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Abstract
In this paper, we propose and evaluate fast, scalable approaches for solving the linear complementarity problems (LCP) arising
from the fluid pressure equations with separating solid boundary conditions. Specifically, we present a policy iteration method,
a penalty method, and a modified multigrid method, and demonstrate that each is able to properly handle the desired boundary
conditions. Moreover, we compare our proposed methods against existing approaches and show that our solvers are more
efficient and exhibit better scaling behavior; that is, the number of iterations required for convergence is essentially independent
of grid resolution, and thus they are faster at larger grid resolutions. For example, on a 2563 grid our multigrid method was 30
times faster than the prior multigrid method in the literature.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Liquids are ubiquitous in our daily life: the water from the sea, the
coffee in our cups, the blood running through our veins, and more.
Motivated by the demand for realistic visual effects in the film in-
dustry, liquid animation has been explored in the computer graphics
community for many years. The Navier-Stokes equations are com-
monly used to perform the simulations, using a projection method
[Bri08] consisting of of three main steps: advecting the liquid and
its velocities through the flow; applying body forces such as grav-
ity; and performing pressure projection to enforce incompressibil-
ity and boundary conditions. The pressure projection step presents
two challenges considered in this work: computation time and vi-
sual behavior. First, solving the pressure equation often comprises
a significant fraction of the simulation time [DRW15], so it is there-
fore important to develop a fast and scalable numerical approach.
We consider a method to be scalable if the number of iterations is
essentially independent of the mesh resolution. Second, standard
solid boundary conditions do not allow liquid to naturally sepa-
rate from a solid boundary; instead, the liquid unnaturally adheres
to the top and side walls of a domain. To resolve this issue, Batty
et al. [BBB07] proposed a new inequality boundary condition for
the liquid-solid wall that allows separation while disallowing pen-
etration. However, while this corrects the behavior, it transforms
the pressure equation from a standard linear system into a linear
complementarity problem (LCP) which is even more challenging
to solve efficiently. As a result, this improved boundary condition
has seldom been adopted in practice.

In this paper, we propose to develop and evaluate variants of pol-
icy iteration [FL07], a penalty method [dFL04], and full approxi-
mation scheme multigrid (FAS-MG) [HW13] applied to the LCP
fluid problem, because such schemes are known to be convergent
and efficient. While numerical schemes belonging to these families
of methods have been explored for problems arising in computa-
tional finance, to our knowledge we are the first to consider their
use in the context of fluid animation, or computer animation more
broadly. Our results show that our proposed methods are both more
scalable and more efficient compared with existing approaches.

2. Related Work

The PATH solver [FM00], which is a generalization of the classical
Newton method and based on quadratic programming (QP), was
used by Batty et al. [BBB07] to solve the LCP problem. However,
they point out that it is not scalable to large problems. Narain et
al. [NGL10] formulated a pressure equation for granular material
simulation into an LCP. Gerszewski et al. [GB13] solved LCPs for
pressure and density when animating large-scale splashing liquids.
Both Narain et al. [NGL10] and Gerszewski et al. [GB13] used a
QP solver called modified proportioning with reduced gradient pro-
jections (MPRGP) [DS05] to solve LCPs. MPRGP is an active set
method based on preconditioned conjugate gradient (PCG) that in-
terleaves conjugate gradient (CG) steps with expansion and propor-
tioning steps that update the active set. Instead of solving LCPs to
achieve the non-sticking effect for fluids, Inglis et al. [IEGT17] pro-
posed a Primal-Dual method to split the problem into two compo-
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nents and solved them with CG and a classification scheme, respec-
tively. Andersen et al. [ANE17a; Erl13] proposed a non-smooth
Newton approach for the LCP problem in fluid animation in 2D,
which has better convergence than projected Gauss–Seidel (PGS)
type methods [Erl07; CA09; GZO10] and is faster than pivoting
methods [Bar94; AV11], but their method requires solving a lin-
ear system and performing line searches on each Newton iteration.
To solve the linear system, they adopted preconditioned conjugate
gradient (PCG) but they point out that their overall solver may fail
in some cases if the preconditioner is used. This limitation may re-
duce their solver’s potential speed-up. Moreover, PCG itself is not
scalable as the number of iterations is known to double when grid
resolution is doubled along each dimension, i.e., when the width of
each cell is halved. Andersen et al. extend their framework to 3D
[ANE17b] and demonstrate convergence for a 1003 grid. However,
it is not clear how their method scales with larger grid sizes. Various
multigrid schemes [MCPN08; MST10; FWD14] have been used
for liquid simulation with standard solid boundary conditions, but
these require solving only linear systems rather than LCPs. Chen-
tanez & Muller [CM12] developed a multigrid method to solve the
LCPs from fluid simulation. Their method requires only a few small
changes to multigrid for linear systems [CM11]. However, they do
not present any scaling tests to demonstrate whether it achieves
mesh-independent convergence behavior, which is the major ad-
vantage of using a multigrid scheme. It is therefore unclear how
their scheme scales with large problems.

3. LCP formulation from pressure equation

We now proceed to give a brief introduction to the pressure projec-
tion with separating boundaries and formulate it into an LCP. We
denote the fluid velocity field as u, time as t, pressure as p, den-
sity as ρ, and acceleration due to body forces, such as gravity, as f.
Since we are interested in scenarios in which viscosity is negligi-
ble, we omit viscous terms from the Navier-Stokes equations, and
adopt the incompressible Euler equations [GDN97]:

∂u
∂t +(u ·∇)u+ 1

ρ
∇p = f

∇·u = 0.

(3.1)

After splitting off advection and body forces as usual, the pressure
projection PDE is given as follows [Bri08]:

∂u
∂t

+
1
ρ
∇p = 0 such that∇·u = 0. (3.2)

This is the problem that we are interested in solving efficiently,
since it can often be the most time consuming part of a simulation.

The discretization of the domain is illustrated in Figure 3.1. We
adopt a standard staggered (MAC) grid layout with velocity nor-
mal components on cell faces and pressures at cell centers (black
points). We assume there are NC grid cells in the discretized domain
and index them from 0.

Let un be the vector of fluid velocity values and scalar pn be the
vector of pressures at the n-th time step. We obtain an intermediate
velocity field ûn after applying advection and body forces. After

Figure 3.1: Grid cells after discretization in 2D for a circular do-
main whose right half contains liquid. Red: cells in the liquid; Blue:
cells in the solid; White: cells in the air; Grey: cells in both liquid
and solid; Azure: cells in both solid and air.

Figure 3.2: A selected frame from two simulations of a 3D scenario
of liquid splashing inside a spherical boundary. Left: Without sep-
arating solid wall boundary conditions, the liquid adheres to the
top of the sphere. Right: With separating solid wall boundary con-
ditions, the liquid separates naturally.

discretizing the PDE (3.2) in time, we find:

un+1 = ûn− ∆t
ρ
∇pn such that∇ ·un+1 = 0. (3.3)

Substituting the first equation in (3.3) into the second gives a Pois-
son problem,

∇ ·un+1 =−∆t
ρ
∇2 pn +∇ · ûn = 0. (3.4)

Henceforth we write u = un+1 and p = pn for convenience.

Next, consider the conditions to be applied at the boundary of the
liquid domain. The free surface between liquid and air is modeled
as a Dirichlet condition with p = 0. The standard solid boundary
conditions, u ·n = 0, where n is the outward normal, cause the liq-
uid to stick to the solid walls (see Figure 3.2). To allow the liquid to
separate from the walls, we instead model the solid wall boundary
conditions as follows:

0≤ p⊥ u ·n≥ 0, (3.5)

where the notation ⊥ means p ≥ 0 is complementary to u ·n ≥ 0.
That is, p > 0 when u ·n = 0 and u ·n > 0 when p = 0.

Integrating∇ ·u over an arbitrarily small control volume V gives
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V∇ ·u =

∫
S u ·n > 0 where S is the surface of V . After enforcing

the condition (3.5) in equation (3.4), the new pressure equation sat-
isfying the separating solid wall boundary conditions becomes:

0≤ p⊥−∆t
ρ
∇2 p+∇ · ûn ≥ 0. (3.6)

Derivation details can be found in the work of Andersen et
al. [ANE17a]. The discretization of the pressure p gives an LCP,

0≤ p⊥ Ap+b≥ 0, (3.7)

where A comes from the discretization of the operator−∆t
ρ
∇2 and

is a symmetric positive definite (SPD) matrix, b and p are vectors
for values of ∇ · û and pressure p, respectively. Each of their en-
tries corresponds to the value at the center of a grid cell. Separating
solid boundary conditions (3.5) only need to be applied to bound-
ary points. Let pi be the pressure of the i-th grid cell in the dis-
cretization domain. If i corresponds to a cell near the solid bound-
ary (grey), the separating wall boundary conditions are enforced
and the i-th row of the discretized pressure equation (3.7) is

0≤ pi ⊥
NC

∑
j=0

Ai, jp j +bi ≥ 0, (3.8)

which can also be written as an optimal control equation

min
λi∈{0,1}

{λi(
NC

∑
j=0

Ai, jp j +bi)+(1−λi)pi}= 0, (3.9)

where λi is the control that minimizes the term in the braces on the
left hand side. The solution pi and the control λi are unknown and
depend on each other. If the i-th cell is a fully liquid cell (red), the i-
th row of the discretized pressure equation simply becomes linear:

NC

∑
j=0

Ai, jp j +bi = 0. (3.10)

Defining S = {0≤ i<NC| The i-th cell lie in both liquid and solid}
(grey cells in Figure 3.1), then the LCP problem (3.7) can be con-
verted into the following mixed LCP (or MLCP):

minλi∈{0,1}{λi(∑
NC
j=0 Ai, jp j +bi)+(1−λi)pi}= 0, if i ∈S

∑
NC
j=0 Ai, jp j +bi = 0, otherwise.

(3.11)

We define the set of possible control matrices as M =
{diag(λ0, ...,λNC−1)|λi = 0 or 1 if i ∈ S ;λi = 1 if i /∈ S }. The
nonlinear equation (3.11) can be written as an optimal control equa-
tion,

inf
Λ∈M

{Λ(Ap+b)+(I−Λ)p}= 0, (3.12)

where I is the identity matrix, Λ = diag({λi}) is a diagonal matrix
which serves as the optimal control and inf is performed compo-
nentwise on the vector inside the braces.

4. Fast solvers

Solving the LCP equation (3.11) is challenging as the solution and
the constraints are coupled with each other. Solving the LCP re-
quires enforcing the constraints while the solution must be known
in order to know where to enforce the constraints. The LCP prob-
lem is considered to be nonlinear, and therefore efficient solvers for
linear systems cannot be used directly.

To solve the LCP fluid problem more efficiently, we propose
three methods: policy iteration [FL07], a penalty method [FV02],
and full approximation scheme (FAS) multigrid [HW13], which is
a multigrid method for nonlinear equations. We choose policy iter-
ation and penalty method because they are fast when the grid size is
not very large. To deal with LCPs arising in larger scale fluid sim-
ulations, we prefer a multigrid method due to its scalability; that
is, its iteration count is expected to be essentially independent of
grid resolution. We will show that our proposed methods can out-
perform the naive multigrid approach proposed by Chentanez et al.
[CM12] and the non-smooth Newton method proposed by Ander-
sen et al. [ANE17a].

4.1. Policy iteration

The basic idea of policy iteration for solving a nonlinear problem
is to solve one of the unknowns by fixing the other, and iteratively
repeat the process until convergence. Compared with Newton’s
method, the linearization process is simpler and less expensive. Our
proposed policy iteration scheme first computes the control Λ using
an initial guess of p, and uses the control to linearize the problem.
We then solve the linear system to obtain an approximate solution
to p and use it to once again compute a new control. We repeat this
process until the residual is sufficiently small. Our policy iteration
scheme is presented in Algorithm 1. The policy update in equa-
tion (4.1) amounts to explicitly enforcing the LCP constraints, by
choosing for each row a λi that produces the minimum value. The
i-th row becomes trivial if λi is chosen as 0. The method is remark-
ably simple, but we shall see that it is quite effective in practice. We
calculate the initial guess using the policy (4.1) from the previous
time step since this exhibited the best performance in practice.

Algorithm 1 Policy iteration for solving the LCP problem (3.11)

1: Choose an initial guess for p0 and a tolerance ε.
2: for k = 0,1,2, ... until residual < ε do
3: Find the optimal control matrix Λ

∗ such that

Λ
∗ = arg inf

Λ∈M
{Λ(Apk +b)+(I−Λ)pk}. (4.1)

4: Solve the linear system for pk+1,

(Λ∗AΛ
∗+ I−Λ

∗)pk+1 =−Λ
∗b. (4.2)

5: end for
6: The approximate solution is given by pk+1 after the residual

reaches the tolerance ε.

We remark that the matrix A obtained from the pressure equa-
tion has positive diagonal entries and non-positive off-diagonal en-
tries, and is strictly diagonally dominant; hence it is an M-matrix
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[Var09]. The matrix in (4.2) essentially replaces some rows of A by
putting one on the diagonal since λi is either 0 or 1. Thus the matrix
in (4.2) is also an M-matrix. Theorem 6.2 [FL07] showed that the
M-matrix property ensures the sequence of approximate solution is
monotone and hence our policy iteration is guaranteed to converge
to an unique solution.

We will consider two possible iterative methods to solve the in-
ner linear system (4.2) in Algorithm 1. One is to use preconditioned
conjugate gradient (PCG) [Eis81] with Incomplete LU factoriza-
tion (ILU) as the preconditioner. Since the matrix is an M-matrix,
it is guaranteed to converge. However, the rate of convergence may
depend on the mesh size. Another attractive option is to use multi-
grid. Multigrid is known for mesh-independent convergence, al-
though special care needs to be taken to capture the irregular ge-
ometry and boundary conditions. Note that the multigrid scheme
used here is a basic linear multigrid method (e.g., [MST10]), dis-
tinct from the nonlinear variant we develop in Section 4.3.

4.2. Penalty method

In contrast to policy iteration, our proposed penalty method ap-
proach solves the LCP by enforcing the constraints implicitly
through large penalties. As a result, formulating the linear system
in our penalty method is faster than policy iteration, while the lin-
ear system in policy iteration has a smaller size. Considering their
tradeoffs, we propose to apply both methods to solve the fluid LCP
and explore how they perform.

The idea of penalty methods is to use a large positive penalty
term ρ to penalize the violation of the constraint p≥ 0 as follows:

Ap+b = ρmax(−p,0). (4.3)

Note that the penalty only applies to rows corresponding to cells
on the fluid-solid boundary. Assuming that p satisfies the penalized
nonlinear equation (4.3), then Ap+b ≥ 0 always holds. If pi ≥ 0,
we have (Ap+b)i = 0. If pi < 0, pi =− 1

ρ
(Ap+b)i is expected to

be very small due to the large penalty parameter ρ (109 for all our
experiments). Given an initial guess, a penalty method formulates
a linear system by comparing each entry with the constraint and
adding a large penalty to the corresponding diagonal of the matrix
A when there is a constraint violation. Solving the linear system
gives a new approximate solution, which is used to formulate a new
linear system. This process is repeated until convergence.

Let the diagonal matrix Π(p) be defined as:

Π(p)i,i =


1, if i ∈S and pi < 0

0, otherwise.

(4.4)

Our penalty method for the nonlinear problem (3.11) is given by
Algorithm 2.

Since A is an M-matrix as mentioned in Section 4.1, the matrix
in (4.5), which is constructed by adding some positive values to the
diagonals of A, is also an M-matrix. Therefore, the convergence of
penalty iteration to a unique solution is guaranteed [FV02]. As we
did for policy iteration, we also propose to solve the inner linear

systems using incomplete LU-preconditioned CG [Eis81] or (lin-
ear) multigrid. Similar to policy iteration, the initial guess is calcu-
lated using the penalty matrix (4.4) from the previous time step to
improve the solver’s performance.

Algorithm 2 Penalty method for solving the LCP problem (3.11)

1: Choose an initial guess for p0, a tolerance ε, and the discount
ρ� ε.

2: for k = 0,1,2, ... until residual < ε do
3: Solve the linear system for pk+1,

(A+ρΠ(pk))pk+1 =−b, (4.5)

4: end for
5: The approximate solution is given by pk+1 after the residual

reaches the tolerance ε.

4.3. Multigrid

Both our policy iteration and penalty method have nested itera-
tions: the outer iteration for updating a linear system and the in-
ner iteration for solving the linear system. Since this can become
computationally expensive, especially for larger problems, in this
section we propose an efficient multigrid method for the full LCP
problem. While Chentanez et al. [CM12] previously proposed a
multigrid scheme to treat the fluid LCP, their method is based on
standard multigrid for linear problems. It is therefore expected to
achieve sub-optimal performance and scaling behavior on our non-
linear problem. Instead, we propose to use the full approximation
scheme (FAS), which is a multigrid framework designed specifi-
cally for nonlinear problems.

Algorithm 3 V-Cycle of the FAS multigrid for solving the LCP
problem (3.11)

1: ph← V-Cycle(ph, fh):
2: Define the restriction operator R and interpolation operator P.
3: if h is the coarsest level then
4: SolveN h(ph) = fh with PGS.
5: else
6: Pre-smooth ph with PGS.
7: Compute the residual rh = fh−N h(ph).
8: Restrict ph: pH = R(ph), where H is the next coarser level.
9: Compute fH =NH(pH)+R(rh).

10: pH ← V-Cycle(pH , fH)
11: Interpolate and correct: ph← ph +P(pH −R(ph)).
12: Post-smooth ph with PGS.
13: end if
14: The solution is obtained by iterating V-Cycle(p,0).

In this section, we will introduce our multigrid method and de-
scribe how it can be applied to solve the LCP (3.11). But first, we
will explain the idea of multigrid for solving the pressure equa-
tion with the LCP condition. Multigrid has two main components:
smoothing, which removes high frequency errors on a fine grid to
make the error smooth; and coarse grid correction, which removes
the low frequency errors on a coarser grid. It proceeds from the fine
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grid to the coarse grid and back to correct the fine grid error. This
process is called a V-cycle and can be extended to multiple grid
levels by applying it recursively. The multigrid method iterates the
V-cycle until convergence.

Since the problem we are solving is nonlinear, the multigrid V-
cycle for linear problems cannot be used to solve (3.11) directly. To
address this issue, we apply the Full Approximation Scheme (FAS)
multigrid algorithm [Bra77]. We useN to define the operator on p
on the left hand side of (3.12) and the equation becomes N (p) =
0. Let N l denote the nonlinear operator N on the grid at level l.
According to (3.12), we have

N l(pl) = inf
Λl∈S l

{Λ(Alpl +bl)+(I−Λ
l)pl}, (4.6)

where the matrix Al is constructed at grid level l, vector pl is the
approximate solution at the l-th level, vector bl is restricted from
the finer level, and the control set S l is defined to be the same as
in S except that the dimension of the matrices is the number of
cells on the l-th level. To explain how FAS multigrid works, we let
l = h be the fine grid level and l = H be the next coarser grid level.
The nonlinear problem at level h isN h(ph) = fh, where fh = 0 and
the problem becomes (3.12) if h is the finest grid. The error after
pre-smoothing is eh = qh−ph where qh is the exact solution. The
residual becomes

rh = fh−N h(ph) =N h(qh)−N h(ph). (4.7)

Due to the nonlinear operator N h, we cannot simply find rh =
N (eh) and restrict it into coarse grid as in the linear case. Instead,
we rewrite equation (4.7) as

N h(qh) =N h(ph)+ rh (4.8)

and restrict it into the coarse level H:

NH(qH) =NH(R(ph))+R(rh) = fH , (4.9)

where R is the restriction operator from fine to coarse grid and
qH is the solution on the coarse grid. Let pH be the approximate
solution to equation (4.9). The coarse grid error is computed as
eH = pH−R(ph). We obtain the fine grid error eh = P(eH) through
interpolation and use it to correct ph. Algorithm 3 provides the
details of FAS multigrid. We use projected Gauss-Seidel (PGS)
[CPS92] as the smoother, which is an iterative nonlinear solver
based on the Gauss-Seidel method. Besides using FAS, we develop
three modifications for our multigrid, which enables fast conver-
gence for the LCP and further distinguishes our method from the
multigrid of Chentanez et al. [CM12]: interpolation and restriction
operators; boundary handling; and coarse grid matrix construction.

Interpolation and restriction. We consider formulating the re-
striction matrix R and the interpolation matrix P. To preserve sym-
metry, the restriction matrix is computed as the transpose of the
interpolation matrix scaled by a constant ( 1

4 in 2D and 1
8 for 3D).

In order to achieve good convergence [TOS00], the sum of the or-
ders of interpolation and restriction order should be greater than the
order of the differential operator, which is 2 in (3.6). A natural first
choice for interpolation is bilinear in 2D and trilinear in 3D, since
they are both second order.

Because we have adopted a staggered grid with pressures at cell

Figure 4.1: Interpolation of pressure between grid levels in 2D.

Figure 4.2: Interpolation of pressure between grid levels in 3D.

centers, we must take care in interpolating between levels. The lay-
out of two grid levels and their pressure samples is shown in 2D
in Figure 4.1. The solid line represents the coarse grid and the dot-
ted line the fine grid. Fine and coarse grid pressure samples are
represented by black and red points, respectively. Bilinear interpo-
lation for the fine grid point ph relies on the four nearest coarse grid
points pH

0 , pH
1 , pH

2 , pH
3 . Their interpolation weights are 9

16 , 3
16 , 3

16 ,
1

16 , respectively. Trilinear interpolation in 3D is similar: ph is inter-
polated from eight surrounding coarse grid points with weights of
27
64 for pH

0 , 9
64 for pH

1 , pH
2 , pH

4 , 3
64 for pH

3 , pH
5 , pH

6 , and 1
64 for pH

7 .

Unfortunately, using too many nearby coarse grid points yields
denser interpolation matrices and makes the computation more ex-
pensive. We therefore propose an even simpler alternate solution
that uses fewer coarse grid points while preserving the desired sec-
ond order accuracy. Specifically, we adopt barycentric interpola-
tion. In 2D, we use pH

0 , pH
1 , pH

2 , and the fine grid point is inside
the triangle (green lines in Figure 4.1) formed by these coarse grid
points. The interpolation becomes ph = 1

2 pH
0 + 1

4 pH
1 + 1

4 pH
2 . In 3D,

ph is inside the tetrahedron (green lines in Figure 4.2) formed by
pH

0 , pH
1 , pH

2 , pH
4 . Each coarse grid point is assigned a weight of 1

4 .

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



J. Lai, Y. Chen, Y. Gu, C. Batty, & J. Wan / Fast and Scalable Solvers for the Fluid Pressure Equations with Separating Solid Boundary Conditions

These more compact interpolation (and corresponding restriction)
operators give interpolation matrices that will be 25 percent sparser
in 2D and 50 percent sparser in 3D.

Boundary handling. The solution to the pressure equation
(3.11) may have a large jump around the solid boundary due to
different conditions being imposed on either side of it (see Fig-
ure 4.3). Therefore, we modify our interpolants to accommodate
this situation and ensure better convergence of FAS multigrid.
Loosely inspired by the work of Wan & Liu [WL04] and Guen-
delman et al. [GSLF05], we modify our interpolants to exploit
knowledge of the solid boundary. Given a fine grid point, we de-
termine the interpolation weights for only the coarse grid points
which are on the same side of the solid. We then rescale the
weights of those (same side) coarse grid points proportionally so
that they sum to 1. For example, consider a 2D coarse grid cell
crossing the boundary as shown
inset. Points pH

0 and pH
2 are

on the opposite side of the
solid from the query point ph.
Barycentric interpolation ordi-
narily assigns weights of 1

4 , 1
4 ,

1
2 to pH

1 , pH
2 , pH

3 , respectively.
In our modified one-sided inter-
polation, only points pH

1 and pH
3

will be used; their weights af-
ter rescaling become 1

3 and 2
3 , so

we have pH = 1
3 pH

1 + 2
3 pH

3 .

For the simpler linear multigrid used for the inner linear sys-
tems in in our policy iteration and penalty method, we likewise use
barycentric interpolation/restriction and neglect points across the
solid boundary, but found it unnecessary to normalize the weights.

Coarse grid matrix construction. The coarse grid matrix AH is
often constructed by directly discretizing the problem on the coarse
grid. Chentanez et al. [CM12] computed the coarse grid matrix by
averaging the the weights of non-solid matter and the liquid level
set function from fine to coarse grids. We found that this approach
might be insufficiently accurate as it led to the coarse grid error
not always matching the fine grid error, in turn causing slow con-
vergence. In general, the complexity of the fluid domain can make

Figure 4.3: Naive interpolation (dashed blue) across a narrow
solid boundary causes large pressure errors (shown in 1D). Our
one-sided interpolation (red) yields better behavior.

(a) 20th frame (b) 40th frame (c) 60th frame (d) 80th frame

(e) 20th frame (f) 40th frame (g) 60th frame (h) 80th frame

Figure 5.1: Snapshots from simulating liquid inside a solid circle
in 2D using LCP boundaries (top row) and standard boundaries
(bottom row).

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton No LCP
32 7.45 16.9 7.59 16.87 7.99 20.38 92.11 15.99
64 10.39 36.02 9.74 36.07 12.58 35.4 336.17 30.73
128 14.07 70.63 11.89 70.58 17.6 65.37 947.23 55.91
256 18.26 123.61 14.51 122.42 21.98 109.54 2283.65 93.2

Table 1: Average number of iterations per pressure equation for
solving 100 frames of the circular domain problem in 2D.

it difficult to determine how to compute a proper coarse grid ma-
trix through direct discretization. Therefore, we propose to con-
struct the coarse grid matrix using the Galerkin method [BM*00]:
AH = R ·Ah ·P, where Ah is the fine grid matrix. This approach
ensures that the coarse grid operator is more faithful to its fine grid
counterpart, and gives faster convergence. In particular, this ensures
that relatively thin boundaries which are only fully resolved at the
finest level are still naturally respected at coarser grid levels, with-
out additional treatment. Using the compact interpolation in 3D,
the coarse grid matrices will be much sparser and faster to con-
struct since the interpolation matrices are 50 percent sparser. The
smoothing process will be much less expensive due to the decrease
of nonzeros per row. In our experiments in 3D, both the average
number of nonzeros per row of the top level coarse grid matrix and
the time for solving the LCP were reduced by about half.

5. Numerical results

To demonstrate that we achieve the desired effect of using the LCP
form of pressure projection, we perform tests on several scenarios
with and without enforcing separating solid boundary conditions.
We use an absolute residual tolerance of 10−6 throughout. To en-
sure convergence of the penalty method, the penalty term ρ must
be sufficiently large, which depends on the desired tolerance. In our
experiments, we chose ρ to be 103/tolerance (i.e., 109). Figures 5.1
and 5.2 show frames from two scenarios in 2D which demonstrate
the difference between standard and LCP solid boundary condi-
tions. We also present selected frames from a scenario in 3D in
Figures 5.3 and 5.4. The liquid more readily separates from the
wall in the LCP case.

To evaluate the effectiveness of our proposed solvers, we com-
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(a) 20th frame (b) 40th frame (c) 60th frame (d) 80th frame

(e) 20th frame (f) 40th frame (g) 60th frame (h) 80th frame

Figure 5.2: Snapshots from simulating liquid inside a solid square
in 2D using LCP boundaries (top row) and standard boundaries
(bottom row).

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton No LCP
32 9.75 29.9 12.12 30.16 13.93 22.21 1901.69 20.14
64 10.44 70.92 14.66 71.34 19.11 39.81 3890.08 39.57
128 11.94 132.56 17.61 133.53 24.57 61.12 10879.01 62.26
256 14.02 251.88 20.71 252.28 28.84 89.89 NA 100.78

Table 2: Average number of iterations per pressure equation for
solving 100 frames of the spherical domain problem in 3D.

Size PI-PCG PI-MG PE-PCG PE-MG Newton
32 1.12 1.12 1.12 1.23 0.94
64 1.25 1.25 1.25 1.43 1.71
128 1.34 1.34 1.35 1.58 2.08
256 1.43 1.43 1.41 1.63 2.34

Table 3: Average number of outer iterations per pressure equation
for policy iteration and penalty method for solving 100 frames of
the circular domain problem in 2D.

Size PI-PCG PI-MG PE-PCG PE-MG Newton
32 1.47 1.47 1.49 1.53 2.04
64 1.78 1.76 1.79 1.77 2.57
128 2.1 2.12 2.12 2.19 2.91
256 2.48 2.52 2.48 2.49 NA

Table 4: Average number of outer iterations per pressure equation
for policy iteration and penalty method for solving 100 frames of
the spherical domain problem in 3D.

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton No LCP
32 0.0021 0.00054 0.0028 0.00055 0.0025 0.0026 0.002 0.00048
64 0.0082 0.0034 0.0086 0.0033 0.0075 0.022 0.024 0.0029
128 0.029 0.02 0.03 0.021 0.028 0.17 0.24 0.016
256 0.13 0.15 0.12 0.13 0.13 1.25 2.59 0.098

Table 5: Average time (in seconds) per pressure equation for solv-
ing 100 frames of the circular domain problem in 2D.

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton No LCP
32 0.037 0.014 0.036 0.015 0.036 0.076 0.98 0.0074
64 0.25 0.2 0.33 0.2 0.37 1.68 25.38 0.09
128 2.15 2.64 2.82 2.82 4.28 30.24 637.67 1.15
256 16.78 36.96 24.58 37.82 47.38 510.71 NA 14.24

Table 6: Average time (in seconds) per pressure equation for solv-
ing 100 frames of the spherical domain problem in 3D.

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton
32 4.41 9.74 8.11 9.5 7.67 6.89 87.2
64 7.07 15.52 10.55 15.75 10.11 10.71 195.5
128 5.83 31.29 13.52 31.9 12.91 34.13 450.21

Table 7: Comparison of the number of iterations between our
solvers and Newton’s method for solving the pressure equations
for 100 frames of the maze problem in 2D.

pare the performance of different solvers, including the standard
boundary conditions using PCG ("No LCP"), on CPU in both 2D
(Table 1) and 3D (Table 2). For the 2563 grid in 3D, we did not
test Newton’s method because it was too slow. The initial sce-
nario in 2D is a circular solid boundary with liquid filling the left
half of the circle. In 3D, it is a spherical boundary with its left
half filled with liquid. We compare our methods with the multigrid
method developed by Chentanez et al. [CM12] and the non-smooth
Newton’s method [ANE17a]. Chentanez’s full multigrid (FMG) ap-
proach iterates costly full cycles while our multigrid uses V-cycles,
which are simpler and less expensive. Moreover, they pre- and post-
smooth the error four times, while we do it only twice. For policy
iteration, we tested with two different solvers for the linear system
(4.2): PCG and (linear) multigrid, denoted by PI-PCG and PI-MG,
respectively. The coarse grid matrix here was also computed us-
ing the Galerkin method. We likewise tested penalty method us-
ing PCG (PE-PCG) and multigrid (PE-MG). Newton’s method is
broadly similar in concept to policy iteration, but is much more
complicated. In addition to solving a linear system in each Newton
iteration, it also requires performing a line search. For the purpose
of testing and comparing with Newton’s method, we use their pub-
lic code [Erl11] and ran tests using the CPU (rather than GPU).

We measured the performance using the average number of it-
erations per pressure equation. Specifically, this refers to the av-
erage number of V-cycles per pressure equation over 100 frames
for FAS-MG, and average number of full cycles for FMG. The so-
lution processes of policy iteration, penalty method and Newton’s
method involve nested iterations, often called outer-inner iteration.
The outer iteration updates the linear system whereas the inner iter-
ation solves the linear system by an iterative method. We count all
the inner iterations per pressure equation. We measure iterations for
policy iteration and penalty method as the total number of PCG/MG
iterations per pressure equation. For Newton’s method, we add the
number of PCG and line search iterations together to count as the
number of iterations.

Regarding scalability in terms of number of iterations, our FAS-
MG and PI-MG are scalable because the number of iterations in-
creases slowly with increasing problem size. Our PI-MG is scal-
able due to the use of multigrid method and the good scalability
of the number of outer iterations of policy iteration. Tables 3 and
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(a) 20th frame (b) 50th frame (c) 70th frame (d) 90th frame

Figure 5.3: Snapshots from simulating liquid inside a solid sphere in 3D at 1283 using LCP boundaries.

(a) 20th frame (b) 50th frame (c) 70th frame (d) 90th frame

Figure 5.4: Snapshots from simulating liquid inside a solid sphere in 3D at 1283 using standard boundaries.

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton
32 0.016 0.0042 0.032 0.004 0.029 0.017 0.41
64 0.092 0.018 0.15 0.018 0.12 0.1 3.5
128 0.38 0.1 0.7 0.11 0.53 1.21 31.35

Table 8: Comparison of the average time (in seconds) between our
solvers and Newton’s method for solving the pressure equations for
100 frames of the maze problem in 2D.
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Figure 5.5: A histogram illustrating how many pressure solves re-
quired a given number of outer iterations for policy iteration and
penalty method for 100 frames of the spherical domain problem in
3D for grid size 128. About 93 percent of these pressure equations
are LCP problems while some of them need only one outer iteration
because the first control update leads to the correct linear system to
solve the LCP. (Since we use substepping, the number of problems
solved exceeds the frame count.)

(a) 20th frame (b) 40th frame (c) 60th frame (d) 80th frame

(e) 20th frame (f) 40th frame (g) 60th frame (h) 80th frame

Figure 5.6: Snapshots from simulating liquid inside a maze in 2D
using our FAS-MG (top row) vs. the non-smooth Newton’s method
(bottom row). The results are visually consistent.

4 show that the number of outer iterations for policy iteration and
the penalty method is almost constant with only 2 to 3 linear sys-
tems needed per pressure equation. We observed that the pressure
equations for most timesteps required solving the LCP equations
(i.e., performing multiple outer iterations) when the problem size
becomes large. We present a histogram of the number of outer it-
erations for policy iteration and penalty method over 100 frames
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in the 3D test for the size of 128 in Figure 5.5. Policy iteration
performs slightly better than the penalty method in terms of aver-
age number of outer iterations. Moreover, our policy iteration and
penalty method scale slightly better than Newton’s method and re-
quire fewer outer iterations in general. The scalability of both inner
and outer iterations contributes to the scalability of PI-MG. How-
ever, for PI-PCG and PE-PCG, the number of iterations doubles as
the problem size doubles. This is expected as the number of PCG
iterations usually doubles with problem size, while the number of
outer iterations remains relatively constant. Newton’s method is
comparatively slow, especially in 3D, because its inner iteration is
computationally expensive although its outer iteration is relatively
scalable. FMG also suffers from an increase in the number of iter-
ations for full cycle although the rate is less than 2 (about 1.5). We
note that the number of iterations required to converge for FMG is
much larger than for our proposed multigrid methods (FAS-MG,
PI-MG, and PE-MG) because it is not designed for nonlinear prob-
lems. FAS-MG and PI-MG required the smallest number of itera-
tions among all the methods.

Next, we briefly discuss the time complexity per iteration for
each method. For the multigrid methods (namely FAS-MG, FMG,
and our basic MG for linear systems) each smoothing step takes
about the same time on the finest grid. Each PCG iteration has
about the same time complexity as one smoothing step on the finest
grid in multigrid. Due to our Galerkin construction of the coarse
grid matrix, our multigrid methods take more time on the coarse
grid for smoothing compared to a direct discretization approach,
since the coarse grid matrices have more nonzeros per row. How-
ever, this deficiency is outweighed by the good scalability of our
resulting method. The size of the linear systems in each outer iter-
ation of policy iteration, penalty method, and Newton’s method are
about the same. However, our policy iteration and penalty method
do not need to perform line searches. Updating the policy (in PI)
and adding penalty terms (in PE) are both relatively cheap.

Figure 5.7: The 10th frame of scenario 1 in 3D, with (left) and
without (right) separating solid wall boundary conditions.

Tables 5 and 6 show the average time per pressure equation for
all methods in 2D and 3D, respectively. As an additional compari-
son point, we included the No-LCP solver, which uses only a single
PCG linear solve. Our proposed methods are much faster than FMG
and Newton’s method in both 2D and 3D. Our fastest method, FAS-
MG, is as much as 30 times faster than FMG in 3D at 2563, and it is
only slightly slower than the No-LCP solver. Our methods are also
more scalable than FMG and Newton’s method in terms of timing.

Figure 5.8: The 70th frame from scenario 2 in 3D, with (left) and
without (right) separating solid wall boundary conditions.

Figure 5.9: The 10th frame from scenario 3 in 3D, with (left) and
without (right) separating solid wall boundary conditions.

When the problem size is doubled, FAS-MG, PI-MG, and PE-MG
take about 5 times longer in 2D and 10 times longer in 3D. PI-PCG
and PE-PCG’s average time increases by about 7 times in 2D and
14 times in 3D when the problem sizes doubles. However, the av-
erage time for FMG increases by about 7 times in 2D and 17 times
in 3D when the problem size doubles. Newton’s method fares the
worst: about 10 times for 2D and 25 times for 3D.

As an additional comparison against Newton’s method
[ANE17a], we used the authors’ code and tested their method and
all of our solvers in their maze scenario. The numerical results are
shown in Tables 7 and 8 along with frame comparisons in Figure
5.6.

To demonstrate the convergence behavior of our solvers, we look
into specific frames with significant handling of liquid solid sepa-
ration in three different scenarios in 3D (see Figures 5.7, 5.8, 5.9,
respectively.) Scenario 1 has already been introduced at the begin-
ning of this section (see Figures 5.3 and 5.4). Scenario 2 is based

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



J. Lai, Y. Chen, Y. Gu, C. Batty, & J. Wan / Fast and Scalable Solvers for the Fluid Pressure Equations with Separating Solid Boundary Conditions

0 10 20 30 40 50 60 70 80 90 100

Number of iterations
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

In
fin

ity
 n

or
m

 o
f r

es
id

ua
l

FAS-MG
FMG
PI-MG
PE-MG

0 10 20 30 40 50 60 70 80 90 100

Number of iterations
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

In
fin

ity
 n

or
m

 o
f r

es
id

ua
l

FAS-MG
FMG
PI-MG
PE-MG

0 10 20 30 40 50 60 70 80 90 100

Number of iterations
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

In
fin

ity
 n

or
m

 o
f r

es
id

ua
l

FAS-MG
FMG
PI-MG
PE-MG

Figure 5.10: Convergence plots for our methods vs. FMG on a grid of size 256 for scenarios 1 through 3, from left to right.

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton
32 7 139 10 146 21 29 2773
64 8 282 9 301 18 61 5837
128 8 593 10 657 24 128 18680
256 9 1263 14 1255 28 234 38547

Table 9: Number of iterations for solving the pressure at the 10th
frame of scenario 1 in 3D.

on scenario 1 but has a rectangular cuboid inside so that fluid-solid
contacts frequently form and break on the cuboid’s bottom face.
Scenario 3 has a solid outer boundary created as the union of two
spheres. Two hollow solid spheres are also placed inside the do-
main with the bottom one having holes through it. The number of
iterations for solving the pressure for the first substep of a specific
frame in the three different scenarios are presented in Tables 9, 10,
11, respectively. For multigrid methods (namely FAS-MG, PI-MG,
PE-MG and FMG), we plot their convergence rates for the three
different scenarios in Figure 5.10. The tests in scenarios 2 and 3
demonstrate that the FAS-MG is still scalable even for complicated
scenarios. The scalability of PI-MG and PE-MG deteriorates a lit-
tle bit, but they still perform better than the existing methods (FMG
and Newton).

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton
32 6 149 11 161 18 35 2634
64 7 308 18 336 29 43 11122
128 8 503 22 548 40 63 50162
256 9 1186 43 1313 89 103 95823

Table 10: Number of iterations for solving the pressure at the 70th
frame of scenario 2 in 3D.

Size FAS-MG PI-PCG PI-MG PE-PCG PE-MG FMG Newton
32 7 80 14 85 23 15 1430
64 15 182 37 203 57 43 9219
128 9 421 34 446 90 67 46491
256 12 762 24 887 60 175 122080

Table 11: Number of iterations for solving the pressure at the 10th
frame of scenario 3 in 3D.

Finally, we show how each of our proposed modifications (in-
terpolation and restriction, boundary handling, and coarse grid ma-

Size Ours Trilinear interp. PWC interp. Simple boundaries Direct discretization
32 7 6 47 6 65
64 8 8 112 32 171
128 8 8 268 Diverged Diverged
256 9 9 616 Diverged Diverged

Table 12: Number of iterations for solving the pressure using vari-
ants of our FAS-MG scheme, at frame 10 of scenario 1 in 3D.
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Figure 5.11: Timing comparison between using barycentric and
standard trilinear interpolations for solving the pressure at the 10th
frame of scenario 1 in 3D

trix construction) on FAS-MG contribute to the success of our FAS
multigrid solver. We replace each of them with the simpler or stan-
dard option, namely, standard trilinear, piecewise constant (PWC)
interpolation and restriction, no specialized boundary handling, and
direct discretization of coarse levels, respectively, and present the
tests (Table 12) on the pressure equation for the first substep at the
10th frame of scenario 1 in 3D. Our method with the barycentric
interpolation has similar scalability as the standard trilinear inter-
polation but is more than two times faster (see Figure 5.11).

6. Conclusion and future work

In summary, we have proposed three methods, namely policy iter-
ation, penalty method, and FAS multigrid, as fast solvers for the
pressure equations arising from liquid simulation with separating
solid boundary conditions. For our FAS multigrid methodology,
we introduced several adaptations to achieve the desired mesh-
independent convergence behavior on our LCP fluid problem. We
demonstrated the superior efficiency and scalability of our resulting

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



J. Lai, Y. Chen, Y. Gu, C. Batty, & J. Wan / Fast and Scalable Solvers for the Fluid Pressure Equations with Separating Solid Boundary Conditions

solvers over existing methods. Moreover, our results show that our
solvers are able to resolve the liquid sticking issue near the solid
boundary without making a major sacrifice in computation time
compared with the simpler linear solver case. All of our tests were
done on CPU, but it may be interesting to study how these methods
perform on GPU. We leave this as future work.
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