥𝑥 = As𝑥𝑥 s𝑥𝑥 ,0 + ∇2𝐸𝑐 (s𝑙𝑥𝑥 , p𝑘 , g𝑙 ), (39)

b𝑙s𝑥𝑥 = bs𝑥𝑥 ,0 −
∑
𝑒

As𝑥𝑥 s𝑒 ,0s
𝑙
𝑒 − As𝑥𝑥p,0p

𝑘 − As𝑥𝑥𝝀,0𝝀
𝑘

− As𝑥𝑥 z,0z
𝑘+1 − ∇𝐸𝑐 (s𝑙𝑥𝑥 , p𝑘 , g𝑙 ), (40)

and we can compute A𝑙 and b𝑙 for s𝑥𝑦, s𝑥𝑧 , s𝑦𝑧 , s𝑧𝑧 in the same way.
Here, componentwise submatrices are defined as

Ass,0 =



As𝑥𝑥 s𝑥𝑥 ,0 As𝑥𝑥 s𝑥𝑦 ,0 As𝑥𝑥 s𝑥𝑧 ,0 As𝑥𝑥 s𝑦𝑧 ,0 As𝑥𝑥 s𝑧𝑧 ,0
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,

(41)

Asp,0 =


As𝑥𝑥p,0
As𝑥𝑦p,0
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As𝑦𝑧p,0
As𝑧𝑧p,0


,As𝝀,0 =
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, (43)

where

Ass,0 = Δ𝑡D̂𝑇W𝑢
𝐹 (P

𝑢W𝑢
𝐿)

−1D̂ + Δ𝑡

𝜏
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𝑟 F̂𝑠 , (44)

Asp,0 = Δ𝑡D̂𝑇W𝑢
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𝑢W𝑢
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−1Ĝ + Δ𝑡

𝜏
F̂𝑇𝑠 M

−1
𝑟 F̂𝑝 , (45)

As𝝀,0 = Δ𝑡 F̂𝑇𝑠 M
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𝑟 B𝝀, (46)
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−1
𝑟 Bz, (47)
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