
Projected Walk on Spheres: A Monte Carlo Closest Point Method for
Surface PDEs
RYUSUKE SUGIMOTO, University of Waterloo, Canada
NATHAN KING, University of Waterloo, Canada
TOSHIYA HACHISUKA, University of Waterloo, Canada
CHRISTOPHER BATTY, University of Waterloo, Canada

We present projected walk on spheres (PWoS), a novel pointwise and
discretization-freeMonte Carlo solver for surface PDEs with Dirichlet bound-
aries, as a generalization of the walk on spheres method (WoS) [Muller 1956;
Sawhney and Crane 2020]. We adapt the recursive relationship of WoS
designed for PDEs in volumetric domains to a volumetric neighborhood
around the surface, and at the end of each recursion step, we project the
sample point on the sphere back to the surface. We motivate this simple
modification to WoS with the theory of the closest point extension used
in the closest point method. To define the valid volumetric neighborhood
domain for PWoS, we develop strategies to estimate the local feature size of
the surface and to compute the distance to the Dirichlet boundaries on the
surface extended in their normal directions. We also design a mean value
filtering method for PWoS to improve the method’s efficiency when the
surface is represented as a polygonal mesh or a point cloud. Finally, we
study the convergence of PWoS and demonstrate its application to graphics
tasks, including diffusion curves, geodesic distance computation, and wave
propagation animation. We show that our method works with various types
of surfaces, including a surface of mixed codimension.
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1 INTRODUCTION
Methods to solve surface partial differential equations (PDEs) have
become ubiquitous tools in computer graphics research and pro-
duction. They are used for surface editing [Desbrun et al. 1999],
texture synthesis [Turk 1991], surface fluid animation [Stam 2003],
geodesic distance computation [Crane et al. 2013], and diffusion
curves on surfaces [Bartsch et al. 2023; De Goes et al. 2022] today.
A common approach to tackle these problems is to discretize the
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Fig. 1. View-dependent diffusion curves with PWoS. Using our method,
we solve the Laplace equation on a curved surface in a view-dependent
manner. The pointwise and discretization-free nature of PWoS allows for
the evaluation of the colors only at visible points where the object color is
required by a shading algorithm with stochastic pixel-filtering.

surface and solve a globally coupled linear system using discrete
surface differential operators.
For volumetric PDEs, Monte Carlo methods have recently gar-

nered significant attention in the graphics community due to their
unique advantages over traditional discretization-based PDE solvers,
including the ability to estimate solution values in a pointwise,
spatial discretization-free manner. One such method is the walk
on spheres (WoS) method [Muller 1956] introduced to graphics by
Sawhney and Crane [2020]. They primarily focused on the (constant
coefficient) Poisson and screened Poisson equations in a volumet-
ric domain, and follow-up work likewise emphasizes volumetric
problems. In the present work, we consider instead the problem of
solving surface PDEs.
Sawhney and Seyb et al. [2022] proposed an extension of WoS

to support second-order linear elliptic PDEs with spatially varying
coefficients, and as one application, they demonstrated a method to
solve the Laplace equation on a 2D surface embedded in 3D. How-
ever, this approach requires that the conformal parametrization of
the surface be readily available, limiting the method’s applicability.
We propose a simpler generalization of WoS for surface PDEs,

the projected walk on spheres (PWoS) method, which only assumes
the availability of a closest surface point query and an unoriented
surface normal direction query. PWoS supports Dirichlet boundary
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conditions and inherits the advantages of WoS: PWoS is a point-
wise, discretization-free Monte Carlo method. Since our method
does not require the meshing of the surface, it is particularly ad-
vantageous over traditional approaches, such as the finite element
method, when the computation can be localized and when the sur-
face is given as an implicit representation, such as a signed distance
function. The resulting solution is also free of mesh-dependent dis-
cretization artifacts, such as from linear interpolation, as we show
in Fig. 1. Compared toWoS, which performs walks on spheres inside
the domain, PWoS performs walks on spheres inside a Cartesian
embedding neighborhood domain around the surface. After each
step of the walk, it projects the sampled point on the sphere onto the
surface. We motivate this simple modification to the original WoS
through its connection to the closest point method (CPM) [März and
Macdonald 2012; Ruuth and Merriman 2008].
Furthermore, inspired by the mean value filtering method for

WoS by Bakbouk and Peers [2023], we design a mean value filtering
method with a discrete basis function to allow more efficient esti-
mation of solutions when the surface is represented as a polygonal
mesh or a point cloud. To confirm PWoS’s accuracy, we perform con-
vergence studies of the method applied to the surface Poisson and
screened Poisson equations. Finally, we demonstrate its use in sev-
eral representative graphics applications, including diffusion curves,
geodesic distance computation, and wave propagation animation.
In summary, our key contributions are:

• Our novel PWoS algorithm that generalizes the WoS method
to solve surface PDEs with Dirichlet boundaries, supported
by the theory of the closest point extension.
• A mean value filtering method for PWoS with a discrete basis
for efficiency improvement.
• Evaluation of PWoS with convergence studies and graphics
applications.

2 BACKGROUND
This section briefly reviews the two core mathematical ideas on
which our method is based.

2.1 Walk on Spheres
WoS solves volumetric PDEs such as the Poisson equation over a
Cartesian domain in R𝑑 . Consider a 𝑑-ball 𝐵𝑟 (x), centered at x with
radius 𝑟 , fully contained within the domain. The integral equation

𝑢 (x) = 1
|𝜕𝐵𝑟 (x) |

∫
𝜕𝐵𝑟 (x)

𝑢 (y) dy +
∫
𝐵𝑟 (x)

𝑓 (z)𝐺 (x, z) dz (1)

holds for the Poisson equation Δ𝑢 = 𝑓 in general, where |𝜕𝐵𝑟 (x) |
denotes the surface area of the sphere that bounds the ball 𝐵𝑟 (x)
and 𝐺 denotes the Green’s function for the Poisson equation on
𝐵𝑟 (x) [Sawhney and Crane 2020]. On the right-hand side, the first
term is a boundary integral over the (𝑑 − 1)-sphere, and the second
term is a volume integral over the 𝑑-ball. If we perform Monte Carlo
integration of the first term by uniformly sampling a point on the
sphere and of the second term by sampling 𝑁𝑉 points z𝑖 inside
the ball with probability density function (PDF) 𝑝 (z𝑖 ), we get the

recursive relationship used in WoS:

𝑢 (x) = 𝑢 (y) + 1
𝑁𝑉

𝑁𝑉∑︁
𝑖=1

𝐺 (x, z𝑖 ) 𝑓 (z𝑖 )
𝑝 (z𝑖 ) , (2)

where the hat notation indicates that a variable is a Monte Carlo
estimate. The first term on the right-hand side is also a Monte Carlo
estimate because the solution 𝑢 (y) is unknown at point y in general.
At each recursion step, WoS applies this recursive relationship to
the largest ball inside the domain bounded by Dirichlet boundaries.
It terminates the recursion when the sample point x during the
recursion falls within a small distance 𝜖 of the domain boundary,
by using the known solution at the closest boundary point x as the
solution estimate: 𝑢 (x) = 𝑢 (x). WoS thereby estimates the solution
at each evaluation point independently, offering intrinsic parallelism.
Our method generalizes WoS, originally proposed for volumetric
PDEs, by incorporating the closest point extension theory of CPM.

2.2 Surface PDEs and Closest Point Extension
Consider the Poisson equation defined on a surface S embedded in
R𝑑 such that dim(S) < 𝑑 :

ΔS𝑢S (y) = 𝑓S (y), y ∈ S, (3)
where ΔS denotes the Laplace-Beltrami operator. For convenience,
we will use the word surface to refer to any nonzero codimension
object in R𝑑 , including mixed-codimension objects. One typically
solves such a surface PDE by discretizing the differential operator
and solving a sparse linear system. For triangle meshes one can use
the cotangent Laplacian [MacNeal 1949]; for other surface represen-
tations, a corresponding discrete Laplacian must be defined [Belkin
et al. 2009; Bunge and Botsch 2023; Sharp and Crane 2020]. The clos-
est point method [Ruuth and Merriman 2008] instead addresses the
surface PDE (Eq. 3) in a more general way by changing the domain
to an embedding space, which is a Cartesian neighborhood sur-
rounding the original surface. CPM then solves an embedding PDE
defined on the embedding space, whose solution when restricted to
points y ∈ S is the solution 𝑢S (y) to the original surface PDE. We
briefly summarize CPM theory and refer readers to work by King
et al. [2023] for an in-depth review of CPM.
We first assume that S is smooth and define the closest point

query to the surface, for x ∈ R𝑑 , as
cpS (x) = argmin

y∈S
∥x − y∥2 . (4)

In general, the mapping cpS (x) may not be unique: there may
exist more than one closest point for a given x. We define the
neighborhood N(S) where the closest point function is unique as
N(S) = {

x ∈ R𝑑
�� ∥x − cpS (x)∥2 < LFS

(
cpS (x)

)}
, where LFS(y)

is the local feature size at point y ∈ S defined as the minimum
Euclidean distance from y to the medial axis med(S) [Amenta and
Bern 1999]. The medial axis med(S) is defined as the set of points
in R𝑑 where there is more than one closest point. Note that when
S is a watertight surface the definition of the medial axis that we
use contains both the interior part that is bounded by S and the
exterior part that lies outside the bounded domain.
Within the neighborhood N(S), or a subset of it, surface differ-

ential operators can be replaced by Cartesian differential operators
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with closest point extensions (see [März and Macdonald 2012; Ru-
uth and Merriman 2008]). The closest point extension operator 𝐸
extends surface functions onto N(S) to be constant in the normal
direction of S and is defined as 𝐸𝑢S (x) = 𝑢S (cpS (x)). For func-
tions 𝑢 ∈ N (S) the extension 𝐸 acts on the restriction of 𝑢 to the
surface, i.e., 𝐸𝑢 = 𝐸 (𝑢 |S). The Laplace-Beltrami operator in Eq. 3 is
equivalent to the following:

ΔS𝑢S (y) = Δ[𝐸𝑢S] (y), y ∈ S. (5)

To define the embedding PDE onN(S), we also extend 𝑓S as 𝑓 (x) =
𝐸𝑓S (x). The equation Δ[𝐸𝑢S] (x) = 𝑓 (x), for x ∈ N (S), is ill-posed
because 𝑓 is constant in the normal direction ofS but Δ[𝐸𝑢S] is not
guaranteed to be. Therefore, the embedding PDE for Eq. 3 becomes

Δ[𝐸𝑢S] (x) = 𝑓 (x) + 𝑔(x), x ∈ N (S), (6)

where 𝑔(x) is a function that compensates for Δ[𝐸𝑢S] not being
constant in the normal direction of S. The function 𝑔(x) is nonzero
for x ∈ N (S) \ S and 𝑔|S = 0 to ensure Eq. 6 is consistent with the
surface PDE (Eq. 3) on S. Any function 𝑔 with these conditions has
the form 𝑔(x) = 𝛾 (𝑣 (x) − 𝐸𝑣 (x)), where 𝛾 ∈ R and 𝛾 ≠ 0.

The Macdonald-Brandman-Ruuth approach (see [Chen and Mac-
donald 2015, Section 2.3]) takes 𝑣 |S = 𝑢S to allow Eq. 6 to be
written as an equation in one unknown, 𝑣 (x), since 𝐸𝑢S = 𝐸𝑣 (but
importantly 𝑣 ≠ 𝐸𝑣 except on S). We instead do not restrict 𝑣 |S
to be 𝑢S and interpret 𝑔(x) as a modification to the source term
𝑓 (x), then solve for the unknown solution 𝑢 (x) = 𝐸𝑢S in Eq. 6.
As proven by von Glehn et al. [2013, Section 3.2], 𝑢 (x) = 𝐸𝑢 (x)
since 𝑢 (x) is the extension of a surface function. The property that
𝑢 (x) = 𝐸𝑢 (𝑥) = 𝑢 (cpS (x)) allows our projection step during the
walk in PWoS, detailed in Section 3.

We show through our numerical examples that taking 𝑔(x) = 0
for all x ∈ N (S), provides qualitatively correct results for graphics
applications and quantitatively convergent results in most examples
in Section 5. However, the choice of 𝑔(x) = 0 causes Eq. 6 to be
ill-posed as discussed above, and we observe some bias in some con-
vergence studies in Section 5.1 when 𝑓 is complex. Interesting future
work would involve constructing a more accurate 𝑔(x) function to
improve convergence.
In the traditional CPM, one solves the embedding PDE inside a

narrow tubular subset of N(S) that is within a constant distance
to S. For the typical grid-based variant, the tubular subset is spa-
tially discretized with a grid of uniform spacing. Interpolation and
finite differences are applied on the grid to approximate the clos-
est point extension and the spatial Cartesian differential operators,
respectively, and then the resulting linear system is solved. Other
variants of CPM [Cheung et al. 2015; Petras and Ruuth 2016; Piret
2012] also require some discretization within N(S). Thus, while
traditional CPM is agnostic to the specific surface representation, it
still discretizes the embedding space and solves a globally coupled
system. Moreover, imposing exterior or interior boundary condi-
tions requires tedious grid operations [King et al. 2023]. By contrast,
we develop a spatial discretization-free, pointwise Monte Carlo esti-
mator for surface PDEs by incorporating the closest point extension
concept into WoS.
When there are Dirichlet boundaries C ⊂ S, on which the solu-

tion 𝑢S is given, one can geometrically extend the boundary itself

out into the embedding space in the normal directions, assigning
it the same boundary value in accordance with the closest point
extension. Note that such boundaries need not coincide with the geo-
metric boundaries of the surface itself. In the context of grid-based
CPM, King et al. [2023] discuss how to impose such boundary condi-
tions by duplicating degrees of freedom near the extended boundary.
In our work, we devise a method that uses only the closest point
function cpC (x) to the (pre-extension) boundary C, without the
need to construct the extended boundary geometry or perform any
complex duplication of degrees of freedom.

3 METHOD
Input. While our algorithm is generalizable to other configura-

tions, we describe our method for the case when S is embedded in
R3 and dim(S) = 1, 2. Recall that we use the word surface to refer
both to “surfaces” with dim(S) = 1 (curves) as well as dim(S) = 2
surfaces. We also allow mixed codimension where parts of the sur-
face have dim(S) = 1 and the rest of the surface has dim(S) = 2.
We assume that we can query the closest point function cpS (x) for
x ∈ R3. Additionally, for surfaces with dim(S) = 2, we assume that
we can query the unoriented normal direction of the surface n(x)
for x ∈ S. For surfaces with dim(S) = 1, we assume that we can
query the tangential direction of the surface t(x) for x ∈ S. These
assumptions are valid for common surface representations, includ-
ing, but not limited to, polygonal meshes, oriented point clouds,
and implicit functions. The theory discussed in Section 2.2 is based
on the assumption that S is smooth; in practice, we observe that
applying our technique on discretized surfaces with sharp features
behaves well as we show in Section 5.1. Additionally, we assume the
Dirichlet boundaries C have a lower dimension than the dimension
of S and support the closest point query cpC . When solving a two-
sided boundary value problem for boundaries with dim(C) = 1, we
also assume that we can query the tangent direction of C.
Overview. The core idea of our method is to apply the WoS re-

cursive relationship within N(S) while utilizing the closest point
extension constraint that𝑢 (x) = 𝑢 (cpS (x)). To do so, wemodify the

x

shifted med(S)

S

𝜖-shell
extended C

Fig. 2. A PWoS path for the Laplace equation on a gray 1D (curve) surface
embedded in 2D space, starting from x and terminating at the extended
Dirichlet boundary C.
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walk process to use spheres contained within N(S) and to project
the walk position at each recursion step, as illustrated in Fig. 2.

The problem we solve is the embedding PDE Δ𝑢 (x) = 𝑓 (x) +𝑔(x)
withinN(S). The Monte Carlo estimate of Eq. 2 holds by assuming
𝑔(x) = 0 because the embedding PDE is defined with the Cartesian
differential operator. To estimate the surface PDE’s solution at point
x ∈ S, we consider a 3D ball centered at x and fully contained inside
N(S). Theoretically, it should be the largest ball fully contained
inside N(S) that does not cross the extended Dirichlet boundaries
C, to minimize the number of steps needed to reach the boundary.
We determine the radius of such a ball by taking the minimum of
a conservative (under-)estimate of the local feature size at point x
(Section 3.1) and the distance to the (extended) Dirichlet boundaries
(Section 3.2). In Eq. 2, theMonte Carlo estimate of the solution on the
sphere, 𝑢 (y), needs to be evaluated at point y, which does not lie on
S in general. The closest point extension constraint of 𝑢 provides a
convenient relationship here: the embedding PDE’s solution at point
y should coincide with the surface PDE’s solution at the projected
point, cpS (y). We can therefore project the point y ontoS at the end
of each recursion step hence𝑢 (y) = 𝑢 (cpS (y)). After this projection
at the end of each step, we continue the recursion. The source
term similarly uses the closest point projection for the closest point
extension, replacing the recursive relationship of WoS (Eq. 2) with

𝑢 (x) = 𝑢 (cpS (y)) +
1
𝑁𝑉

𝑁𝑉∑︁
𝑖=1

𝐺 (x, z𝑖 ) 𝑓 (cpS (z𝑖 ))
𝑝 (z𝑖 ) . (7)

We choose 𝑝 (z𝑖 ) ∝ 1/∥x − z𝑖 ∥2 in our implementation.

Algorithm 1: Projected Walk on Spheres
Input : surface S, boundary C, evaluation point x ∈ S,

sample walk count 𝑁𝑃 , volume sample count 𝑁𝑉 ,
tolerance 𝜖

Function EstimateSolution(S, C, 𝑁𝑃 , 𝑁𝑉 , x, 𝜖):
M ← medialAxisPointCloud(S) // Section 3.1
𝑢sum ← 0
for 𝑛 ← 1 to 𝑁𝑃 do

𝑢 ← RecursiveEstimate(S,M, C, 𝑁𝑉 , x, 𝜖)
𝑢sum←𝑢sum + 𝑢

end
return 𝑢sum/𝑁𝑃

Function RecursiveEstimate(S,M, C, 𝑁𝑉 , x, 𝜖):
𝛿 ← distanceToBoundary(S,M, C, x) // Section 3.2

if 𝛿 < 𝜖 then
return 𝑢 (cpC (x))

𝑙 ← localFeatureSize(S,M, x) // Section 3.1
𝑟 ← min(𝑙, 𝛿)
y← uniformSphereSample(center=x , radius=𝑟)
𝑢sphere ← RecursiveEstimate(S, med, C, 𝑁𝑉 , cpS (y), 𝜖 )
{z1, ...z𝑁𝑉

} ← ballSample(center=x , radius=𝑟)
𝑢ball ← 1

𝑁𝑉

∑𝑁𝑉

𝑖=1
𝐺 (x,z𝑖 ) 𝑓 (cpS (z𝑖 ) )

𝑝 (z𝑖 )
return 𝑢sphere + 𝑢ball

Analogous to the original WoS method, we terminate the recur-
sion when the point x falls within a distance 𝜖 of the (extended)
Dirichlet boundary by taking the boundary value 𝑢 (cpS (x)). We
provide pseudocode for an instance of our algorithm in Alg. 1, where
we highlight the difference between our proposed method and WoS.
We also provide a visualization of a potential path of our algorithm
when S is embedded in R2 in Fig. 2. Notably, PWoS is a generaliza-
tion of the WoS algorithm: when dim(S) = 𝑑 (i.e., the codimension-
zero case), the local feature size is infinite, the distance to the Dirich-
let boundary C can be computed with the closest point query cpC ,
and the last closest point projection of y has no effect since cpS (y) =
y. When dim(S) < 𝑑 , in addition to the closest point projection at
the end of each recursion step, our algorithm utilizes two nontrivial
steps: the local feature size estimation using a medial axis point
cloud and the computation of the distance to the (extended) Dirichlet
boundary. We discuss these in the following two subsections.

3.1 Local Feature Size Estimation
To determine the radius of the sphere centered at x ∈ S that is fully
contained insideN(S) at each recursion step of the walk, we need a
conservative lower bound estimate for the local feature size at x. One
naive approach would be to use a small enough positive constant
value for all x ∈ S, similar to the grid-based CPM [Ruuth and
Merriman 2008]. This is a valid strategy, but it would often yield a
sphere radius smaller than necessary, requiringmore recursion steps
for the walks to reach a Dirichlet boundary and making the method
inefficient. Fig. 3 illustrates a result of our algorithm on a unit sphere
using different (artificial) local feature size estimates. The analytical
local feature size of this surface is 1 everywhere. Although using
any smaller value would still give consistent results, it significantly
increases the average step count for the walks. For more complex
shapes, one cannot compute the analytical local feature size in
general and using a small constant value in its place is inefficient.
This issue motivates our need for a better local feature size estimate.

To estimate the local feature size, we compute a point cloud ap-
proximation of the medial axis and estimate the local feature size
as the distance from any query point x ∈ S to its nearest point in
the medial axis point cloud. One could use any local feature size
estimation algorithm and/or medial axis extraction algorithm (see
e.g., [Tagliasacchi et al. 2016]), such as one that outputs or uses
the medial axis’ connectivity. Since such methods are often com-
paratively costly, we employed a simple point cloud-based method,
which we describe below.

Local Feature Size Avg. Step Count
0.99 31.1398
0.5 47.84
0.25 128.981
0.125 462.781
0.0625 1818.73

Fig. 3. Average number of steps required with different conservative local
feature size estimates. While any positive value smaller than 1 is valid for
this setup, using a local feature size estimate that is too small leads to
excessively long walks.
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Medial ball extraction. We first densely scatter points x𝑖 inside a
ball in R3 having a radius equal to half the length of the diagonal of
the bounding box of S, so the entire surface is fully enclosed. For
each point x𝑖 , we use the closest point query cpS (x𝑖 ) to compute its
two opposing normal directions at cpS (x𝑖 ). Specifically, we normal-
ize the vector x𝑖 − cpS (x𝑖 ) to get the first direction and invert its
direction to get the second one. We then use the method of Ma et al.
[2012] to extract a point cloud that represents the medial axis, as
follows. For each side of the surface (i.e., each normal), we start with
a large sphere tangent to cpS (x𝑖 ), whose center necessarily lies on
the normal ray. The initial radius of the ball is set to the length of
the diagonal of the bounding box of S. Then, we iteratively shrink
the size of the sphere, moving its center to maintain tangency at the
surface point cpS (x𝑖 ), until the closest surface point from the center
of the sphere does not change. This algorithm givesmedial balls, i.e.,
balls with their centers on the medial axis. As the number of initial
scattered points increases, the extracted point cloud balls tend to
cover the entire medial axis. While Ma et al. [2012] assumed that
the surface is represented as an oriented point cloud, we observed
that the algorithm works well with other surface representations by
adjusting its termination criteria. See the paper by Ma et al. [2012]
and our implementation for details.

Scale axis pruning. Directly using the medial ball centers as the
medial axis point cloud does not work well in general when S
contains any noise or artificial sharp corners introduced by the
discretization of a smooth surface. We therefore prefer to estimate
(only) the stable part of the medial axis, which is not affected by any
small perturbation of S. A common solution is, therefore, to prune
unstable components of the medial axis, which itself remains an
active research topic [Tagliasacchi et al. 2016]. We take inspiration
from the scale axis transform (SAT) [Giesen et al. 2009; Miklos et al.
2010], but design an alternative since SAT considers topology infor-
mation of the medial axis, which is unnecessary for local feature
size estimation. Our alternative is simpler and faster since topology
information is omitted. We first scale all the medial balls by a con-
stant factor 𝑠 > 1. Then, for any pair of medial balls 𝐵𝑟1 (x1) and
𝐵𝑟2 (x2), we remove the smaller ball from the set of medial balls if it
is fully contained in the other. That is, if 𝑠 · 𝑟1 < 𝑠 · 𝑟2 + ∥x1 − x2∥2,
we remove the ball 𝐵𝑟1 (x1).

Note that some of the medial balls may have a very large radius
before pruning. For example, an exterior medial ball for a surface
of a convex shape would have an infinite radius in theory (but our
algorithm returns at most the length of the diagonal of the bounding
box of S). When such large medial balls are used in our pruning
algorithm, they can easily (and undesirably) remove important,
stable parts of the medial axis. The original SAT approach was
applied only to the interior medial axis of closed surfaces. Therefore,
this issue was not observed since the interior medial ball radii are
always bounded and proportional to the size of local features of
S. To address this problem, we consider each pair of tangent balls
generated at the same surface point, and replace the larger one with
a tangent ball having the radius of the smaller one. In other words,
before we prune the medial axis, we shift the medial ball centers of
the larger medial ball in the pair and shrink its radius. In Fig. 2, we
visualize the medial ball centers after this shifting operation.

After this pruning, the set of medial ball centers gives the medial
axis point cloud we use to estimate the local feature size. Adjusting
the scaling parameter 𝑠 allows us to control the pruning strength.
Unless otherwise stated, we use the value 𝑠 = 1.15 for our results.

Conservative and nonzero local feature size. As the medial axis is
represented as a point cloud and the nearest point distance may give
a larger value than the actual local feature size, we multiply by a
small constant (0.9 in our implementation) to ensure a conservative
estimate of the local feature size. When there are sharp corners in
the geometry, the analytical local feature size is zero, and the walk
will become stuck. To prevent this problem, when the estimated local
feature size is smaller than a positive constant threshold 𝜆, we return
𝜆 as the local feature size estimate instead. This process essentially
rounds sharp corners with rounding radius 𝜆. The uniform grid size
adopted in grid-based CPM has a similar effect. We do not observe
any significant error due to this rounding, as we show in Section 5.1.

3.2 Distance to Extended Dirichlet Boundaries
Dirichlet boundaries C are extended in the normal direction of S
and the solution in the embedding space on this extended boundary
is determined by the closest point extension of Dirichlet values
on C. Therefore, we need to compute the minimum distance to
the extended Dirichlet boundaries, and limit the sphere radius in
PWoS further if it is less than the local feature size. To determine
the distance to the extended Dirichlet boundary from point x ∈ S,
we first find the closest point that lies on the boundary before
the extension, cpC (x). The subset of the extended boundary that
is extended from cpC (x) takes the shape of a line segment when
dim(S) = 2 and a disk when dim(S) = 1. We set the line segment’s
half-length or the disk radius to the local feature size at cpC (x)
using the algorithm in Section 3.1. We can compute the distance
from the point x ∈ S to this line segment or disk without explicitly
constructing the extended boundary geometry. When dim(S) = 2,
the distance 𝛿 to the extended boundary is given by

r = cpC (x) − x,
𝛿 = ∥r − clamp(r · n,−𝑙, 𝑙) · n∥2, (8)

where n and 𝑙 are the surface normal and the local feature size
estimate at cpC (x), respectively. When dim(S) = 1, the normal
direction is not uniquely defined, so we instead use a similar method
based on the surface tangent t:

q = r − (r · t)t,

𝛿 =

{
|r · t|, if ∥q∥2 < 𝑙,

∥r − 𝑙 · (q/∥q∥2)∥2, otherwise.
(9)

3.3 Generalizations
3.3.1 Screened Poisson Equation. We have so far considered only
the Poisson equation. For WoS, Sawhney and Crane [2020] proposed
a generalization of WoS to the screened Poisson equation Δ𝑢 −
𝜎𝑢 = 𝑓 , where 𝜎 is a positive constant. The embedding PDE for the
screened Poisson equation is constructed similarly to Eq. 6 using
closest point extensions [Chen and Macdonald 2015, Section 2.3].
Therefore, similar to WoS [Sawhney and Crane 2020], we replace
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the integral equation (Eq. 1) used in our recursive relationship with

𝑢 (x) = 𝑐𝑟,𝜎
|𝜕𝐵𝑟 (x) |

∫
𝜕𝐵𝑟 (x)

𝑢 (y) dy +
∫
𝐵𝑟 (x)

𝑓 (z)𝐺𝜎 (x, z) dz, (10)

where 𝐺𝜎 is the Yukawa potential and 𝑐𝑟,𝜎 is a positive number
smaller than 1. To evaluate the first term, instead of multiplying the
contribution from the recursion by 𝑐𝑟,𝜎 as suggested by Sawhney
and Crane [2020], we use a Russian Roulette strategy: we terminate
the path early with probability 1 − 𝑐𝑟,𝜎 with zero contribution and
otherwise we use the estimate of the solution without multiplying
by 𝑐𝑟,𝜎 . As PWoS is a generalization of WoS, we can apply this
Russian Roulette strategy to WoS as well. This scheme allows us to
terminate the PWoS path early without waiting for it to reach the
boundary and without introducing additional bias. It also makes it
possible to apply PWoS to problems without Dirichlet boundaries.
We can even use this estimator for the screened Poisson equation as
a Tikhonov regularization of the Poisson equation without bound-
aries: solving the screened Poisson equation with small 𝜎 yields an
approximate solution to the Poisson equation. Similar regulariza-
tion ideas appear in multiple contexts [Sabelfeld and Simonov 1994,
Section 6.3; Sawhney and Miller et al. 2023].

3.3.2 Divergence Source Term andGradient Estimation. Many graph-
ics applications, such as the heat method for geodesic distance
computation [Crane et al. 2013] and the projection step of fluid sim-
ulation [Foster and Metaxas 1996; Stam 1999], give rise to a Poisson
equation with a source term expressed as the divergence of a vector
field, 𝑓S = ∇S · hS , where hS is a vector field defined over the sur-
face. These applications also require the estimation of the gradient
of the solution instead of the solution itself. With grid-based CPM,
the differential operators defined in the embedding Cartesian do-
main can be used to solve such problems [Auer et al. 2012; King et al.
2023]. For our PWoS, however, we do not use any embedding grid
structure, and we do not assume any specific surface representation,
so we cannot use such discrete differential operators.

To solve a problem with a divergence of vector field as the source
term, Sugimoto et al. [2024] proposed to use integration by parts
to convert the volume integral arising from the source term to
a form that does not explicitly depend on the divergence of the
vector field. This was done in the context of the walk on boundary
method [Sugimoto et al. 2023], which is a Monte Carlo volumetric
PDE solver based on a different integral equation formulation, and
we adapt this approach to (projected) WoS. To estimate the gradient
with PWoS, we can use the gradient estimator for WoS [Sawhney
and Crane 2020, Section 3.1], because the solution’s gradient is zero
in the surface normal directions due to the closest point extension
constraint 𝑢 (x) = 𝑢 (cpS (x)). The gradient estimator replaces the
first step of recursion based on Eq. 1 with one we can derive by
taking the gradient of Eq. 1.We discuss the details of these estimators
in the supplemental note and demonstrate an application for the
geodesic distance computation in Section 5.2.2.

4 MEAN VALUE FILTERING WITH DISCRETE BASIS
The method we described in Section 3 is suitable for evaluating
the solution at a few evaluation points independently. To improve
the efficiency of the method for many evaluation points (i.e., mesh

vertices), it is often desirable to utilize the spatial consistency of
the solution. For WoS, a few such methods have been proposed, but
those approaches are not trivially applicable to our setup, where
we have additional closest point extension constraints between
the surface and embedding PDEs. Specifically, the boundary value
caching approach [Miller and Sawhney et al. 2023] is based on a
boundary integral equation defined in the Cartesian coordinates
and is not applicable to surface PDEs. Adaptation of reverseWoS [Qi
et al. 2022] or mean value caching [Bakbouk and Peers 2023] to our
setting would require a mapping of a PDF on the surface to a PDF
on the spheres used in our walk process, and we found it difficult to
design such an algorithm for general surfaces.
Inspired by the filtering method of Bakbouk and Peers [2023],

we designed a filtering method that uses discrete basis functions
defined over a surface represented as a polygonal mesh or point
cloud. When we apply Eq. 7 at an evaluation point, if 𝑢 (cpS (y)) is
a precomputed Monte Carlo estimate, we do not need to continue
the recursion and can simply use the precomputed estimate in its
place. In general, we do not have the estimate 𝑢 (cpS (y)) available
at cpS (y). Thus, we get the estimate by interpolating the estimate of
solutions already computed at a discrete set of points by accepting
the bias due to interpolation. For example, for a triangle mesh, we
use barycentric coordinates as the interpolation basis. This can be
interpreted as a PDE-aware smoothing filter of the solution whenwe
consider this process as a weighted average of the solution estimates
at nearby evaluation points.

To estimate the solution at all mesh vertices or all points in a point
cloud, we first compute an approximate solution to the problem
with a low sample count using the method described in Section 3
and apply this filtering step to get an updated estimate. We can also
precompute the filtering weights per evaluation point first and apply
the same filter a few times to achieve an even smoother solution
without too much additional cost. We can similarly design a gradient
estimation filter based on Section 3.3.2. While this filtering approach
utilizes a discrete basis defined over the surface, we do not use any
explicit discrete differential operators and do not need to solve a
linear system, which is in contrast to the traditional methods based
on discrete Laplacians.
The method of Bakbouk and Peers [2023] similarly designed a

smoothing filter for volumetric PDEs. Their method can keep the
estimate unbiased by assuming that the evaluation points are sam-
pled with a known PDF and that the original estimates are unbiased,
but our method introduces bias due to the use of a discrete basis.
We nevertheless observe that, within a reasonable runtime budget,
our biased filtering method can reduce the error compared to the
PWoS algorithm without filtering. We leave the development of an
unbiased variant to future work.

5 RESULTS
We implemented PWoS in Houdini 20.0 [Side Effects Software, Inc.
2023] without GPU acceleration, using its built-in closest point
queries. Our implementation is provided as supplemental material.
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Fig. 4. Error convergence. In each of the examples, we show the visualization of the scene setup (top), error convergence plot (middle), and scene description
(bottom). The scene visualizations show the analytical or reference solution of the problem by mapping the range of solution values to the green-to-purple
color gradient and placing a white point or curve on the Dirichlet boundary. The vertical axis of the error plot shows the root mean squared error of the
estimates at a few points on the surface in a logarithmic scale, and the horizontal axis shows the number of samples 𝑁𝑃 in a logarithmic scale. The blue curves
show the result of the experiment, and the orange curves show a line that corresponds to the desired O(1/√𝑁𝑃 ) convergence rate. The scene description
indicates the surface shape (top), boundary shape/type (middle), and problem type (bottom). While the expected O(1/√𝑁𝑃 ) is achieved in most scenes, the
bias remains high when an aggressive medial axis pruning parameter is used (c) and when the source term of the problem is relatively complex (e, g, and h).
We describe the details of the scene configurations in the supplemental note.
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Fig. 5. Effect of local feature size on convergence speed. We bend a rectan-
gular strip of size 10 by 2 units along sinusoidal curves with high, middle,
and low frequencies (top left, top right, and bottom, respectively, in the
visualization) and solve the Laplace equation. The analytical solution is
defined as the distance along the longer edge of the strip from one of the
shorter edges. The vertical axis of the convergence plot represents the root
mean squared error (RMSE), while the horizontal axis shows the time in
seconds measured on a MacBook Pro with an M1 Pro chip. We used 1000
sample evaluation points. The geometry with a larger local feature size
allows for faster convergence with lower bias.
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Fig. 6. Mean value filtering error. For the Laplace equation with solution
𝑢 = 𝑟 3 sin(3𝜃 ) in polar coordinates defined on a unit disk, we curve the disk
and measure the error of PWoS with mean value filtering. In each of the
two plots, we compare the error without mean value filtering against one
application of filtering and ten applications of filtering. The left plot shows
the root mean squared error when changing the number of sample paths
used to generate the initial estimate with a fixed number of filter samples
(1024). The right plot shows the root mean squared error when changing
the number of samples used to construct the filter and fixing the number
of sample paths used to generate the initial estimate to 1. We observe that
applying the mean value filter constructed with a sufficiently large number
of samples can reduce the error significantly, even when the initial estimate
is constructed with a small sample path count.
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5.1 Error Convergence
We conducted error convergence studies of our method using dis-
cretized surfaces. In each scene in Fig. 4, we change the number
of sample paths 𝑁𝑃 to plot the root mean squared error measured
against the analytical or reference solution. We do not apply the
mean value filtering method in these studies. The scene setup in-
cludes Laplace, Poisson, and screened Poisson equations, and both
smooth surfaces and surfaces with sharp corners. In all scenes, we
use 𝜖 = 0.001 and 𝑁𝑉 = 32 except for Laplace equations, for which
we use 𝑁𝑉 = 0. While the method shows the expected convergence
rate of O(1/√𝑁𝑃 ) in most examples, we observed a relatively large
bias with problems having more complex source term functions,
indicating the need for future work to investigate estimating 𝑔(x)
from Eq. 6 for such problems.

Fig. 5 compares the convergence of our method for problems with
different local feature sizes. We observe that larger local feature size
corresponds to faster convergence with lower bias.

Mean value filtering. We run the mean value filtering algorithm
on a Laplace equation on a triangulated curved disk surface in Fig. 6.
In this setup, we observe that applying the filter multiple times
with a filter constructed with a sufficiently high sample count can
significantly reduce the error, even when the initial estimate is
computed with a small number of samples. As expected, the filter is
more effective when constructed with more samples, but the error
decreases slower than the rate O(1/√𝑁𝑃 ), where 𝑁𝑃 is the number
of samples used to construct the filter. As no recursive estimation is
required with the mean value filtering, it significantly improves the
efficiency of PWoS.

5.2 Applications
5.2.1 Diffusion curves. Diffusion curves [Orzan et al. 2008] suc-
cinctly represent an image as a collection of curves with associated
colors. The final image, exhibiting smooth color gradients, is recov-
ered by solving a Laplace equation with the curves dictating bound-
ary conditions. In our application, we solve the surface Laplace
equation using PWoS. With our approach, the surface need not
have a boundary curve conforming to the discretized mesh, which
contrasts with the common approach [De Goes et al. 2022]. Fig. 7
shows the reconstruction of color at each point on the discretized

Fig. 7. Surface diffusion curves solved on various surface representations.
The surface on the left is represented as a combination of triangles, polylines,
and oriented points; the surface on the right is represented as a quadri-
lateral mesh. The scene on the left, featuring surface geometry of mixed
codimension, was adapted from the work of King et al. [2023].

surface, represented as a quadrilateral mesh and a combination of
triangles, polylines, and point clouds. Our method naturally sup-
ports two-sided boundaries, with different colors specified on each
side of a curve, and surface geometries with mixed-codimension.
Additionally, the pointwise nature of PWoS allows it to be applied
in a view-dependent manner. For example, given a camera con-
figuration, for antialiasing, we sample points within each pixel to
generate rays. We then generate PWoS samples at the ray-surface in-
tersection points. No computational resources are wasted on surface
points that are invisible to the camera (Fig. 1), and we can obtain
clean results without relying on a fine discretization of the surface.
Boundary integral-based approaches [Bang et al. 2023; Sun et al.
2012] would similarly allow domain discretization-free evaluation
of diffusion curves, but they first require a global linear system
solve. Moreover, such methods are not applicable to general curved
surfaces, and would need to map the results in the 2D domain to
the surface via UV coordinates, for example.

5.2.2 Geodesic distance. Crane et al. [2013] proposed the heat
method, which solves two standard surface PDEs in series to com-
pute the geodesic distance from the boundary C. The steps are
summarized as

(1) ΔS𝑢S − (1/𝑡)𝑢S = 0 where 𝑢S = 1 on C,
(2) X = −(∇S𝑢S)/∥∇S𝑢S ∥2, and
(3) ΔS𝜙S = ∇S · X where 𝜙S = 0 on C,

where 𝑡 is a small positive constant and 𝜙 is the geodesic distance.
Step 2 uses the gradient of the solution to the screened Poisson
equation found in Step 1. With a discretization-based method, a
discrete gradient operator is used to estimate this gradient; in our
method, we directly evaluate the gradient of 𝑢 during Step 1 using
the method in Section 3.3.2, without needing 𝑢 itself. We evaluate

Triangle Mesh
(Ours)

Point Cloud
(Ours)

Grid-Based CPM
[King et al. 2023]

Exact
[Sharp et al. 2019]

Fig. 8. Geodesic distance computation with the heat method. For each of the
two scenes, we compare our algorithm on a polygonal mesh representation
(leftmost) and oriented point cloud representation (middle-left) against a
grid-based CPM counterpart [King et al. 2023] (middle-right) and the exact
polyhedral distance computed with Geometry Central [Sharp et al. 2019]
(rightmost). For the sphere surface (top), we compute the distance from
the circle boundary curve in the center, and for the car surface (bottom),
we compute the distance from the surface boundary edges. Note that the
rendering of the point clouds assigns a UV coordinate per point, resulting
in larger visual differences.
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the gradient at mesh vertices and normalize it to get X at mesh
vertices. In Step 3, again, we do not rely on a discrete divergence
operator to solve the Poisson equation, but instead use the method
described in Section 3.3.2. When our Poisson solver requires the
evaluation of X at a point, we interpolate X from the mesh vertices
and (re)normalize it. We can similarly compute the geodesic distance
on a surface represented as a point cloud. Fig. 8 compares our PWoS-
based heat method on surfaces represented as polygonal meshes
or oriented point clouds against the heat method with grid-based
CPM [King et al. 2023] and the exact geodesic distance computed
with Geometry Central [Sharp et al. 2019]. Our results are consistent
with the reference implementation, albeit with minor deviations.

5.2.3 Surface wave animation. Using our screened Poisson equation
solver, we can solve some classes of time-dependent problems. We
discretize the wave equation in time with implicit Euler to get a
screened Poisson equation and solve it with time stepping (Fig. 9). At
each time step, we store the solution at the vertices of the mesh and
query the solution from previous frames by interpolating the values.
In contrast to grid-based CPM [Auer et al. 2012], our method directly
deals with surface geometry without defining an embedding grid.

5.3 Performance
The performance of our method depends on several factors; we
report timings for two representative examples. We measured these
timings using a workstation with two Intel(R) Xeon(R) Silver 4316
CPUs, each with 20 CPU cores. For the scene in Fig. 1 bottom left,
the image resolution is 640 by 480 and the number of samples per
pixel was 1024. The precomputation step, including medial axis
computation, took less than 1 minute, and the rest of the main parts
of PWoS took 2 hours and 11 minutes. We did not apply mean value
filtering. For the scene in Fig. 7 left, we have 28,119 evaluation
points. The medial axis point cloud extraction took 2.4 seconds, the
initial solution estimate with 1 sample took 1.3 seconds, and the
application of 10 mean value filtering steps with a filter constructed
with 128 samples took 13 seconds. Optimizing the implementation
with GPU acceleration may further improve performance.

6 CONCLUSION AND DISCUSSION
We have developed a Monte Carlo method for surface PDEs by
augmenting the formulation of the walk on spheres method with a
closest point projection step. Our algorithm is justified through its
connection to the theory of closest point extensions drawn from the
CPM literature. To accelerate its convergence, we have developed a

Frame 7 Frame 19 Frame 31 Frame 43 Frame 55 Frame 200

Fig. 9. Surface wave animation. We solve the wave equation on the surface
and visualize the solution as a displacement applied on the surface in the
normal directions. Combined with a time-stepping approach, our method
can be applied to a few time-dependent problems. We set the solution to
one point on the mesh as the boundary condition for the first 49 frames,
and remove the boundary from the 50th frame. The waves damp out as the
simulation continues, as expected.

practical mean value filtering method that utilizes a discrete basis
defined over the surface. We have further analyzed the method’s
convergence on representative analytical tests and demonstrated
its application to graphics problems.
PWoS currently supports only Dirichlet boundary conditions;

efficient Neumann or Robin boundary handling similar to the walk
on starsmethod for volumetric PDEs [Miller and Sawhney et al. 2024;
Sawhney and Miller et al. 2023] would require the availability of
a few more queries, such as a ray intersection query against the
(extended) boundaries.

While we used a local feature estimation algorithm to allow walks
with larger step sizes, the local feature size estimation itself imposes
additional smoothness assumptions on the surface. To respect small-
scale local features, the walk can require many iterations to reach a
Dirichlet boundary. This effect is partly due to our algorithm (like
WoS) being based on an integral equation that holds only locally
inside a ball. Revisiting this choice using an integral equation based
on a global relationship, such as the one underpinning the walk
on boundary method [Sugimoto et al. 2023], could lead to a more
efficient alternative for surface PDEs.

Lastly, our method relied on the assumption that the closest point
extension compensation term (i.e., 𝑔(x) in Eq. 6) in the embedding
PDE is negligible. We empirically showed that the algorithm de-
signed with this assumption works well when the source term has
a relatively simple expression, but we do not yet have a complete
understanding of when this assumption is strictly valid. However,
since 𝑔(x) tends to zero continuously as x approaches the surface,
the influence of ignoring this term is expected to decrease as we
shrink the embedding space (i.e., shrink the sphere size). One can
always take a smaller sphere size, albeit at a higher computational
cost, as we show in Fig. 10. Extending our method to consider the ef-
fect of the compensation term would further improve the reliability
and broaden the applicability of our method.
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Fig. 10. Using bounded sphere size. For the Poisson and screened Poisson
problems (e), (g), and (h) in Fig. 4, we compare the Default option of not
constraining the sphere size (apart from the limit imposed by the local
feature size estimate) against specified limits on the maximum sphere size
as indicated in the legend. The vertical axis shows the root mean squared
error, and the horizontal axis shows the time in seconds measured on a
MacBook Pro with an M1 Pro chip. For (e), we had 1024 evaluation points,
and for (g) and (h), we used 100 sample evaluation points. While limiting the
sphere size may reduce the bias, as we can observe from the intersections
of the curves for the default option and the curves for the sphere-size-
constrained option, the computation may take longer, and it is difficult to
get a practical advantage.
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