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Figure 1: We propose the Impulse Particle-In-Cell (IPIC) method, a novel extension of the Affine Particle-In-Cell (APIC) method. Our method
can be used for both liquid and smoke simulations to better preserve circulation and vortical details.

Abstract
An ongoing challenge in fluid animation is the faithful preservation of vortical details, which impacts the visual depiction of flows.
We propose the Impulse Particle-In-Cell (IPIC) method, a novel extension of the popular Affine Particle-In-Cell (APIC) method
that makes use of the impulse gauge formulation of the fluid equations. Our approach performs a coupled advection-stretching
during particle-based advection to better preserve circulation and vortical details. The associated algorithmic changes are
simple and straightforward to implement, and our results demonstrate that the proposed method is able to achieve more energetic
and visually appealing smoke and liquid flows than APIC.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

The chaotic, complex, and intricate behaviors of fluids can only
properly manifest in virtual settings if the equations of motion are

discretized and solved in a physically faithful manner. In the context
of efficient time-splitting schemes, a significant challenge is to si-
multaneously satisfy conservation of momentum (force balance dur-
ing advection) and conservation of mass (incompressibility). Early
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(a) MC (b) MC+R (c) CF-BFECC

(d) FLIP (e) APIC (f) IPIC (Ours)

(g) IPIC w/o Hessian (h) IPIC (Ours)

Figure 2: 2D Taylor Vortices simulations in resolution 256×256.
MC (a), FLIP (d) and APIC (e) are simulated with ∆t = 0.0125 in
the first order integration scheme. MC+R (b), CF-BFECC (c) and
our method (f) use ∆t = 0.025 with a second order time integration
scheme. We show results at t = 6. Ours, CF-BFECC and MC+R
preserve the vortices similarly well, while MC, FLIP and APIC
dissipate more. In (g) and (h), we show the effect of removing the
Hessian term from our method at t = 2. The energy and vorticity are
similarly preserved, but removing the Hessian term results in more
noise.

methods typically prioritized stability and conservation of mass over
conservation of momentum, leading to notable energy dissipation
[Sta99,FSJ01a]. In response, several techniques have been proposed
over the years, ranging from flow enhancements that compensate
missing information, such as vorticity confinement [SRF05,ZBG15]
or synthetic turbulence [KTJG08,PTG12], to more complex schemes
relying on unsplit formulations of Navier-Stokes [MCP∗09] or
higher order integrators [DL03, SFK∗08, ZNT18].

One interesting class of recent approaches incorporates structure-
preserving integrators [ETK∗07, NWRC22] to better resolve the
conservation of momentum. Such approaches augment the advec-
tion process by accounting for how the underlying space is itself
deformed by the flow, but they have so far been limited to simulating
only smoke (and not liquids) in purely Eulerian (i.e., grid-based)
settings. In this paper we propose and evaluate a simple modifica-
tion to such structure-preserving integrators to handle simulations of
either smoke or liquid by integrating these ideas into popular hybrid
particle/grid solvers, such as APIC [JSS∗15].

Fundamentally, our proposed technique relies on constructing
the Jacobian of the forward flow map for all particles that represent
the fluid. The Jacobian of the Lagrangian forward flow map is then
inverted on a per-particle basis and used to correct the particles’

velocities. It thus agrees with the backwards flow map correction
used in the semi-Lagrangian context by the Covector Fluids method
of Nabizadeh et al. [NWRC22]. Our method is straightforward
to implement and can be readily integrated into existing solvers,
adding only a small computational overhead. We further present
a practical technique to significantly improve on the stability of
Covector Fluids, by detecting when the correction is likely to be
inaccurate. The presented results demonstrate that the flows obtained
by our technique are more energetic, better preserve vorticity, and
produce more visually compelling details. Our contributions can be
summarized as

• The introduction of a novel coupled advection-stretching particle-
based method that makes use of the impulse gauge variable to
preserve circulation and vortical details, with a simple and intu-
itive derivation.

• A modified APIC scheme that admits a per-particle velocity cor-
rection with a Hessian update to preserve the accuracy of the
particle-to-grid transfer.

• The observation that instabilities in velocity-stretching happen be-
cause of errors in the construction of the Jacobian of the flow map.
Thus, we propose a novel Jacobian-Aware blending scheme that
significantly improves the stability of impulse-based methods.

• We demonstrate that our method can be applied in existing hybrid
methods for liquid simulation with minor algorithmic changes in
order to enhance vortices and rotational motion.

2. Related Work

Early approaches to fluid animation suffered from severe numerical
dissipation that detrimentally affects the flow dynamics [Sta99],
and several methods have been proposed to tackle this issue.
Energy-preserving integrators [MCP∗09] can simulate flows with
close to zero numerical viscosity, but they require a costly non-
linear solve at each time-step. Vortex methods are also known for
their excellent conservation properties. They can be discretized
in a Lagrangian fashion, by points [PK05, SRF05, Ang17], seg-
ments [TRLX22, XTZ∗21], filaments [WP10, PCK∗19] or sheets
[PTG12, BKB12]; or in a hybrid format that combines grid-
based velocity/streamfunction data with Lagrangian vortex ele-
ments [Leo80, CC91, KL95, ZBG15, CCB∗08, FDB22]. In gen-
eral, vortex methods suffer from complicated boundary treatments
and additional costs or instabilities due to vortex stretching terms.
Among other relevant works that aim to enrich the liveliness of
simulations are vorticity confinement schemes and higher order
interpolation [FSJ01b, SRF05], method of characteristic mapping
[TP11,SIBA17,QZG∗19], turbulence synthesis [KTJG08,PTSG09],
and Lattice Boltzmann approaches [LMLD22].

Especially relevant to our work is the recent approach of
Nabizadeh et al. [NWRC22], in which the authors propose ad-
vecting covectors instead of the usual velocity field. A discrete
covector field is intrinsically connected with the underlying dis-
cretization mesh. This assumption requires updating transported
covector quantities to account for the deformation of the space
during transport. This approach has connections to impulse meth-
ods [Ose89, Cor95, SC96, FLX∗22], velocity advection schemes
[But93], and structure-preserving Lie integrators [ETK∗07,McK07].
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(a) FLIP (b) APIC (c) IPIC (α=0.99, β=0.998) (d) IPIC (α=0.8, β=0.9) (e) IPIC w/o Hessian

Figure 3: 2D Dam Break simulations at the resolution of 64× 64 grid cells. All examples are initialized with 8 particles per cell. A
second-order time integration scheme is used with ∆t = 0.25. From top to bottom, we show results at time steps t = 25, t = 220 and t = 389.5.
Our method (c) shows more vortical structures than FLIP (a) and APIC (b). Employing lower limiter values for α and β (d) allow less accurate
Jacobian of the flow maps, but is able to provide a more vortical result at t = 220. IPIC without the Hessian correction (e) becomes less
energetic, but is still more vortical than FLIP and APIC.

Crucial to the work of Nabizadeh et al. [NWRC22] is the com-
bination of more accurate semi-Lagrangian advection schemes
(e.g., BFECC [DL03] or MacCormack [SFK∗08]) with two-step
time-splitting methods [ZNT18, NZT19]. Their approach, however,
is limited to purely Eulerian grid-based settings, and does not nat-
urally extend to modelling liquids. Recent work has explored the
improvement of the impulse method’s accuracy in a grid-based
setting by using neural fields [DYZ∗23].

Hybrid Lagrangian-Eulerian Fluids combine the capacity of
particle-based representations to accurately model transport with the
ability of grids to ensure discrete incompressibility [ZB05]. Hybrid
methods are thus effective in capturing sub-grid details and have
been widely adopted for liquid simulations. Such methods were used
to model subgrid details [ABO16, CMSA20, TBBC∗22], adopted
in collocated variable schemes [GHMR∗20] and adaptive grids
[NNC∗20], combined with SPH for small-scale effects [LTKF08,
CIPT14], improved for efficiency [ATW13, FAW∗16, SWT∗18], en-
hanced with better particle distribution [AT11, UBH14, KLTB21,
QLDJ22], and extended for two-phase flows [BB12,ATW15] and
realistic whitewater simulation [WFS22].

Prominent among hybrid approaches is the popular Fluid Implicit
Particle method (FLIP) [BR86, ZB05], which increments, rather
than overwrites, the particles’ velocities by transferring only the
interpolated change in the grid velocities before and after pressure
projection. FLIP, however, introduces noise due to the discrepancy
in the information carried by the particles and the discretization grid.
Jiang et al. [JSS∗15,JST17] therefore proposed the Affine Particle in
Cell method (APIC), which uses concepts of the Generalized Inter-
polation Material Point method (GIMP) [BK04, PCW07] to create
transfers between particles and grid that preserve angular momen-
tum. Due to its versatility and ability to maintain vortical structures,

APIC has become a fundamental part of production pipelines for
liquid simulations [FSN17]. APIC was further extended to model
higher order quantity tracking [FGG∗17], combined with a FLIP
scheme [FGW∗21], and extended in space with a Taylor expan-
sion [NMM23]. For a more thorough analysis of the convergence
and properties of the APIC method applied specifically to fluid
scenarios, please refer to [DSS20].

3. Background

We begin by conducting a brief review of impulse-based meth-
ods and hybrid particle/grid fluid solvers. The motion of volume-
preserving inviscid fluids is governed by the incompressible Euler
equations, given by

∂u(x)
∂t

+u(x) ·∇u(x) =−1
ρ
∇p(x)+ f(x), (1)

∇·u(x) = 0, (2)

where u(x), p(x) and f(x) denote the velocity, pressure and external
force fields, respectively, while x represents the spatial coordinates
of the domain and ρ the constant fluid density. Viscosity terms are
often omitted due to the inherent dissipation of numerical solvers
[ETK∗07, MCP∗09]. These equations can be discretized through a
time-splitting method as

∂u(x)
∂t

=−u(x) ·∇u(x)+ f(x), (3)

∂u(x)
∂t

=−1
ρ
∇p(x), subject to∇·u(x) = 0. (4)
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(a) APIC

(b) IPIC (Ours)

Figure 4: 3D Liquid Street simulations with a resolution 150×75×45 grid cells. A liquid wave generator causes waves that collide with
obstacles. Both methods are simulated with ∆t = 0.25 using a second-order integration scheme. From left to right, we show results at t = 75.25,
t = 86.25 and t = 100.75 respectively. Our method (b) is able to produce more detailed wakes at the downstream of the obstacles when
compared to APIC (a).

3.1. Impulse-based methods

The impulse formulation [Cor95,SC96,FLX∗22] of the equations of
motion allows for a relaxation of the global incompressibility con-
straint during advection by employing an additional gauge variable.
Given that the flow u is incompressible (i.e.,∇·u = 0), the impulse
gauge variable m is defined as

m = u+∇φ, (5)

where∇φ is the gradient of an arbitrary scalar field. This term can be
reinterpreted as the gradient of pressure that will modify m to satisfy
incompressibility. The resulting equations for mass conservation
become

∇2
φ(x) =∇·m x ∈Ω,

∂φ(x)
∂n

= 0 x ∈ ∂Ωb

φ(x) = 0 x ∈ ∂Ω f ,

, (6)

where Ω represents the fluid domain, and ∂Ωb and ∂Ω f are its fluid-
solid and fluid-air boundaries, respectively. Due to the change of
variables induced by the new gauge variable, the inviscid equation
for advection becomes (see Appendix for the derivation):

∂m
∂t

+u ·∇m+(∇u)⊤m = 0. (7)

The major difference between the impulse formulation and the orig-
inal advection in Equation (3) is the extra (∇u)⊤m term, which
accounts for the stretching of the advected velocity due to deforma-
tion of the space. Through operator splitting, this equation can be
broken down into passive transport and velocity stretching as

∂m
∂t

+u ·∇m = 0,
∂m
∂t

+(∇u)⊤m = 0. (8)

By first solving the advection term u ·∇m to obtain an intermediate
m∗, the velocity stretching term can then be discretized by backward
Euler integration as m∗∗ = m∗−∆t(∇u)⊤m∗∗. Rearranging the
terms of this equation shows the relationship between the velocity
gradient and the advected stretched transport as

m∗∗ = (I+∆t∇u)−⊤ m∗. (9)

We will demonstrate how the expression I+∆t∇u is connected
with the definition of the flow map in the next section.

3.2. The Flow Map

A flow map represents the correspondences created by the passively
transported grid variables that track fluid quantities, yielding a con-
nection between an undeformed fluid domain and its deformed
counterpart. Flow maps have been employed as part of a circulation-
preserving vorticity-streamfunction solver [ETK∗07], incorporated
within a higher-order semi-Lagrangian scheme [NWRC22], inte-
grated into Material Point Methods [SSC∗13, JST∗16], and used for
visualizing flows through Lagrangian coherent structures, such as
Finite-Time Lyapunov Exponents (FTLEs) [Hal01,Hal02]. The flow
map Φt(x) that maps each fluid initial position x0 in the domain to
its location at time t is defined by the integration of the flow velocity
field as

Φt(x0) = x0 +
∫ t

0
u(x(τ),τ) dτ. (10)

The Jacobian of the flow map,∇Φt(x), represents the deforma-
tion tensor of the fluid domain, and its derivative over time is directly
connected with the velocity gradient [Cor95] as

∂

∂t
∇Φt(xt) =∇u(x)∇Φt(xt). (11)
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Covector Fluids [NWRC22] discretizes flow maps by integrating
grid locations backwards in time, sampling extra points around the
advected vector component (Figure 5, (b)). Instead, we adopt an
approach common in FTLE visualizations, computing forward flow
maps by sampling extra points around a given particle (Figure 5,
(c)). Adopting a forward Euler time integration scheme, one can
discretize Equation (11) as

∇Φn+1(xn+1) =∇Φn(xn)+∆t∇u(xn)∇Φn(xn), (12)

with n and ∆t being the time step index and the time step size,
respectively. Since the Jacobian of the flow map relative to the
current time step is the identity∇Φn(xn) = I, we have

∇Φn+1(xn+1) = I+∆t∇u(xn). (13)

We will drop the subscript n for the rest of the paper, assuming that
the flow map is always computed with respect to the previous time
step. This derivation relates the flow map from Equation (13) to the
impulse stretching in Equation (9) as

m∗∗ = (∇Φ)−⊤ m∗. (14)

These definitions set up a mathematical approach that simultane-
ously simplifies the formalism outlined by previous exterior calculus
approaches, while clarifying how flow maps interact with classical
impulse methods.

(a) [ETK∗07] (b) [NWRC22] (c) Ours

Figure 5: Differences in how flow maps are computed by distinct
methods. The black color represents the undeformed state, while the
blue color represents the deformed state. (a) Elcott et al. [ETK∗07]
use a streamfunction-vorticity formulation to backtrace circulation
(black empty circle) sampled in the deformed space (blue dotted
lines). (b) Nabizadeh et al. [NWRC22] employ a backwards flow
map discretization: given a staggered grid location (black circle),
the advected velocity vector is multiplied by a single row of the
transposed Jacobian of the inverse flow map, which is geometrically
equivalent to the approach of Elcott et al. (c) Our approach samples
four additional points (c1 to c4) for each particle, which are then
advected forward (ĉ1 to ĉ4). The full forward flow map Jacobian is
computed using a finite-difference approach as in FTLE methods.

3.3. Hybrid discretizations

Hybrid methods discretize the equations of motion with two distinct
representations: Lagrangian particles are used to solve the advec-
tion terms (Equation (3)) and to track the evolution of the surface,
while a background Eulerian grid is used to enforce incompress-
ibility (Equation (4)). We represent discrete grid-based positions
and velocities as x⊞ and u⊞ respectively, while their particle-based
counterparts are represented by x◦ and u◦. For the simplicity in

notation, in the following explanation we assume that all particles
carry unit mass and that quantity transfers are normalized by the
transferred mass at the computed position to conserve momentum.

The advection in a Lagrangian setting updates particle positions
with a forward flow map computed from the grid velocities, while
the attributes that these particles carry are kept unchanged. We
denote the discrete particle-based flow map as Φ

◦ : RN×3→ RN×3,
with N being the number of particles. The advected velocities that
satisfy momentum conservation on the grid are

ũ⊞←Ip2g(u
◦,Φ◦(x◦),x⊞), (15)

where Ip2g is a particle-to-grid transfer function. The standard
Particle-in-Cell (PIC) method defines the Ip2g routine as

IPIC
p2g(u

◦,x◦,x⊞) = ∑
p

w(x⊞,x◦p) u◦
p, (16)

with w(x⊞,x◦p) representing the weights obtained from a pre-
specified interpolation function. The summation in Equation (16)
is conducted over the particles inside a small vicinity of each grid
point. Since PIC suffers from severe energy dissipation, the Affine
Particle-in-Cell (APIC) method modifies the particle-to-grid trans-
fer to better preserve the velocity field. The corresponding Ip2g
operation is

IAPIC
p2g (u◦,x◦,x⊞,A◦) = ∑

p
w(x⊞,x◦p)

(
u◦

p +A◦
p(x

⊞−x◦p)
)
.

(17)
where u◦p +A◦

p(x⊞−x◦p) is the per-particle affine velocity contribu-
tion relative to a grid variable at x⊞. After transferring the particle
velocities, mass conservation (Equation (4)) is solved on the grid.
The resulting divergence-free velocity field is used to update the
per-particle linear velocity and affine transformation as

u◦ = ∑
i

w(x⊞i ,x◦) u⊞
i , A◦ = ∑

i
∇w(x⊞i ,x◦) u⊞

i . (18)

The above equation assumes that the interpolation kernel w(x,y) is
trilinear [PCW07, NMM23]. This assumption simplifies the compu-
tation of the affine velocity, which effectively models the per-particle
matrix A◦ as the interpolation of the velocity gradient at the given
location,∇u(x).

4. An Impulse-based Hybrid Advection Scheme

Having outlined how the flow map relates to the impulse equations,
and how hybrid discretizations can efficiently model advection, we
can now propose a simple modification to hybrid schemes that
incorporates structure-preserving deformations when advecting the
impulse gauge variable. Accordingly, the particles are now defined
to carry impulse (and its affine component), rather than velocity. The
particle positions are first passively advected by the incompressible
flow velocities, as usual. Then, per Equation (14), the per-particle
impulse gauge variables are stretched by the inverse transposed
Jacobian of the flow map, denoted J ◦ = (∇Φ

◦)−⊤, using

m◦ = J ◦u◦. (19)

We re-initialize the impulse variable at each step to be the divergence-
free velocity u◦, and denote the impulse gauge variable value after
stretching as m◦.
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The next question is how the per-particle affine matrix A◦ for
the impulse should be stretched. When tri-linear kernels are used,
the APIC transfer can be interpreted as a first-order Taylor ap-
proximation of a function centered around a Lagrangian coordi-
nate [BK04, PCW07, NMM23] as

u(x⊞) = u◦+∇u◦
∆x+O

(
(∆x)2

)
, (20)

where ∆x = (x⊞−x◦) and ∇u◦ = A◦ (Equation (18)). Applying
the Jacobian of the flow map to the APIC transfer yields

m(x⊞)≈ J ◦u◦+∇
(
J ◦u◦)

∆x. (21)

Assuming that the Jacobian of the flow map is locally constant
around the transported particles, Equation (21) simplifies to

m(x⊞) = J ◦u◦+J ◦∇u◦
∆x. (22)

This means one can simply transform the affine matrix with the in-
verse transpose of the forward flow map Jacobian to get the stretched
affine matrix:

A◦
m = J ◦A◦. (23)

This simple modification allows us to incorporate the per-particle
stretched impulse m◦ and matrix A◦

m as inputs of the APIC transfer
(Equation (17)). We emphasize that the forward flow map is nec-
essary for particle-based advection, since the particle positions are
evolved forward in time; previous approaches [ETK∗07, NWRC22]
employ semi-Lagrangian schemes instead, which integrate velocities
by going backwards in time.

Our method requires the computation of
the Jacobian of the per-particle flow map Φ

◦

on an unstructured set of points. This Jaco-
bian could potentially be computed based on
the previous positions of neighbouring par-
ticles. Such an approach, however, would
require querying closest particle informa-
tion, which reduces the performance of the
method. Instead, we choose to compute fi-
nite difference approximations from extra
temporary sampled particles around the lo-
cation of the Jacobian computation. The in-
set image shows the particle arrangement in
3D: two particles are created and displaced
in each Cartesian direction. The inverse transpose of the forward
flow map Jacobian J ◦ is computed in 3D by

J ◦
3D ≈

1
δx

(ĉ2− ĉ1)
⊤

(ĉ4− ĉ3)
⊤

(ĉ6− ĉ5)
⊤


−1

, (24)

where δx is the separation of the extra temporary sampled parti-
cles and ĉ is the transported positions of the extra particles. In our
implementations, we set δx to be the same as the grid spacing.

4.1. Non-constant Jacobian Flow Map

Modifying per-particle quantities with Equation (23) only works if
the Jacobian of the flow map is locally constant around a particle. In

(a) CF-BFECC

(b) APIC

(c) IPIC (Ours)

Figure 6: 2D Smoke Plume simulations with resolution 384×512
grid cells. We employ ∆t = 0.25 for CF-BFECC (a) and IPIC (c),
while APIC (b) uses ∆t = 0.125 (first-order integration). From left
to right, we show results at t = 50.25, t = 63 and t = 87 respectively.
Our method can express more detailed vortices than APIC while
maintaining stability. CF-BFECC explodes early and fails to finish:
the frame shown in its third column is at t = 66.5 and is the last
frame before the simulation becomes unstable.

the non-constant case, Equation (21) expands as

m(x⊞) = J ◦u◦+J ◦∇u◦
∆x+

(
∇J ◦ ·u◦)

∆x. (25)

The extra term comes from the gradient of the non-constant Jacobian:
∇J ◦ is the Hessian of the inverse transposed flow map, a third order
tensor that is single contracted with the vector u◦. The last two
terms of Equation (25) can be combined to derive a more convenient
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(a) SL (b) MC (c) MC+R (d) CF+BFECC (e) APIC (f) IPIC (Ours)

Figure 7: 3D Smoke Plume simulations at a resolution of 128×256×128 cells. SL (a), MC(b), APIC (e) use ∆t = 0.125 while MC+R (c),
CF+BFECC (d) and ours (f) are simulated with ∆t = 0.25 using a second-order integration scheme. We show results for all methods at t = 100
except for CF+BFECC, which explodes after t = 68. Our method exhibits more vortical details than the other methods while also maintaining
better stability than CF+BFECC.

expression to update the per-particle affine matrix as

Ã◦
m = J ◦∇u◦+∇J ◦ : u◦ = J ◦(A◦−H◦),

with H◦ =


(

mx∇ ∂Φx
∂x +my∇ ∂Φy

∂x +mz∇ ∂Φz
∂x

)⊤(
mx∇ ∂Φx

∂y +my∇ ∂Φy
∂y +mz∇ ∂Φz

∂y

)⊤(
mx∇ ∂Φx

∂z +my∇ ∂Φy
∂z +mz∇ ∂Φz

∂z

)⊤
 ,

(26)

where m◦ = (mx,my,mz)
⊤ and∇ ∂Φe

∂ f ,e, f ∈ (x,y,z) represents the
second order derivatives of the flow map.

The per-particle matrix H◦ requires the evaluation of second
derivatives of the flow map, and extra points need to be sampled to
in order to compute these derivatives. In the supplementary material
we include detailed diagrams that illustrate how we sample particles
to approximate the Hessian, along with the derivations needed to
obtain Equation (26). In summary, when the Jacobian of the flow
map is not constant around the particle positions, the APIC transfer
(Equation (17)) employs the stretched velocity m◦ and modified
affine matrix Ã◦

m. A full outline of a single time step of the IPIC
advection-stretching is shown in Algorithm 1. For time integration,
we employ a second-order multi-stepping algorithm [NWRC22],
outlined in Algorithm 2.

4.2. Enforcing Stability by a Jacobian-Aware Blending

The original covector approach [NWRC22] can simulate fluids with
intricate vortical details, but suffers from significant instability issues
that severely limit the time step size of the algorithm. We propose a
novel limiter on the Jacobian of the flow map that improves stability
of impulse-based formulations. Our key insight is that velocity
stretching is unstable when flow maps are not accurately constructed.
Errors in the construction of the flow map are exacerbated in regions
of higher turbulence or close to boundaries, where inaccuracies due
to numerical integration of particle positions and the negative effects
of not enforcing strictly divergence-free interpolants [CPAB22] are
more severe.

The flow map error can be quantified by measuring the deter-
minant of its Jacobian: for a strictly divergence-free velocity field

coupled with an accurate position integrator, the determinant of the
flow map should be equal to 1, indicating that the volume is per-
fectly conserved. To limit the amount of incorrect stretching induced
by inaccurate flow maps, we apply a smoothed double-sided step
function to modulate the strength of the stretching of Lagrangian
quantities as

m◦ = ξ(q◦)J ◦u◦+
(
1−ξ(q◦)

)
u◦,

Ã◦
m = ξ(q◦)Ã◦

m +
(
1−ξ(q◦)

)
A◦,

(27)

with

q◦ =
1−||J ◦|−1|−α

β−α
, ξ(q◦) =


0, q≤ 0
3q2−2q3, 0≤ q≤ 1
1, 1≤ q

(28)
where α and β are parameters satisfying 0≤ α < β≤ 1 that control
the blending limits. In Section 5, we demonstrate the impact of the
Jacobian-aware blending. When ξ(q◦) is far from one, the method
is more strict in enforcing flow map correctness, and the behavior
of the solver more closely mimics a standard APIC solver; with
less strict enforcement, the method becomes less stable while also
producing and maintaining more intricate, vortical details.

Moreover, when simulating liquids, the evaluation of the Jacobian
of the flow map at the interface between air and fluid cells can
become incorrect, since velocities from the fluid are extrapolated to
the air. Since this creates simulations that have noticeable artifacts,
we revert back to FLIP at the interface of fluid and air cells.

5. Results

We test the effectiveness of our method in several different sce-
narios, evaluating its performance and quality against established
state-of-the-art methods. One advantage of our proposed hybrid
approach is that it can be seamlessly integrated into liquid solvers,
extending previous approaches [NWRC22] that were limited to
smoke settings. We also reimplemented several methods in our
pipeline to provide fair comparisons. The first-order (in time)
semi-Lagrangian [Sta99] and MacCormack [SRF05], second-order
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(a) MC+R

(b) CF+BFECC

(c) APIC

(d) IPIC (Ours)

Figure 8: Vortex Leapfrogging simulations at a resolution of 256×128×128 cells. MC+R (a), CF+BFECC (b) and our method (d) use
∆t = 0.5, while APIC (c) employs ∆t = 0.25. From left to right, we show results at t = 121, t = 258, t = 500.5 and t = 767.5, respectively.
IPIC produces more detailed vortical structures when compared with other methods.

Table 1: Summary of methods used in this paper.

Method Acronym Reference
Semi-Lagrangian SL [Sta99]
MacCormack MC [SFK∗08]
Back-and-Forth Error
Compensation and Correction

BFECC [SFK∗08]

Advection-Reflection R [NZT19]
Covector Fluids CF [NWRC22]
Fluid-Implicit-Particle FLIP [ZB05]
Affine Particle-In-Cell APIC [JSS∗15]
Impulse Particle-In-Cell IPIC Our method

advection-reflection [NZT19], and second-order (in time) Covector
Fluids [NWRC22] are the baseline implementations for simulating
smoke examples; PIC, FLIP [ZB05] and APIC [JSS∗15] provide
baselines for liquid scenes. Table 1 shows all the implemented meth-
ods, and Table 2 lists experiment parameters and performance statis-

tics. We refer the reader to the accompanying video for animated
visualizations of our results.

The Impulse Particle-In-Cell method is implemented in Py-
torch [PGM∗19], extending a previous differentiable solver pipeline
[TCCS21]. All simulations were performed on a system with an
NVIDIA RTX3090 GPU with 24GB memory and an AMD Ryzen
7 5800X CPU with 64GB memory. Efficiently performing particle-
to-grid operations implies increased memory costs, which can be
prohibitive when evaluating our method on GPUs. We alleviate
this requirement by sequentially computing the particle splatting
operation in chunks, which can make particle-to-grid transfers less
efficient. We use linear interpolation kernels for both grid-to-particle
and particle-to-grid transfers and a third-order Runge-Kutta integra-
tor for advancing positions.

5.1. Validation

2D Taylor Vortices Our 2D solver is validated using a Taylor
vortices setup [McK07] that has been widely used for testing
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Algorithm 1 A single step of the IPIC advection-stretching

Input: flow field u⊞; particle positions x◦; grid positions x⊞;
timestep ∆t; non-constant Jacobian flag H; stability parameters
α and β.

1: u◦, A◦← IAPIC
g2p (x◦,x⊞,u⊞)

2: for each particle do
3: c◦← CREATEJACOBIANPARTICLES(x◦)
4: ifH then
5: h◦← CREATEHESSIANPARTICLES(x◦)
6: h◦← RUNGEKUTTA(h◦; u⊞, ∆t)
7: end if
8: x◦← RUNGEKUTTA(x◦; u⊞, ∆t)
9: c◦← RUNGEKUTTA(c◦; u⊞, ∆t)

10: J ◦← COMPUTEJACOBIAN(c◦) ▷ Equation (24)
11: A◦

m← A◦

12: ifH then
13: H◦← COMPUTEHESSIAN(h◦) ▷ Equation (26)
14: A◦

m← A◦−H◦

15: end if
16: q◦← 1−||J ◦|−1|−α

β−α

17: m◦← ξ(q◦)J ◦u◦+(1−ξ(q◦)) u◦

18: A◦← ξ(q◦)J ◦A◦
m +(1−ξ(q◦)) A◦

19: end for
20: m⊞← IAPIC

p2g (m◦,x◦,x⊞,A◦)

Output: Advected stretched impulse field m⊞

Algorithm 2 Second order time integration scheme

Input: Flow field u⊞
n ; timestep ∆t

1: m̃n+ 1
2
← IPIC(mn;un,

∆t
2 ) ▷ Algorithm 1

2: un+ 1
2
← DIVFREEPROJECTION(m̃n+ 1

2
)

3: m̃n+1← IPIC(mn;un+ 1
2
,∆t) ▷ Algorithm 1

4: un+1← DIVFREEPROJECTION(m̃n+1)

Output: Velocity field u⊞
n+1

energy preservation properties in Computer Graphics. We gen-
erate two initial vortices separated by a distance of 0.81 using
ω(x) = U

a

(
2− r2

a2

)
exp

(
1
2

(
1− r2

a2

))
, with a = 0.3 and U = 1.0.

Vortex core positions are set so that they should theoretically remain
separated through the course of the simulation; dissipative solvers
are not able to preserve this property. Note that methods such as
MacCormack and APIC are run with halved time steps to match
the number of projection steps of second-order in time methods
(Algorithm 2). Figure 2 provides a visualization of the resulting vor-
ticity maps in each of the methods at time t = 6. We observed that
Covector Fluids is very sensitive to MacCormack / BFECC extrema
clamping modes, and minor changes to the clamping procedure can
drastically decrease or increase the energy of the system.

3D Leapfrogging Vortex Rings An alternative evaluation of a
solver’s ability to conserve kinetic energy is to test a vortex leapfrog-

100 200 300 400 500 600

0.6

0.8

1

1.2
·10−2

Time

Energy

MC APIC CF-BFECC

MC+R IPIC

Figure 9: Kinetic energy plot for different methods used in the 3D
Vortex Leapfrogging example (Figure 8). IPIC better conserves the
energy throughout the simulation.

Table 2: Parameters and performance statistics. All runtime statis-
tics are reported in seconds per frame when second order integration
schemes are used. For first order integration schemes, runtime is
reported in seconds per two frames for a fair comparison.

Scene Resolution # Part. Ours
Ours

w/o H
APIC

Taylor Vortices (Fig. 2) 256×256 1.05M 0.77 0.55 0.35

2D Plume (Fig. 6) 384×512 786k 0.71 0.56 0.44

2D Dam Break (Fig.3) 64×64 10k 0.18 0.17 0.15

Leapfrogging (Fig. 8) 256×128×128 16.78M 69.2 29.0 8.6

3D Plume (Fig. 7) 128×256×128 16.78M 67.8 28.6 7.4

3D Dam Break (Fig. 10) 128×100×40 471k 2.1 1.0 0.4

Liquid Sink (Fig. 11) 96×24×96 1.77M 5.3 2.2 0.7

Liquid Street (Fig. 4) 150×75×45 1.2M∼1.8M 7.2 2.9 0.8

ging example. Concentric vortex rings with different radii are ini-
tialized with equal circulations, and the expected behavior is that
one ring will go through the other in alternating fashion. The true
analytical solution for the inviscid case would reproduce this behav-
ior indefinitely; for numerical solvers, we observe the number of
times that each vortex ring goes through another before collapsing
to a single ring. Figure 8 shows leapfrogging results for grid-based
Advection-Reflection MacCormack (MC+R) and Covector Fluids
methods, and for hybrid APIC and IPIC discretizations. APIC was
simulated with a halved time step size, since all other methods are
second-order in time. Thus, the number of pressure projections is
the same across different methods. The sequence shows that IPIC
produces more detailed vortical structures when compared to other
methods, while also producing consistent ring motion. We compare
the kinetic energy profile of different methods in Figure 9.

5.2. Smoke

2D Smoke Plume We initialize a 2D smoke source in a rectangular
domain. For all smoke examples, advection of the smoke concen-
tration ρ(x) is performed on the regular grid with the MacCormack
advection scheme, instead of transporting densities through particles.
We chose this setting so we could provide fair visual comparisons
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against grid-based methods that do not rely on particles for smoke
concentration advection. A standard buoyancy force f(x) = γρ(x) j
is added for all our smoke examples and for this particular 2D case
we set γ = 0.002. Figure 6 shows a comparison between Covec-
tor Fluids, APIC and IPIC: our approach is not only better able to
produce vortical structures, but is also stable.

3D Smoke Plume Figure 7 shows a comparison of a 3D smoke
simulation driven by buoyancy forces (γ = 0.004). This example is
particularly interesting, since it demonstrates that different meth-
ods affect the spreading of turbulence throughout the simulation.
All methods, except Covector Fluids, which blows up at t = 68,
are stable. IPIC creates more turbulent structures that spread more
realistically along with upward driving forces.

5.3. Liquids

2D Dam Break Existing hybrid liquid solvers can be easily ex-
tended with our particle-based algorithm, offering better circulation-
preserving capabilities. In this example, we initialize a column of
water in the left side of the domain. We show in Figure 3 a com-
parison between FLIP, APIC and IPIC: how our method is able to
maintain more energetic vortical structures. Additionally, we com-
pare the effect of the parameters of the Jacobian-aware blending:
less strict (α=0.8, β=0.9) settings allow less accurate Jacobian of the
flow map, making the simulation less stable. But it is able to provide
a more vortical result at t = 220. More strict (α=0.99, β=0.998) pa-
rameters constrain the Jacobian better, and are also able to provide
a much more vortical simulation than FLIP and APIC. Lastly, we
also observe that the simulation is less energetic if we assume the
Jacobian is constant around a particle position.

3D Dam Break and 3D Liquid Street Figure 10 shows a com-
parison between APIC and IPIC for a 3D dam break scenario. As
we revert IPIC back to FLIP at fluid-air interfaces for stability, our
result looks similar to APIC. Inspired by Yang et al. [YXZ∗21], we
create a 3D “liquid street” example that initializes a column of water
that moves up and down at the left of the domain. IPIC is better able
to create turbulent details behind obstacles and at boundary between
liquid-air interfaces when compared to APIC.

3D Sink Lastly, we create a 3D sink example. A square domain is
initialized with water, and on the bottom of the domain we add a
hole that allows the water to flow through. We initialize the water
velocities with a rotational velocity field. When compared to APIC,
IPIC creates more interesting motions at the vortex centerline.

6. Conclusions

We have presented the Impulse Particle-In-Cell method, a novel
hybrid discretization that combines the strength of particle-based
transport with the versatility of grid-based incompressibility. Our
method can model both smoke and liquid phases, and exhibits im-
proved conservation of energy and vortical details compared to
previous methods. Furthermore, we proposed a novel Jacobian-
aware blending that increases the stability of the velocity-stretching
step commonly used in related impulse-based/structure-preserving
approaches.

(a) APIC

(b) IPIC (Ours)

Figure 10: 3D Dam Break simulations at a resolution of 128×
100×40 with ∆t = 0.25. The liquid block is initialized with 8 par-
ticles per cell. From left to right, we show results at t = 27.25 and
t = 91.25. Our method (b) gives similar results to APIC (a). Because
the flow map at interfaces is not correct due to the extrapolation of
velocities, IPIC reverts back to FLIP on those regions.

(a) APIC (b) IPIC (Ours)

Figure 11: 3D Water Sink simulations at a resolution of 96×
24×96. Each cell is initialized with 8 particles. Both methods use
∆t = 0.25 with the second order integration scheme. We show the
results at t = 150. Our method (b) produces richer small structures
on the surface than APIC (a), especially near the central vortex.

The major limitation of IPIC is its reliance on sampling extra
particles to compute the deformation flow map. This can introduce
computational inefficiency and higher memory costs, especially
when assuming that the Jacobian is not constant around particles.
Moreover, flow maps can be inaccurate close to interfaces, and
we rely on reverting back to simpler advection schemes in those
scenarios. For future work, we believe that our method can benefit
from a more thorough treatment of boundary conditions. In addition,
the Jacobian-aware blending can be employed as a limiter for pure
grid-based advection schemes that rely on velocity-stretching.
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