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1 RELATED WORK
Fluid and rigid body dynamics form the foundation of our method.
For completeness, we therefore review prior techniques for viscous
fluid simulation and rigid body simulation.

1.1 Viscous Fluid Simulation
The unique behaviors of viscous fluids, which can differ significantly
from (nearly) inviscid fluids, have long been a focus in animation.
Stam [1999] first proposed a stable Eulerian grid-based method us-
ing implicit integration of the basic Laplacian (i.e., componentwise
diffusion) form of viscosity for fluids without free surfaces, which
Carlson et al. [2002] and Fält and Roble [2003] extended to free
surface flows. Rasmussen et al. [2004] proposed an implicit/explicit
(IMEX) scheme that includes cross-derivative terms for variable
viscosity. Batty and Bridson [2008] presented a fully implicit varia-
tional method to improve support for rotational surface effects. It
was later accelerated with adaptive schemes [Batty and Houston
2011; Goldade et al. 2019] and multigrid [Aanjaneya et al. 2019].
Larionov et al. [2017] proposed a unified pressure-viscosity (Stokes)
formulation to further improve free surface motion, including cap-
turing coiling behaviors and avoiding artificial melting.

Approaches to simulate fluids with more exotic properties, such
as viscoelasticity and shear-dependent viscosity, have also been
explored. Early on, Goktekin et al. [2004] added elastic forces to
an Eulerian fluid simulator. More recently, numerous variations of
the material point method (MPM) have been proposed to support
a wide range of materials, including snow [Stomakhin et al. 2013],

Authors’ addresses: Tetsuya Takahashi, Adobe, University of Maryland at College Park,
University of North Carolina at Chapel Hill, ttakahas@adobe.com; Christopher Batty,
University of Waterloo, christopher.batty@uwaterloo.ca;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/12-ART182 $15.00
https://doi.org/10.1145/3414685.3417798

foams and shear-dependent fluids [Nagasawa et al. 2019; Ram et al.
2015; Yue et al. 2015], elastoplastic solids [Fang et al. 2019; Gao et al.
2017], temperature-dependent solids [Ding et al. 2019; Stomakhin
et al. 2014], granular materials [Daviet and Bertails-Descoubes 2016;
Gao et al. 2018; Klár et al. 2016; Tampubolon et al. 2017; Yue et al.
2018], and frictional contact [Ding and Schroeder 2020; Guo et al.
2018; Han et al. 2019; Jiang et al. 2017].
While we focus on Eulerian and hybrid schemes, purely La-

grangian methods are a possible alternative. Smoothed Particle
Hydrodynamics (SPH) is a popular approach with several methods
having been proposed for efficient, robust, and accurate viscous ef-
fects, e.g., [Peer et al. 2015; Peer and Teschner 2017; Takahashi et al.
2015; Weiler et al. 2018]. Other particle-based viscosity methods
have relied on spring forces, moving-least-squares approximations,
or position-based schemes, e.g., [Clavet et al. 2005; Gerszewski et al.
2009; Takahashi et al. 2014]. With the help of dynamic remeshing,
Lagrangian Finite Element Method (FEM) can also handle viscous
materials [Bargteil et al. 2007; Clausen et al. 2013; Wicke et al. 2010;
Wojtan and Turk 2008]. Similarly, Lagrangian techniques based on
simplicial complexes have been proposed to capture viscous threads
and sheets [Batty et al. 2012; Bergou et al. 2010; Zhu et al. 2015].
We employ a grid-based, unified pressure-viscosity formulation

[Larionov et al. 2017] as the basis for our monolithic solver since it
allows for reasonably efficient and realistic animation of incompress-
ible viscous liquids via the solution of a single SPD linear system per
step. Nevertheless, our concept of full monolithic coupling could
also be adapted to other implicit methods, such as MPM, SPH, or
Lagrangian FEM simulators.

1.2 Rigid Body Simulation
Rigid body models are vital in countless applications, and research
towards their accurate, robust, and efficient simulation has a long
history. Bender et al. [2014] offers a useful overview of rigid body
dynamics in computer graphics; we focus on contact handling below.
A popular approach to prevent solid interpenetrations is the

penaltymethod [Bell et al. 2005; Terzopoulos et al. 1987].While it has
advantages (e.g., simplicity, efficiency, ease of implementation, and
tolerance of redundant contacts) the need to tune contact-stiffness
parameters can make it difficult to ensure plausible simulations:
low stiffness may leave penetrations unresolved whereas high stiff-
ness can cause overshooting instabilities. Continuous penalty forces
[Tang et al. 2012] and implicit integration [Otaduy and Lin 2005;
Xu et al. 2014] yield improved stability, yet it remains challenging
to choose appropriate parameters for a wide range of scenarios.
Another common collision-resolution strategy is to model non-

penetrations as (hard) constraints. While such constraints can be
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modeled at the position level, yielding a differential algebraic equa-
tion (DAE) [Ascher and Petzold 1998], the non-smooth nature of
the non-penetration constraints generally necessitates specialized,
expensive solvers [Anitescu and Hart 2004]. Alternatively, non-
penetration constraints have been modeled as an acceleration-level
LCP [Baraff 1991, 1994] or velocity-level LCP [Stewart 2000]. It is
not always guaranteed that the (NP-hard) acceleration-level LCP
will have a solution [Baraff 1993], so recent work builds on velocity-
level formulations [Smith et al. 2012; Vouga et al. 2017; Zhang et al.
2015]. An overview of LCP methods is provided by Erleben [2013].
While LCPs can be solved with direct methods with some ex-

tensions (e.g, Lemke’s method [Lloyd 2005], Cholesky factorization
with block pivoting [Enzenhöfer et al. 2019], and Schur complement-
based substructuring [Peiret et al. 2019]), as the number of contacts
increases, iterative approaches tend to be preferred due to scaling
and memory usage. Arguably, one of the most commonly used
iterative approaches is Projected Gauss-Seidel (PGS) due to its ro-
bustness, simplicity, and efficiency in each iteration. However, a
known issue for PGS is slow convergence, which has been actively
investigated. Erleben [2007] presented a shock propagation tech-
nique for the velocity-level LCP, by extending the position-level
shock propagation method of Guendelman et al. [2003]. Silcowitz
et al. [2010] proposed to reduce the dimension of the problem in
each GS iteration, Tonge et al. [2012] proposed a mass-splitting tech-
nique, Erleben [2017] presented PROX schemes based on proximal
operators, and Müller et al. [2017] proposed long range constraints.

Different types of iterative solvers have also been investigated for
efficient solution of rigid body LCPs. Renouf and Alart [2005] pro-
posed reformulating the LCP as a QP and solved it with a conjugate
projected gradient algorithm. Silcowitz-Hansen et al. [2009; 2010]
presented an LCP solver based on non-smooth nonlinear conjugate
gradient. Mazhar et al. [2015] proposed using Nesterov’s method to
accelerate the projected gradient descent method.

Realistic contact simulation also requires friction modeling. To ad-
dress both non-penetration constraints and friction effects, Kaufman
et al. [2008] proposed the staggered projections approach, formulat-
ing each as a convex QP and solving them iteratively and alternately.
To improve the efficiency and accuracy of frictional contacts, Ver-
schoor and Jalba [2019] presented a collision handling method using
conjugate residual with dynamic update of constraints while Mack-
lin et al. [2019] proposed non-smooth Newton methods by modeling
contacts as nonlinear complementarity problems.
The velocity-level contact formulation using staggered projec-

tions [Kaufman et al. 2008] forms the basis for our monolithic formu-
lation, because of its simplicity and effectiveness. Nonetheless, our
monolithic strategy could be combined with other contact solvers.

2 VOLUME FRACTION COMPUTATION
Given the solid geometry, represented as a signed distance func-
tion, we approximate the integral by summing fractions of cell-sized
control volumes. We divide the simulation domain Ω into non-
overlapping solid domains Ω𝑆 1,Ω𝑆 2, . . . ,Ω𝑆𝑛 (𝑛: number of rigid
bodies) and a fluid domain Ω𝐹 , (i.e.,∪𝑛𝑖 Ω𝑆𝑖∪Ω𝐹 = Ω, Ω𝑆𝑖∩Ω𝑆 𝑗 = ∅,
and Ω𝑆𝑖 ∩ Ω𝐹 = ∅, where 𝑖, 𝑗 (𝑖 ≠ 𝑗) denote solid domain indices).
Given the usual staggered arrangement of velocity variables on the

Cartesian grid and their surrounding cubic control volumes, we
assemble their partial fluid and solid volume fraction weights into
diagonal matrices W𝑢

𝐹
and W𝑢

𝑆
(whose range is [0, 1]), respectively.

Here, the superscript and subscript indicate weight matrices for
velocity variables 𝑢 and fluid domain 𝐹 or solid domain 𝑆 , respec-
tively (for more detail, see e.g., [Larionov et al. 2017; Takahashi and
Lin 2019]). Using fractions rather than true volumes avoids numer-
ical issues from very small values caused by Δ𝑥3 factors (where
Δ𝑥 denotes grid cell width). Later, we will scale rigid body terms
for consistency. We note that W𝑢

𝑆
is defined per rigid body, i.e.,

W𝑢
𝑆 1, . . . ,W

𝑢
𝑆𝑛

and
∑
𝑖 W𝑢

𝑆𝑖
+W𝑢

𝐹
= I (where I denotes the identity

matrix). Similarly, we compute weight matrices for viscous stress
control volume fractions defined in a staggered manner [Goktekin
et al. 2004], for fluid domains W𝑠

𝐹
and solid domains W𝑠

𝑆
. These

volume fractions can be consistently evaluated using the method
of Takahashi and Lin [2019]. Given the free surface geometry, also
defined by a signed distance function, we can likewise decompose
the simulation domain into the liquid domain Ω𝐿 and air domain Ω𝐴

(now ignoring solids), and compute corresponding volume fraction
weight matrices for pressureW𝑝

𝐿
andW𝑝

𝐴
(satisfyingW𝑝

𝐿
+W𝑝

𝐴
= I),

velocity W𝑢
𝐿
andW𝑢

𝐴
, and viscous stressW𝑠

𝐿
andW𝑠

𝐴
.

3 DETAILS OF Q AND J𝑝 AGGREGATION
To ensure consistent force exchange between fluids and rigid bod-
ies, we define pressure forces applied from fluids to rigid bodies as
−QW𝑢

𝑆
GW𝑝

𝐿
p = J𝑝W

𝑝

𝐿
p, i.e., J𝑝 = −QW𝑢

𝑆
G. In practice, assembling

J𝑝 via an explicitly constructed Q is not ideal since we can signifi-
cantly reduce the number of entries in J𝑝 by exploiting cancellation
of forces inside of the rigid bodies. We illustrate this below.
For simplicity, we consider three consecutive grid cells in one

dimension. Considering the pressure force applied from fluids to
a rigid body, 𝐹𝑥 , we can compute 𝐹𝑥 by aggregating fluid pressure
forces at each fluid velocity sample F𝑝 = (𝐹𝑝,−1/2, 𝐹𝑝,1/2, 𝐹𝑝,3/2, 𝐹𝑝,5/2)𝑇 ,
and we can write this relation with an aggregation matrix Q =

(1, 1, 1, 1) as 𝐹𝑥 = QF𝑝 . Since F𝑝 can be computed by F𝑝 = −W𝑢
𝑆
GW𝑝

𝐿
p,

i.e.,


𝐹𝑝,−1/2
𝐹𝑝,1/2
𝐹𝑝,3/2
𝐹𝑝,5/2

 = −


𝑊𝑢

𝑆,−1/2 0 0 0
0 𝑊𝑢

𝑆,1/2 0 0
0 0 𝑊𝑢

𝑆,3/2 0
0 0 0 𝑊𝑢

𝑆,5/2


1 0 0

−1 1 0
0 −1 1
0 0 −1



𝑊

𝑝

𝐿,0 0 0
0 𝑊

𝑝

𝐿,1 0
0 0 𝑊

𝑝

𝐿,2



𝑝0
𝑝1
𝑝2


=


−𝑊𝑢

𝑆,−1/2 (𝑊
𝑝

𝐿,0𝑝0)
−𝑊𝑢

𝑆,1/2 (𝑊
𝑝

𝐿,1𝑝1 −𝑊
𝑝

𝐿,0𝑝0)
−𝑊𝑢

𝑆,3/2 (𝑊
𝑝

𝐿,2𝑝2 −𝑊
𝑝

𝐿,1𝑝1)
−𝑊𝑢

𝑆,5/2 (−𝑊
𝑝

𝐿,2𝑝2)


, (1)
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we have

𝐹𝑥 = −𝑊𝑢
𝑆,−1/2 (𝑊

𝑝

𝐿,0𝑝0) −𝑊𝑢
𝑆,1/2 (𝑊

𝑝

𝐿,1𝑝1 −𝑊
𝑝

𝐿,0𝑝0)

−𝑊𝑢
𝑆,3/2 (𝑊

𝑝

𝐿,2𝑝2 −𝑊
𝑝

𝐿,1𝑝1) −𝑊𝑢
𝑆,5/2 (−𝑊

𝑝

𝐿,2𝑝2)

= (𝑊𝑢
𝑆,1/2 −𝑊𝑢

𝑆,−1/2)𝑊
𝑝

𝐿,0𝑝0

+ (𝑊𝑢
𝑆,3/2 −𝑊𝑢

𝑆,1/2)𝑊
𝑝

𝐿,1𝑝1

+ (𝑊𝑢
𝑆,5/2 −𝑊𝑢

𝑆,3/2)𝑊
𝑝

𝐿,2𝑝2 . (2)

Typically, deep inside of the rigid bodies, the volume fraction is
1, and if neighboring volume fractions are the same, some of the
terms in 𝐹𝑥 can be canceled, e.g., if 𝑊𝑢

𝑆,3/2 = 𝑊𝑢
𝑆,1/2, the term

(𝑊𝑢
𝑆,3/2 −𝑊𝑢

𝑆,1/2)𝑊
𝑝

𝐿,1𝑝1 can be completely ignored. Thus, we di-
rectly assemble J𝑝 canceling some of the terms, without explicitly
forming Q, since that would have led to a larger number of entries
in J𝑝 .

This approach can be naturally extended into 2D. Considering one
grid cell in 2D, F𝑝 = (𝐹𝑝,−1/2,0, 𝐹𝑝,1/2,0, 𝐹𝑝,0,−1/2, 𝐹𝑝,0,1/2)𝑇 , pressure
forces applied from fluids to a rigid body F𝑟 = (𝐹𝑥 , 𝐹𝑦, 𝐹𝑟𝑧)𝑇 (where
𝐹𝑦 denotes y directional force and 𝐹𝑟𝑧 denotes rotational force), and
Q is given by

1 1 0 0
0 0 1 1

−(𝑦 𝑗 − 𝑌 ) −(𝑦 𝑗 − 𝑌 ) (𝑥𝑖 − 𝑋 ) (𝑥𝑖 − 𝑋 )

 , (3)

where 𝑥𝑖 and𝑦 𝑗 denote the coordinates of the center of grid cell (𝑖, 𝑗)
and 𝑋 and 𝑌 denote the center of mass of the rigid body. Similarly,
this idea can be extended into 3D and adapted to viscous stress
forces.

4 SOLUTION CONSISTENCY
PC-iterative solve is guaranteed to generate the same results as the
PC-unified solve at convergence. This is because both the pressure
and contact problems are SPD, and since pressure is unconstrained,
we can eliminate it and define the normal contact force directly as
(A33−A𝑇

23A
−1
22A23)𝝀 = b3−A𝑇

23A
−1
22 b2, s.t. 0 ≤ 𝝀. This manipulation

is not possible for staggered projections for frictional contact [Kauf-
man et al. 2008]: both normal contact and friction forces involve
bound constraints so neither can be eliminated.
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