
A Closest Point Method for PDEs on Manifolds with Interior Boundary

Conditions for Geometry Processing

NATHAN KING, Computer Science, University of Waterloo, Waterloo, Canada

HAOZHE SU, LightSpeed Studios, Los Angeles, United States

MRIDUL AANJANEYA, Computer Science, Rutgers University, Piscataway, United States

STEVEN RUUTH, Mathematics, Simon Fraser University, Burnaby, Canada

CHRISTOPHER BATTY, Computer Science, University of Waterloo, Waterloo, Canada

(a) Difusion Curves (b) Geodesic Distance (c) Vector Field Design

Fig. 1. We extend the closest point method to support solving PDEs on manifolds with interior boundary conditions. Our
method enables the solution of various geometry processing tasks on general surfaces, given only the ability to perform
closest point queries. (a) Colouring a triangulated surface using difusion curves. (b) Geodesic distance to a parametric curve
(black) on an analytical closest point surface. (c) Vector field design on a triangulation of a Möbius strip, which is an open
and nonorientable surface.

Authors’ Contact Information: Nathan King, Computer Science, University ofWaterloo, Waterloo, Ontario, Canada; e-mail: n5king@uwaterloo.

ca; Haozhe Su, LightSpeed Studios, Los Angeles, California, United States; e-mail: haozhesu@global.tencent.com; Mridul Aanjaneya, Computer

Science, Rutgers University, Piscataway, New Jersey, United States; e-mail: mridul.aanjaneya@rutgers.edu; Steven Ruuth, Mathematics,

Simon Fraser University, Burnaby, British Columbia, Canada; e-mail: sruuth@sfu.ca; Christopher Batty, Computer Science, University of

Waterloo, Waterloo, Ontario, Canada; e-mail: christopher.batty@uwaterloo.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1557-7368/2024/6-ART

https://doi.org/10.1145/3673652

ACM Trans. Graph.

HTTPS://ORCID.ORG/0000-0003-4105-0189
HTTPS://ORCID.ORG/0009-0002-8534-8964
HTTPS://ORCID.ORG/0000-0002-5286-8173
HTTPS://ORCID.ORG/0000-0002-9557-3375
HTTPS://ORCID.ORG/0000-0003-3830-7772
https://orcid.org/0000-0003-4105-0189
https://orcid.org/0009-0002-8534-8964
https://orcid.org/0000-0002-5286-8173
https://orcid.org/0000-0002-9557-3375
https://orcid.org/0000-0003-3830-7772
https://doi.org/10.1145/3673652
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673652&domain=pdf&date_stamp=2024-06-17

2 • N. King, et al.

Many geometry processing techniques require the solution of partial diferential equations (PDEs) on manifolds embedded in

R
2 or R3, such as curves or surfaces. Such manifold PDEs often involve boundary conditions (e.g., Dirichlet or Neumann)

prescribed at points or curves on the manifold’s interior or along the geometric (exterior) boundary of an open manifold.

However, input manifolds can take many forms (e.g., triangle meshes, parametrizations, point clouds, implicit functions, etc.).

Typically, one must generate a mesh to apply inite element-type techniques or derive specialized discretization procedures

for each distinct manifold representation. We propose instead to address such problems in a uniied manner through a

novel extension of the closest point method (CPM) to handle interior boundary conditions. CPM solves the manifold PDE by

solving a volumetric PDE deined over the Cartesian embedding space containing the manifold, and requires only a closest

point representation of the manifold. Hence, CPM supports objects that are open or closed, orientable or not, and of any

codimension. To enable support for interior boundary conditions we derive a method that implicitly partitions the embedding

space across interior boundaries. CPM’s inite diference and interpolation stencils are adapted to respect this partition while

preserving second-order accuracy. Additionally, we develop an eicient sparse-grid implementation and numerical solver that

can scale to tens of millions of degrees of freedom, allowing PDEs to be solved on more complex manifolds. We demonstrate

our method’s convergence behaviour on selected model PDEs and explore several geometry processing problems: difusion

curves on surfaces, geodesic distance, tangent vector ield design, harmonic map construction, and reaction-difusion textures.

Our proposed approach thus ofers a powerful and lexible new tool for a range of geometry processing tasks on general

manifold representations.

CCS Concepts: · Mathematics of computing → Discretization; Partial diferential equations; · Computing method-

ologies → Shape analysis.

Additional KeyWords and Phrases: manifold partial diferential equations, embeddingmethods, closest point method, boundary

conditions, geometry processing, difusion curves, geodesic distance, vector ield design, harmonic maps, reaction-difusion

textures

1 Introduction

A manifold partial diferential equation is a partial diferential equation (PDE) whose solution is restricted
to lie on a manifold S. Such manifold PDEs arise naturally in many ields, including applied mathematics,
mathematical physics, image processing, computer vision, luid dynamics, and computer graphics. We focus on
geometry processing, where a numerical solution is typically sought by approximating the manifold as a mesh
and discretizing the PDE using inite element or discrete exterior calculus techniques. However, the introduction
of a mesh entails some drawbacks. One must perform mesh generation if the input manifold is not given as a
mesh. The mesh quality also strongly inluences the resulting solution and therefore remeshing is required if the
input mesh is of low quality or inappropriate resolution. Both mesh generation and remeshing are nontrivial
tasks. Finally, depending on the chosen numerical method, the discretization of a particular manifold PDE can
difer signiicantly from the corresponding discretized PDE on Cartesian domains; further analysis can be needed
to derive an appropriate convergent scheme for the manifold case.

A powerful alternative is the use of embedding techniques, which solve the manifold problem by embedding it
into a surrounding higher-dimensional Cartesian space. The closest point method (CPM) [Ruuth and Merriman
2008] is an especially attractive instance of this strategy, as it ofers a remarkable combination of simplicity and
generality. Its simplicity lies in its ability to leverage standard Cartesian numerical methods in the embedding
space to solve the desired manifold problem, given only a closest point function for the manifold. Its generality
lies in its support for diverse manifold characteristics, manifold representations, and manifold PDEs.

Requiring only a closest point function allows input manifolds to be open or closed, orientable or not, and of
any codimension or even mixed codimension. Closest point queries are available for many common manifold
representations (as highlighted by Sawhney and Crane [2020]), and therefore CPM can be applied to meshes, level
sets, point clouds, parametric manifolds, constructive solid geometry, neural implicit surfaces, etc. (see Figure 2).
Such generality is appealing given the increasing demand for algorithms that can ingest general łin-the-wildž
and high-order geometries ([Barill et al. 2018; Hu et al. 2018; Marschner et al. 2021; Sawhney and Crane 2020]).

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 3

(D, E)

Fig. 2. CPM can be applied to any manifold representation that supports closest point queries, including parametrizations,
meshes, and point clouds, as well as discrete or continuous level sets and closest point functions.

Furthermore, the embedding PDE solved on the Cartesian domain is often simply the Cartesian analog of the
desired manifold PDE. Thus, CPM has been applied to the heat equation, Poisson and screened-Poisson equations,
Laplace-Beltrami eigenproblem, biharmonic equation, advection-difusion and reaction-difusion equations,
Hamilton-Jacobi equation, Navier-Stokes equation, Cahn-Hilliard equation, computation of (�-)harmonic maps,
and more.

Yet, despite the desirable properties of CPM and its adoption in applied mathematics, CPM has only infrequently
been employed by computer graphics researchers, and almost exclusively for luid animation [Auer et al. 2012;
Auer and Westermann 2013; Hong et al. 2010; Kim et al. 2013; Morgenroth et al. 2020]. In the present work, we
demonstrate CPM’s wider potential value for computer graphics problems by extending CPM to handle several
applications in geometry processing: difusion curves on surfaces, geodesic distance, tangent vector ield design,
harmonic maps with feature (landmark) points and curves, and reaction-difusion textures.
However, a crucial limitation of the existing CPM stands in the way of the objective above. CPM supports

standard boundary conditions on the geometric (exterior) boundary of an open manifold, �S, but it does not
yet support accurate interior boundary conditions (IBCs), i.e., boundary conditions at manifold points or curves
away from �S. CPM’s use of the embedding space makes enforcing IBCs nontrivial, but they are vital for
the applications above. For example, the curves in difusion curves or the source points for geodesic distance
computation generally lie on the interior of S. Therefore, we propose a novel mechanism that enables accurate
IBC enforcement for CPM in R2 and R3, while retaining its simplicity and generality.

To scale up to surfaces with iner details, we further develop a tailored numerical framework and solver. The
computational domain is only required near S, so we use a sparse grid structure to improve memory eiciency.
We then develop a custom preconditioned BiCGSTAB solver for solving the linear system that also better utilizes
memory. The combination of the sparse grid structure near S and the custom solver allows us to eiciently scale
to tens of millions of degrees of freedom. To foster wider adoption of CPM, our code has been released publicly
at https://github.com/nathandking/cpm-ibc.

In summary, the key contributions of our work are to:

ACM Trans. Graph.

https://github.com/nathandking/cpm-ibc

4 • N. King, et al.

• introduce a novel treatment of interior boundary conditions for CPM with up to second-order accuracy;
• employ a sparse grid structure and develop a custom solver for memory eiciency, which enables scaling
to tens of millions of degrees of freedom; and

• demonstrate the efectiveness of our new CPM scheme for several geometry processing tasks.

2 Related Work

2.1 CPM in Applied Mathematics

CPM was introduced by Ruuth and Merriman [2008], who applied it to difusion, advection, advection-difusion,
mean curvature low of curves on surfaces, and reaction-difusion. They drew inspiration from earlier embedding
methods based on level sets [Bertalmıo et al. 2001; Greer 2006], while eliminating the restriction to closedmanifolds,
supporting more general PDEs, and allowing for narrow-banding without loss of convergence order. Subsequently,
CPM has been shown to be efective for a wide range of additional PDEs including the screened-Poisson (a.k.a.
positive-Helmholtz) equation [Chen and Macdonald 2015; May et al. 2020], Hamilton-Jacobi equations/level-set
equations [Macdonald and Ruuth 2008], biharmonic equations [Macdonald and Ruuth 2010], Cahn-Hilliard
equation [Gera and Salac 2017], Navier-Stokes equation [Auer et al. 2012; Yang et al. 2020], construction of
(�-)harmonic maps [King and Ruuth 2017], and more. Despite being initially designed for manifold PDEs, CPM
can additionally be applied to volumetric (codimension-0) problems and surface-to-bulk coupling scenarios
[Macdonald et al. 2013]. Related closest point mapping approaches have also been used to handle integral
equations [Chen and Tsai 2017; Chu and Tsai 2018; Kublik et al. 2013; Kublik and Tsai 2016].

Some prior work on CPMhas focused on problems of relevance to geometry processing. For example, Macdonald
et al. [2011] computed eigenvalues and eigenfunctions of the Laplace-Beltrami operator via CPM, and the resulting
eigenvalues of surfaces were used by Arteaga and Ruuth [2015] to compute the ‘Shape-DNA’ [Reuter et al. 2006]
for clustering similar surfaces into groups. Segmentation of data on surfaces was demonstrated by Tian et al.
[2009] who adapted the Chan-Vese algorithm common in image processing. Diferent approaches to compute
normals and curvatures were discussed in the appendix of the original CPM paper [Ruuth and Merriman 2008].

CPM has mostly been used on static manifolds with a uniform grid in the embedding space as the computational
domain. However, Petras and Ruuth [2016] combined CPM with a grid-based particle method to solve PDEs on
moving surfaces. A mesh-free CPM approach was investigated in [Cheung et al. 2015; Petras et al. 2019, 2018,
2022; Piret 2012] using radial-basis functions.

The CutFEM family of methods [Burman et al. 2015a] represent another embedding approach. They use inite
elements (rather than inite diferences) on a non-conforming simplicial embedding mesh. They have been used
to solve various manifold PDEs (e.g., Laplace-Beltrami [Burman et al. 2015b], convection [Burman et al. 2019]).

2.2 CPM in Computer Graphics

Embedding methods similar to CPM have also been proposed and used in the computer graphics community.
Perhaps most closely related is the work of Chuang et al. [2009] who solved Poisson problems using the inite
element method over a function space consisting of 3D grid-based B-spline basis functions restricted to the shape’s
surface. They demonstrated geometry processing applications such as texture back-projection and curvature
estimation. They also showed that the observed eigenspectra are much less dependent on the surface triangulation
than with standard mesh-based methods. While their approach has some conceptual connections to CPM, it does
not possess the same degree of simplicity or generality as CPM, nor does it support IBCs. The thesis by Chuang
[2013] further demonstrates an extension of this approach to use locally non-manifold grids to address narrow
bottlenecks, where two pieces of a surface are close in Euclidean distance but far apart in geodesic distance. Our
work also introduces a non-manifold grid structure, but with the distinct aim of handling IBCs.

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 5

CPM itself has been applied in computer graphics, primarily for luid animation. Hong et al. [2010] used a
modiied CPM to evolve and control the motion of lame fronts restricted to surfaces. The work of Kim et al.
[2013] increased the apparent spatial resolution of an existing volumetric liquid simulation by solving a wave
simulation on the liquid surface. The surface wave equation and Navier-Stokes equations were solved by Auer
et al. [2012] with a real-time implementation on the GPU. Auer and Westermann [2013] subsequently extended
this work to support deforming surfaces given by a sequence of time-varying triangle meshes (predating the
moving surface work of Petras and Ruuth [2016] in computational physics). Morgenroth et al. [2020] employed
CPM for one-way coupling between a volumetric luid simulation and a surface luid simulation for applications
such as oil ilms spreading on liquid surfaces.
Wang et al. [2020] coupled moving-least-squares approximations on codimension-1 and 2 objects with grid-

based approximations for codimension-0 operators in surface-tension driven Navier-Stokes systems. The ability
of CPM to handle mixed-codimension objects makes it an ideal candidate for a uniied solver.

2.3 Interior Boundary Conditions on Manifolds

Existing numerical methods for manifold PDEs support IBCs in various ways depending on the chosen manifold
representation and method of discretization. In the Dirichlet case, the nearest degrees of freedom (DOFs) to
the interior boundary can often simply be assigned the desired Dirichlet value. For example, on a point cloud
representation, the nearest interior points in the cloud could be set to the Dirichlet value, similar to how exterior

Dirichlet BCs have been handled in point clouds [Liang and Zhao 2013]. With triangle mesh-based discretizations
(inite element, discrete exterior calculus, etc.) one can similarly enforce the Dirichlet condition at the nearest
surface vertices to the interior boundaries. However, enforcing the IBC at the nearest DOF is inaccurate if the
DOF does not lie exactly on the interior boundary C (i.e., the mesh does not precisely conform to C). Speciically,
an error of � (∥h∥) is introduced where ∥h∥ is the distance between the nearest DOF and C. Moreover, only
Dirichlet conditions can be treated in this manner; depending on the chosen manifold representation and/or
discretization, it can be nontrivial to enforce Neumann boundary conditions.
For Dirichlet IBCs in CPM, Auer et al. [2012; 2013] ixed all the nearest DOFs in the embedding space within

a ball centred around C (considering only the case when C is a point). This again is only irst-order accurate,
incurring an � (Δ�) error, where Δ� is the grid spacing in the embedding space. Enforcing the IBC over a ball
efectively inlates the boundary region to a wider area of the surface. That is, a circular region of the surface
around the point C will be ixed with the prescribed condition. We show in Section 6 that this approach can
also be applied to boundary curves, but the observed error is much larger compared to our proposed method.
Moreover, it cannot be applied when Dirichlet values difer on each side of C.
With a surface triangulation, a more accurate approach is to remesh the surface with constrained Delaunay

reinement (possibly with an intrinsic triangulation) so that vertices or edges of the mesh conform to C, as
discussed for example by Sharp and Crane [2020]. However, this necessarily introduces remeshing as an extra
preprocess. Another mesh-based approach, which avoids remeshing, is the extended inite element method
[Kaufmann et al. 2009; Moës et al. 1999], which uses modiied basis functions to enforce non-conforming
boundaries or discontinuities.

Most similar to our approach is the method of Shi et al. [2007] who enforced Dirichlet IBCs for a manifold PDE
method based on level sets. As with CPM, solving surface PDEs with level sets [Bertalmıo et al. 2001] involves
extending the problem to the surrounding embedding space. For such embedding methods, it is crucial not only
to account for the interior boundary itself but also its inluence into the associated embedding space. To do
so, the approach of Shi et al. [2007] explicitly constructs a triangulation to represent a normal manifold S⊥

(see (6)) extending outwards from the interior boundary curve C (notably contrasting with the implicit nature of
level-sets). They then perform geometric tests to determine if stencils intersect S⊥ and modify the discretization

ACM Trans. Graph.

6 • N. King, et al.

locally. We instead introduce a simple triangulation-free approach to determine if stencils cross S⊥ that only
involves closest points, bypassing explicit construction of S⊥. Moreover, such level-set approaches necessarily
require a well-deined inside and outside, which makes handling open manifolds, nonorientable manifolds, and
manifolds of codimension-two or higher impossible with a single level set.

Our proposed CPM extension overcomes several limitations of the existing CPM (Dirichlet-only) IBC treatment
of Auer et al. [2012]. We demonstrate that our method can easily be extended to second-order, for both Dirichlet
and zero-Neumann cases. It can also handle jump discontinuities in Dirichlet values across interior boundary
curves. Furthermore, our approach supports what we call mixed boundary conditions, e.g., Dirichlet on one side
and Neumann on the other. Both jump discontinuities and mixed IBCs are useful for various applications, such as
difusion curves [Orzan et al. 2008].

The key attribute of our IBC approach that allows the above lexibility for BC types is the introduction of new
DOFs near C. This idea shares conceptual similarities with virtual node algorithms [Molino et al. 2004], which
have been used for codimension-zero problems [Azevedo et al. 2016; Bedrossian et al. 2010; Hellrung Jr. et al.
2012]. It is also similar to the CPM work of Cheung et al. [2015], who used new DOFs near sharp features of S
(albeit with the radial-basis function discretization of CPM).

2.4 Eficiency of CPM

CPM involves constructing a computational domain Ω(S) in the embedding space R� surrounding S. Linear
systems resulting from the PDE discretization on Ω(S) must then be solved. For large systems (usually resulting
from problems with � ≥ 3) memory consumption is dominated by the storage of Ω(S). However, computation
time is dominated by the linear system solve.

CPM naturally allows Ω(S) to occupy only a narrow tubular region of the embedding space near S, analogous
to narrow banding for level-set techniques [Adalsteinsson and Sethian 1995]. Therefore, the number of unknowns
scales with dim(S) rather than � . Note that dim(S) ≤ � for manifold PDEs. The linear system solve will be
faster with fewer unknowns, so it is important that the construction of the computational domain be carried out
local to S only. Ruuth and Merriman [2008] used a simple procedure to construct Ω(S) that involved storing a
uniform grid in a bounding box of S and computing the closest point for every grid point in the bounding box.
Finally, an indexing array was used to label which grid points are within a distance �Ω (S) of S, where �Ω (S) is
the computational tube-radius (see (4)).

The procedure of Ruuth and Merriman [2008] gives linear systems that scale with dim(S), but memory usage
and closest point computation still scale with � . Macdonald and Ruuth [2010] used a breadth-irst-search (BFS),
starting at a grid point near S, that allows the number of closest points computed to scale with dim(S). We use
a similar BFS when constructing Ω(S); see Section 5 for details. However, Macdonald and Ruuth [2010] still
required storing the grid in the bounding box of S, while we adopt sparse grid structures which achieve eicient
memory use by allocating only grid points of interest instead of the full grid.
May et al. [2020] overcame memory restrictions arising from storing the full bounding-box grid by using

domain decomposition to solve the PDE with distributed memory parallelism. The code detailed by May et al.
[2022] is publicly available but requires specialized hardware to exploit distributed memory parallelism.

Auer et al. [2012] also used specialized hardware, i.e., their CPM-based luid simulator was implemented on a
GPU. However, they employed a two-level sparse block structure for memory-eicient construction of Ω(S) that
is also suitable for the CPU. A coarse-level grid in the bounding box of S is used to ind blocks of the ine-level
grid (used to solve the PDE) that intersect S. Thus, the memory usage to construct the ine-level grid Ω(S) scales
with dim(S), as desired. The coarse-level grid still scales with �, but does not cause memory issues because its
resolution is much lower than the ine-level one. We adopt a similar approach for constructing Ω(S), although
our implementation is purely CPU-based.

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 7

There has also been work on eicient linear system solvers for CPM. Chen and Macdonald [2015] developed
a geometric multigrid solver for the manifold screened-Poisson equation. May et al. [2020, 2022] proposed
Schwarz-based domain decomposition solvers and preconditioners for elliptic and parabolic manifold PDEs. We
implement a custom BiCGSTAB solver (with OpenMP parallelism), as detailed in Section 5.4, that avoids explicit
construction of the full linear system. Our solver is more eicient, with respect to memory and computation
time (see Section 6.5), compared to Eigen’s SparseLU and BiCGSTAB implementations [Guennebaud et al. 2010].
Moreover, it circumvents the intricacies associated with implementing multigrid or domain decomposition
techniques.

3 Closest Point Method and Exterior Boundary Conditions

3.1 Continuous Seting

Consider a manifold S embedded in R� , where � ≥ dim(S). The closest point method uses a closest point (CP)
representation of S, which is a mapping from points x ∈ R� to points cpS (x) ∈ S. The point cpS (x) is deined
as the closest point on S to x in Euclidean distance, i.e.,

cpS (x) = argmin
y∈S

∥x − y∥ .

A CP representation can be viewed as providing both implicit and explicit representations. The mapping cpS :

R
� → S represents S implicitly: a traditional scalar (though unsigned) implicit manifold can be recovered by

computing the distance ∥x − cpS (x)∥. Meanwhile, the closest points themselves give an explicit representation
of S, albeit without connectivity (i.e., a point cloud).

CPM embeds the manifold problem into the space surrounding S. Consider a tubular neighbourhood deined
as

N(S) =
{
x ∈ R�

��� ∥x − cpS (x)∥ ≤ �N(S)

}
,

N(S)

D̂

D

where �N(S) is called the tube radius. The inset (top) shows an example of a tube N(S) (gray)

around a 1D curve S (coloured) embedded in R2. To solve manifold PDEs with CPM an embedding

PDE is constructed on N(S), whose solution agrees with the solution of the manifold PDE at
points y ∈ S. Let �̂ (y), for y ∈ S, and � (x), for x ∈ N (S), denote the solutions to the manifold
PDE and embedding PDE, respectively. Fundamentally, CPM is based on extending manifold data
�̂ from S onto N(S) such that the data is constant in the normal direction of S. This task is
accomplished using the closest point extension, which is the composition of �̂ with cpS , i.e., we
take � (x) = �̂ (cpS (x)) for all x ∈ N (S). The inset (bottom) visualizes � ∈ N (S) resulting from
the CP extension of �̂ ∈ S (inset, top).

Crucially, Ruuth and Merriman [2008] observed that this extension allows manifold diferential
operators LS on S to be replaced with Cartesian diferential operators L on N(S). Since the
function� onN(S) is constant in the normal direction,� only changes in the tangential direction
of S. Hence, Cartesian gradients on N(S) are equivalent to manifold gradients for points on the
manifold. By a similar argument, manifold divergence operators can be replaced by Cartesian
divergence operators onN(S). Higher order derivatives are handled by combining these gradient
and divergence principles with CP extensions onto N(S).

In this section, we illustrate CPM for solving the manifold Poisson equation ΔS�̂ = �̂ , with

the embedding PDE Δ�̂ (cpS (x)) = �̂ (cpS (x)) or equivalently Δ� (x) = � (x). (Technically, this
embedding PDE is ill-posed because � (x) is constant in the normal direction of S, but Δ� (x) is not. It is used here
for ease of exposition. Chen and Macdonald [2015, Section 2.3] and Macdonald et al. [2011] discuss the well-posed
version which modiies Δ� (x). The well-posed version is used in our numerical examples, see Section 5.3.)

ACM Trans. Graph.

8 • N. King, et al.

3.2 Discrete Seting

In the discrete setting, the computational domain is a collection of Cartesian grid points Ω(S) ⊆ N (S) with
uniform spacing Δ� . The closest point cpS (x�) to each grid point x� ∈ Ω(S) is computed and stored. Discrete
approximations of the CP extension and diferential operators are needed to solve the embedding PDE. For
our example Poisson equation, Δ� (x) = � (x), we need to approximate the CP extensions � (x) = �̂ (cpS (x))

and � (x) = �̂ (cpS (x)), as well as the Laplacian Δ. Interpolation is used to approximate the CP extension and
inite-diferences (FDs) are used for diferential operators.

The CP extension requires interpolation since cpS (x�) is generally not a grid point in Ω(S). Thus, the manifold
value �̂ (cpS (x�)) is approximated by interpolating from discrete values�� ≈ � (x�) stored at grid points x� ∈ Ω(S)

surrounding cpS (x�). The interpolation degree should be chosen such that interpolation error does not dominate
the solution. Throughout we use barycentric-Lagrange interpolation with polynomial degree � [Berrut and
Trefethen 2004]. This is an eicient form of Lagrange interpolation for CPM [Ruuth and Merriman 2008, Section

2.5]. (Manifold data given in the manifold PDE problem, e.g., the function �̂ or an initial condition for time-
dependent problems, is extended onto Ω(S) in a diferent way that depends on the data representation. See
Section 5.2 for details.)

For a given grid point x� ∈ Ω(S), we have the following approximation of the closest point extension:

�̂ (cpS (x�)) = � (x�) ≈
︁
�∈I�

��
� � � , (1)

where I� denotes the set of indices corresponding to grid points in the interpolation stencil for the query point
cpS (x�) and�

�
� are the barycentric-Lagrange interpolation weights corresponding to each grid point in I� .

FD discretizations on Ω(S) are used to approximate a Cartesian diferential operator L as

L� (x�) ≈
︁
�∈D�

����� , (2)

whereD� denotes the set of indices corresponding to grid points in the FD stencil centred at the grid point x� . The
FD weights are denoted ��

�
for each x� with � ∈ D� . For example, the common second-order centred-diference

for the discrete Laplacian has weights 1/(Δ�)2 if � ≠ � and −2�/(Δ�)2 if � = � .
With these CP extension and diferential operator approximations, the Laplace-Beltrami operator ΔS�̂ is

approximated on Ω(S) as

ΔS�̂ (cpS (x�)) ≈
︁
�∈D�

���
©­«
︁
�∈I�

��
� � �

ª®¬
. (3)

Hence, to solve the discrete embedding PDE (for ΔS�̂ = �̂) we form a linear system using the equation

︁
�∈D�

���
©­«
︁
�∈I�

��
� � �

ª®¬
= �� ,

to solve for unknowns �� at grid points x� ∈ Ω(S). Finally, the solution to the original manifold PDE can be
recovered at any y ∈ S by interpolation as needed. The reader may refer to prior CPM work [Macdonald et al.
2011; Macdonald and Ruuth 2010; Ruuth and Merriman 2008] for further background.

Tube Radius of the Computational Domain. One could use a grid Ω(S) that completely ills R� , but this choice is
ineicient since only a subset of those points (i.e., those near S) afect the numerical solution on the manifold. It
is only required that all grid points within the interpolation stencil of any point on the manifold have accurate
approximations of the diferential operators. Barycentric-Lagrange interpolation uses a hypercube stencil of

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 9

� + 1 grid points in each dimension. Consider a hyper-cross FD stencil that uses � grid points from the centre
of the stencil in each dimension. An upper bound estimate of the computational tube-radius, �Ω (S) , for the
computational domain Ω(S) is [Ruuth and Merriman 2008]

�Ω (S) = Δ�

︄
(� − 1)

(
� + 1

2

)2
+

(
� +

� + 1

2

)2
. (4)

Therefore, our computational domain Ω(S) consists of all grid points x� satisfying ∥x� − cpS (x�)∥ ≤ �Ω (S) .

Explicit construction of Ω(S) is discussed in Section 5.1.

3.3 Exterior Boundary Conditions for Open Manifolds

When the manifold S is open (i.e., its geometric boundary �S ≠ ∅) some choice of boundary condition (BC) must
usually be imposed on �S (e.g., Dirichlet, Neumann, etc.). We will refer to these as exterior boundary conditions.
In many applications, however, similar types of boundary conditions may be needed at locations on the interior
of S, irrespective of S being open or closed. In this case, interior boundary conditions (IBCs) should be enforced
on a subset C ⊂ S, which typically consists of points C on a 1D curve S, or points and/or curves C on a 2D
surface S. Our proposed approach for IBCs in Section 4 builds on existing CPM techniques for applying exterior
BCs at open manifold boundaries, which we review below.

A subset Ω(�S) ⊂ Ω(S) of grid points called the boundary subset is used to enforce exterior BCs. It consists of
all x� satisfying cpS (x�) ∈ �S, i.e., grid points whose closest manifold point is on the boundary of S. Equivalently,

Ω(�S) =
{
x� ∈ Ω(S)

�� cpS (x�) = cp�S (x�)
}
, (5)

where cp�S is the closest point function to �S. Geometrically, Ω(�S) is a half-tubular region of grid points past
�S, halved by the manifold orthogonal to S at �S deined by

S⊥ = {x ∈ N (S) | x = y + � nS (y), y ∈ �S, |� | ≤ �Ω (S) }, (6)

when S is codimension one. The manifold normal at y ∈ �S is deined as the limiting normal nS (y) =

limz→y nS (z), where z ∈ S and nS (z) is the unit normal of S at z. Figure 3 illustrates this for a 1D curve

embedded in R2.
CPM naturally applies irst-order homogeneous Neumann BCs, ∇S�̂ · n�S = 0, where n�S is the unit conormal

of �S. The conormal is a vector normal to �S, tangential to S, and oriented outward [Dziuk and Elliott 2007].
Therefore, n�S (y) ≠ nS (y) for y ∈ �S, and n�S (y) is orthogonal to nS (y) since n�S (y) is in the tangent space
of S. The CP extension propagates manifold data constant in both nS and n�S at �S. Hence, inite diferencing

Ω(mS)

Ω(S)

mS

S? S

Fig. 3. The boundary subset Ω(�S) (purple points) for a curve S (blue) comprises those grid points in Ω(S) (black grid)
whose closest point is on the boundary �S (white point). The points x� ∈ Ω(�S) are those past the normal manifold S⊥

based at �S (green).

ACM Trans. Graph.

10 • N. King, et al.

across the boundary subset Ω(�S) will measure zero conormal derivatives [Ruuth and Merriman 2008] and the
discretization of the manifold diferential operator can be used without any changes at x� ∈ Ω(�S).
However, to enforce irst-order Dirichlet BCs on �S, the CP extension step must be changed. The prescribed

Dirichlet value at the closest point of x� ∈ Ω(�S) is extended to x� (instead of the interpolated value in (1)).
That is, the CP extension assigns �� = �̂ (cpS (x�)) for all x� ∈ Ω(�S), where �̂ (cpS (x�)) is the Dirichlet value at
cpS (x�) ∈ �S. Only this extension procedure changes; the FD discretization is unchanged for all exterior BC
types and orders.

For improved accuracy, second-order Dirichlet and zero-Neumann exterior BCs were introduced by Macdonald
et al. [2011] using a simple modiication to the closest point function. The closest point function is replaced with

cpS (x) = cpS (2cpS (x) − x). (7)

Efectively, rather than inding the closest point, this expression determines a łrelectedž point, and returns its
closest point instead.
Observe that cpS satisies cpS (x�) = cpS (x�) if x� ∉ Ω(�S)

S

cpS (x:)

cpS (x:)
2cpS (x:) − x:

x:

cpS (x9) = cpS (x9)

2cpS (x9) − x9
x9

(and cpS (x) is unique). Therefore, no change occurs to CPM on the interior of S (see inset,
bottom), so we continue to use cpS (x) for x ∈ Ω(S) \ Ω(�S). However, for boundary points
x� ∈ Ω(�S), we have cpS (x�) ≠ cpS (x�), since cpS (x�) is a point on the interior of S while
cpS (x�) is a point on �S (see inset, top). Hence, for a lat manifold, �̂ (cpS (x�)) gives the
interior mirror value for x� . For a general, curved manifold �̂ (cpS (x�)) gives an approximate
mirror value.
Thus, replacing cpS with cpS will naturally apply second-order homogeneous Neumann

exterior BCs: approximatemirror values are extended to x� ∈ Ω(�S), so the efective conormal
derivative becomes zero at �S. This approach generalizes popular methods for codimension-
zero problems with embedded boundaries, where mirror values are also assigned to ghost points (see e.g., Section
2.12 of [LeVeque 2007]). In practice, the only change required is to replace I� and corresponding weights in (1)
with those for cpS (x�).

Second-order Dirichlet exterior BCs similarly generalize their codimension-zero counterparts, e.g., the ghost
luid method [Gibou et al. 2002] that ills ghost point values by linear extrapolation. The CP extension at
x� ∈ Ω(�S) becomes � (x�) = 2�̂ (cpS (x�)) − � (cpS (x)), where �̂ (cpS (x�)) is the prescribed Dirichlet value on
�S. Hence, for x� ∈ Ω(�S) we change (1) to

�� = 2�̂ (cpS (x�)) −
︁
�∈I�

��
�� � , (8)

where I� and��
� are the interpolation stencil indices and weights for cpS (x�), respectively.

Remark that S can have multiple boundaries, so there may be multiple Ω(�S) regions where this BC treatment
must be applied.

4 Interior Boundary Conditions

As discussed in Section 3, the discrete setting of CPM involves two main operations: interpolation for CP
extensions and inite diferences (FDs) for diferential operators. Exterior BCs are handled by modifying the
CP extension interpolation while keeping the inite diferencing the same (Section 3.3). Below we describe our
proposed technique to extend CPM with support for interior BCs, which consists of two key changes: adding
new degrees of freedom (DOFs) and carefully altering both the interpolation and FD stencils.

Table 1 summarizes important notation. For the rest of this paper we focus on the cases where the manifold S is
a curve embedded in R2 or a surface embedded in R3. Let C ⊂ S denote the interior region where the BC is to be
applied, which can be a point (in 2D or 3D) or an open or closed curve (in 3D). Since CPM is an embedding method

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 11

S

C

S?

Fig. 4. On the let, a normal manifold S⊥ (green) extends perpendicularly outwards from a curve C (white) where an IBC is
to be applied. On the right, closest points cpS (x�) for x� ∈ Ω(C) (yellow and purple) cannot be globally partitioned into two
disjoint sets by C on a nonorientable S (blue).

we must consider the inluence of C on the embedding space N(S). Let S⊥ denote a (conceptual) manifold
orthogonal to S along C, i.e., analogous to S⊥ deined in (6) for the exterior boundary case, but with �S replaced
by C. See Figure 4 (left) for an example curve C on a surface S and its normal manifold S⊥ at C.

4.1 Adding Interior Boundary DOFs

Exterior BCs incorporate the BC using grid points x� ∈ Ω(�S) as deined in (5). These grid points x� ∈ Ω(�S) are
only needed to enforce the exterior BC since they lie on the opposite side of S⊥ from S. Therefore, CP extension
stencils for x� ∈ Ω(�S) can be safely modiied to enforce exterior BCs.

For interior BCs, the situation is more challenging. Similar to Ω(�S), a new interior boundary subset Ω(C) ⊂

Ω(S) is deined as

Ω(C) = {x� ∈ Ω(S) | ∥x� − cpC (x�)∥ ≤ �Ω (S) }, (9)

where cpC is the closest point function of C. Comparing with (5), the subsets Ω(�S) and Ω(C) are deined in the
same way, except Ω(�S) has the extra property cpS (x�) = cp�S (x�) for all x� ∈ Ω(�S); i.e., points in the exterior
boundary subset have a closest manifold point that is also their closest boundary point. Grid points in the interior
boundary subset do not: x� ∈ Ω(C) will in general have cpS (x�) ≠ cpC (x�) unless the point x� ∈ S⊥.
Ideally, we would use the grid points x� ∈ Ω(C) to enforce the IBC, analogous to the exterior case. However,

the tubular volume surrounding C, {x ∈ N (S) | ∥x − cpC (x)∥ ≤ �Ω (S) }, which contains Ω(C), also intersects
with S. Therefore, we cannot simply repurpose and modify CP extension stencils for x� ∈ Ω(C), since they are
needed to solve the manifold PDE on S \ C.
We propose to add a second set of spatially colocated DOFs, called the BC DOFs, at all x� ∈ Ω(C). The BC

DOFs allow us to apply similar techniques for interior BCs as was done for exterior BCs. Speciically, given a
computational domain Ω(S) of �S grid points and the subset Ω(C) of �C grid points, the discrete linear system
to be solved will now involve �S +�C DOFs. We order the BC DOFs after the original PDE DOFs. That is, indices
in the set �S = { � ∈ N | 0 ≤ � < �S} give x� ∈ Ω(S) while indices in the set �C = {� ∈ N | �S ≤ � < �S +�C}

give x� ∈ Ω(C). Throughout we use Greek letters to denote indices in �C to clearly distinguish from indices in
�S . Note that for every BC DOF � ∈ �C there is a corresponding PDE DOF � ∈ �S such that x� = x� . The key
question then becomes: when do we use PDE DOFs versus BC DOFS?
Intuitively, the answer is simple: interpolation and FD stencils (I� and D� from (1) and (2)) must only use

manifold data �̂ from the same side of S⊥ that the stencil belongs to. Therefore, if a stencil involves manifold
data on the opposite side of S⊥, the IBC must be applied using the BC DOFs.

ACM Trans. Graph.

12 • N. King, et al.

Table 1. A summary of symbols used in this paper.

Symbol Description

S Manifold

C Subset of S where IBC is enforced

dim(S) Dimension of manifold S

� Dimension of embedding space surrounding S

�̂ Manifold intrinsic function

� Function in embedding space R�

N(S) Tubular neighbourhood surrounding S

nS Unit manifold normal vector

n�S Unit conormal vector along �S

S⊥ Manifold orthogonal to S along C

cpS (x) Closest point in S to x ∈ R�

cpC (x) Closest point in C to x ∈ R�

cpS−C (x) Diference between closest point to S and C

Ω(S) Grid surrounding S (subset of N(S))

Ω(C) Interior boundary subset of Ω(S)

Ω(�S) (Exterior) boundary subset of Ω(S)

Ω(�C) Boundary subset of interior boundary subset Ω(C)

�N(S) Tube radius of N(S)

�Ω (S) Computational tube-radius

�S Number of grid points in Ω(S)

�C Number of grid points in Ω(C)

�S Set of indices for x� ∈ Ω(S)

�C Set of indices for x� ∈ Ω(C)

� Index in �S
� Index in �C
x� Grid point in Ω(S)

x� Grid point in Ω(C)

D� Indices of grid points in inite-diference stencil of x�
I� Indices of grid points in interpolation stencil of cpS (x�)

Figure 5 gives a conceptual illustration of the process for a point C on a circle S embedded in R2. Both BC DOFs
and PDE DOFs are present in the region of Ω(�). The BC DOFs are partitioned into one of two sets depending
on which side of S⊥ the closest point cpS (x�) is on. The original grid Ω(S) and duplicated portion Ω(C) are cut,
and each half of Ω(C) is joined to the opposing side of Ω(S).

The same treatment of BCs as in the exterior case is then applied on this nonmanifold grid Ω(S) ∪ Ω(C). That
is, the required modiications to the CP extension interpolation stencils in Section 3.3 are applied. Unlike the
exterior BC case, however, changes to FD stencils do occur for IBCs since Ω(C) and Ω(S) are cut and joined to
opposite sides of each other.

IfS is orientable then this intuitive picture in Figure 5 is an accurate depiction of the necessary grid connectivity.
That is, near C we must duplicate DOFs and cut and join opposite pieces of Ω(S) and Ω(C) to produce regions
(similar to Ω(�S)) where BCs can be imposed. However, if S is nonorientable the closest points cpS (x�) for
x� ∈ Ω(C) cannot be globally partitioned into two sides. For example, on the Möbius strip in Figure 4 (right), an
apparent lip in the partitioning of cpS (x�) is unavoidable as one moves along a curve C that loops around the
whole strip.

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 13

Ω(C)
Ω(S)

S?
Ω(S) [Ω(C)

C

SS?

Fig. 5. A conceptual illustration of our approach to interior boundaries for a point C (white) on a curve S (blue) in R2. Let
column: Duplicated BC DOFs are generated in the boundary subset Ω(C) around C (thick black grid). Middle column: The
normal manifold S⊥ (green) locally partitions the grid into two sides (yellow, purple). Right column: The modified grid
connectivity is illustrated by warping it into R3.

Fortunately, IBCs can still be enforced on nonorientable manifolds because the manifold can be oriented locally.
The interpolation and FD stencils only perform operations in a small local region of Ω(S), so locally orienting
the manifold is suicient to enforce IBCs.

4.2 S⊥ Crossing Test

We must keep computation local to each stencil to handle nonorientable manifolds. Therefore, irst consider
testing if any two closest points of x1, x2 ∈ N (S) are on opposite sides of S⊥. A naive approach would be to
construct S⊥ explicitly, e.g., with a surface triangulation (as was done by Shi et al. [2007]), and then test if the
line segment between cpS (x1) and cpS (x2) intersects the triangulation. However, building an explicit surface is
counter to the implicit spirit of CPM.

Determining if cpS (x1) and cpS (x2) are on opposite sides of S⊥ can instead be accomplished based on closest
points on C. Let cpC (x1) and cpC (x2) be the closest points to x1 and x2 on C, respectively. Deine the vector
cpS−C (x) as

cpS−C (x) ≡ cpS (x) − cpC (x). (10)

Denote the locally-oriented unit normal to S⊥ at y ∈ C as nS⊥ (y). The function
� (x) ≡ cpS−C (x) · nS⊥ (cpC (x)) (11)

will have diferent signs for � (x1) and � (x2) if cpS (x1) and cpS (x2) are on diferent sides of S⊥, or equivalently
� (x1)� (x2) < 0. However, this direct test would require computing nS⊥ along C and locally orienting that normal
vector.

Instead of checking the directions cpS−C relative to the locally oriented normals nS⊥ , we can check the
directions of cpS−C (x1) and cpS−C (x2) relative to each other. As illustrated in Figure 6, if cpS (x1) and cpS (x2)

ACM Trans. Graph.

14 • N. King, et al.

S

x1
x2

cpS (x1)

cpS (x2)

cpC (x1)
cpC (x2)

C S?

Fig. 6. For two points x1, x2 ∈ N (S), we can determine if the closest points, cpS (x1), cpS (x2), lie on opposite sides of C
based on their orientations relative to the corresponding closest points on C, cpC (x1), cpC (x2).

are on opposite sides of S⊥ the associated cpS−C (x) vectors will point in opposing directions; thus, we can
simply check if their dot product is negative:

cpS−C (x1) · cpS−C (x2) < 0. (12)

In practice, we ind (12) suicient to obtain second-order accuracy in the convergence studies of Section 6 on
smooth S and C.

When x is close to S⊥ the vector cpS−C (x) ≈ 0, which can result in an inaccurate classiication of which side
cpS (x) is on. Therefore, if ∥cpS−C (x)∥ = O(Δ�2) the point cpS (x) is considered to lie on C and can be safely
assigned to either side, while maintaining second-order accuracy. In practice, we consider cpS (x) to lie on C if
∥cpS−C (x)∥ < 0.1Δ�2.
As we have noted, the locality of this S⊥ crossing test allows it to handle nonorientable manifolds with CPM

and IBCs. However, on orientable manifolds one can still globally orient stencils in Ω(C) to impose diferent
values or types of IBCs on either side of C. For example, diferent prescribed Dirichlet values on each side of C
are useful for vector ield design. Mixing Dirichlet and Neumann IBCs on C in this way can also be useful for
difusion curves.

4.3 Stencil Modifications

In this section, we describe how to use the S⊥ crossing test to impose IBCs by altering interpolation and FD
stencils. The S⊥ crossing test (12) allows us to determine if any two points x1, x2 ∈ N (S) have closest points
cpS (x1), cpS (x2) on opposite sides of S⊥. Ultimately, we employ this test to determine if the closest points
cpS (x�) for � ∈ I� or D� are on the opposite side of S⊥ relative to a stencil for x� , so the stencil can use the
correct PDE vs. BC data.

A stencil is itself assigned to a particular side of S⊥ based on the location of an associated point on S that we
call the stencil director, denoted y★. For the FD stencil of x� the stencil director is y

★

� = cpS (x�), since grid data at
x� corresponds to manifold data at cpS (x�). For the interpolation stencil of x� used for the CP extension, the stencil
director is the interpolation query point cpS (x�), i.e., y★� = cpS (x�). Each stencil director also has a corresponding
stencil direction denoted d★. For FD and CP extension interpolation stencils d★� = cpS−C (x�) = y★� − cpC (x�).
It is, however, not always the case that y★� = cpS (x�). Interpolation of the solution on the grid Ω(S) ∪ Ω(C)

can also be used to obtain the inal solution at any set of manifold points. For example, if one desires to transfer
the solution to a mesh or a point cloud (e.g., for display or downstream processing), interpolation can be used

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 15

to obtain the solution on vertices of the mesh or points in the cloud (see Section 5.5). In this case, the stencil
director is just the interpolation query point y★ = y� ∈ S and the stencil direction is d★ = y★ − cpC (y★).

PDE DOF Modifications. The irst step to incorporate IBCs is to alter the stencils for the PDE DOFs in �S . The
computation in both (1) and (2) for � ∈ �S has the form

�� =
︁
�∈G�

���� � ,

where G� ⊂ �S are indices corresponding to grid points in the stencil for � (i.e., G� = I� or G� = D�) and �
�
� are

corresponding weights.
To incorporate IBCs, the index � ∈ G� is replaced with its corresponding BC DOF index � ∈ �C if data at x�

comes from the opposite side of S⊥. The corresponding stencil weight ��� remains unchanged. Using the S⊥
crossing test (12), for all � ∈ G� , we replace � ∈ �S with its corresponding � ∈ �C if

d★� · cpS−C (x�) < 0. (13)

If our equations are written in matrix form, these modiications to the PDE DOFs above would change �S ×�S
matrices to be size �S × (�S + �C). The next step is to add the BC equations for the BC DOFs in �C , resulting in
square matrices again of size (�S + �C) × (�S + �C).

BC DOF Modifications. Finite-diference stencils are added for the BC DOFs with � ∈ �C and modiied in a similar
way to the PDE DOFs above. The same grid connectivity is present in Ω(C) as the corresponding portion of
Ω(S) (except at the boundary of Ω(C)). Therefore, the same FD stencils on Ω(S) are used on Ω(C) except with
indices � ∈ �C (and indices not present in Ω(C), i.e., grid points in Ω(S) around the edge of Ω(C), are removed).
Hence, using the S⊥ crossing test (12) for all � ∈ D� , the index � ∈ �C is replaced with its corresponding � ∈ �S if

d★� · cpS−C (x�) < 0. (14)

The CP extension BC equations discussed in Section 3.3 for exterior BCs are used on the BC DOFs with � ∈ �C .
However, irst-order zero-Neumann IBCs are no longer automatically imposed as in Section 3.3. Instead, for
irst-order zero-Neumann IBCs, the CP extension extends manifold data �̂ at cpC (x�) for x� ∈ Ω(C), i.e.,

�̂ (cpC (x�)) = � (x�) ≈
︁
�∈I�

��
��� .

Once again the S⊥ crossing test (12) is used to ensure DOFs are used from the correct sides of S⊥. In this case,
the stencil director (interpolation query point) is y★� = cpC (x�), which gives d★� = 0 since y★� is on both C and
S. However, the vector d★� ≡ cpS (x�) − cpC (x�) gives the correct direction to deine which side of S⊥ the
interpolation stencil belongs to. Then, for all � ∈ I� , we replace � ∈ �C with its corresponding � ∈ �S if (14)
holds.

For second-order zero-Neumann IBCs, the only modiication required is to replace cpC (x) with
cpC (x) = cpS (2cpC (x) − x). (15)

Note that (15) is diferent from the form used for exterior BCs in (7), as it involves both cpS and cpC . However,
the purpose of this modiied closest point function (15) remains the same, i.e., the point cpC (x) is an approximate
mirror location.

The CP extension equations for BCDOFs, with� ∈ �C, to enforce Dirichlet IBCs are analogous to Section 3.3. The
prescribed Dirichlet value, �̂ on C, is extended for irst-order Dirichlet IBCs, i.e.,� (x) = �̂ (cpC (x)) or in the discrete
setting �� = �̂ (cpC (x�)) . For second-order Dirichlet IBCs, the extension is � (x) = 2�̂ (cpC (x)) − � (cpC (x)),
which becomes analogous to (8) in the discrete setting.

ACM Trans. Graph.

16 • N. King, et al.

4.4 Open Curves C in R3

Past the endpoints of an open curve C the PDE should be solved without the IBC being enforced. However, the
set Ω(C) includes half-spherical regions of grid points past the boundary point �C. These half-spherical regions
are analogous to the exterior boundary subsets Ω(�S) in Section 3.3 and are deined as

Ω(�C) = {x� ∈ Ω(C) | cpC (x�) = cp�C (x�)}. (16)

We do not perform the modiications of Section 4.3 for points x� ∈ Ω(�C) since this would enforce the IBC
where only the PDE should be solved. In other words, the BC DOFs in Ω(�C) are not added to the linear system.

4.5 Points C in R3

Remarkably, and unlike for open curves, when C is a point on S embedded in R3 no change to the stencil
modiication procedure in Section 4.3 is needed. To understand why, consider two simpler options. First, without
any boundary treatment whatsoever near C the PDE is solved but the IBC is ignored. Second, a naive irst-order
treatment simply sets either the nearest grid point or a ball of grid points around C to the Dirichlet value; however,
at those grid points the PDE is now ignored. Instead, the grid points near C should be inluenced by the IBC at C,
while also satisfying the PDE.

Under the procedure of Section 4.3, the cpS−C (x�) and d★� vectors will point radially outward from the point
C (approximately in the tangent space of S at C). The S⊥ crossing test (12) becomes a half-space test, where the
plane � partitioning the space goes through C with its normal given by the stencil direction vector, d★� . In the
stencil for y★� , points on the same side of � as y★� are treated as PDE DOFs, while points on the opposite side
receive the IBC treatment (either irst or second-order as desired). However, the direction of d★� , and hence the
half-space, changes for each grid point’s stencil (radially around C). The d★� changes because the location of y★�
changes for each � with cpC (x�) ixed at C. This spinning of � radially around C allows the PDE and the IBC
to be enforced simultaneously since both PDE and IBC equations are added to the linear system for all points
x� ∈ Ω(C).

Therefore, for a point C ∈ S ⊂ R3, our irst-order Dirichlet IBC method acts as an improvement of the approach
of Auer et al. [2012], where only points x� ∈ Ω(C) on one side of � (which revolves around C) are ixed with
the prescribed Dirichlet value. We observe that this reduces the error constant compared to Auer et al. [2012] in
convergence studies in Section 6. Furthermore, our approach in Section 4.3 allows us to achieve second-order
accuracy, whereas the method of Auer et al. [2012] is restricted to irst-order accuracy. Neumann IBCs at a point
C are not well-deined since there is no preferred direction conormal to C.

4.6 Localizing Computation Near C
Computation to enforce IBCs should only be performed locally around C for eiciency. The new BC DOFs satisfy
this requirement since they are only added at grid points x� within a distance �Ω (S) of C. This banding of Ω(C) is
possible for the same reason it is possible to band Ω(S) (see Section 3.2): grid points are only needed near S and
C because accurate approximations of diferential operators are only needed at grid points within interpolation
stencils.

The use of the S⊥ crossing test (12) has been discussed in terms of checking all interpolation and FD stencils
in Ω(S) and Ω(C) above. For eiciency, we would rather only check if cpS (x1) and cpS (x2) are on diferent
sides of S⊥ if x1 and x2 are near C. However, depending on the geometry of S and C, points x� ∉ Ω(C) can have
stencils for interpolating at cpS (x�) that cross S⊥, so testing only points x� ∈ Ω(C) does not suice.
We therefore check stencils that include grid points x� ∈ Ω(S) with ∥x� − cpC (x�)∥ < 2�Ω (S) for all the

examples in this paper. The closest points cpC (x�) are needed to compute ∥x� − cpC (x�)∥. Computation of cpC

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 17

for all x� ∈ Ω(S) is avoided using a similar breadth-irst search to the one used in the construction of Ω(S) (see
Algorithm 1 discussed in Section 5).

4.7 Improving Robustness of S⊥ Crossing Test

In practice, manifolds with small bumps of high curvature relative to the grid resolution can cause the S⊥ crossing
test (12) to be inaccurate. For example, the headdress of the Nefertiti mesh in Figure 1(a) has many small bumps,
which causes the cpS−C and d★ vectors to be far from orthogonal to S⊥ and C. The closest points near C are
then misclassiied as being on the wrong side of S⊥.

To make (12) more robust, we modify the cpS−C and d
★ vectors to be orthogonal to S⊥ and C before computing

the dot product. We illustrate this for a surface (2D manifold) embedded in R3 throughout this section. For this
case, (12) is used with cpS−C (x) replaced by

cp⊥S−C (x) =
(
I − nSn�S − tCt

�
C

)
cpS−C (x), (17)

(and similarly for d★) where I is the identity matrix and tC is the unit tangent vector along C. The manifold
normal nS and tangent tC are evaluated at cpC (x). Projecting out the nS and tC components is equivalent to
projecting cpS−C (x) onto nS⊥ (cpC (x)) . Therefore, the S⊥ crossing test (12) becomes equivalent to the direct test
that checks if � (x1)� (x2) < 0 (see Section 4.2), but without needing to orient nS⊥ . The vectors nS and tC must be
evaluated at cpC (x) since the vector cpS−C (x) starts at cpC (x) (and goes to cpS (x)). When C is a single point
the tangent direction is undeined, so only the nS component is projected out in this case. Let us now consider
how to compute nS and tC .
For a codimension-one manifold S the Jacobian of the closest point function, JcpS , is the projection operator

onto the tangent space of S for points on the manifold [King and Ruuth 2017; Marz and Macdonald 2012].
Therefore, for a surface in R3, the eigenvectors of JcpS are the manifold normal nS and two tangent vectors.

However, two arbitrary tangent vectors of S will not suice; we need the tangent tC along C. The curve C ∈ R3
has codimension two. The corresponding Jacobian for C, JcpC , is likewise equivalent to a projection operator onto
the tangent space of C [Kublik and Tsai 2016]. However, the eigenvectors of JcpC only provide a unique tangent
vector tC , since the normal and binormal to C can freely rotate around tC . Hence, we compute the manifold
normal nS from the eigendecomposition of JcpS , while tC is computed from the eigendecomposition of JcpC .
Second-order centred FDs in Ω(S) are used to compute JcpS . The Jacobian JcpS is only equivalent to the

tangent space projection operator at points on S. Therefore, a CP extension must be performed to obtain the
projection operator at all points x� ∈ Ω(S), i.e., JcpS (x�) = JcpS (cpS (x�)). In the discrete setting, the CP extension
is computed with the same interpolation discussed in Section 3.2. The Jacobian of cpC is computed similarly over
Ω(C).
From the above computation of JcpS and JcpC , the projection operators are known at points cpS (x�) and cpC (x�),

respectively. However, since the nS vectors are computed from JcpS , they are not yet available at cpC (x�) where
we need them. The nS vectors are therefore computed at cpC (x�) via barycentric-Lagrange interpolation (with
the same degree � polynomials as the CP extension). Interpolating nS vectors requires some care since they are
unoriented manifold normals. We adapt a technique proposed by Auer et al. [2012]: when interpolating nS, given
at points x� ∈ Ω(S), we locally orient the vectors within each interpolation stencil by negating vectors satisfying

nS (x�) · nS (x̃) < 0,

where x̃ is a single, ixed grid point in the interpolation stencil.

ACM Trans. Graph.

18 • N. King, et al.

4.8 A Nearest Point Approach for Dirichlet IBCs

It is also interesting to consider a nearest point approach for handling Dirichlet IBCs at C, similar to techniques
discussed in Section 2.3 for other manifold representations. That is, simply ix the grid points x� ∈ Ω(S) nearest
to C with the prescribed Dirichlet value, and remove them as DOFs. If C is a point, a single grid point is assigned
the Dirichlet value and removed as a DOF. If C is a curve, a set of nearest grid points is obtained (i.e., a raster
representation of C) and removed as DOFs by assigning Dirichlet values. To our knowledge, this approach has
not been used with CPM in any previous work.

This nearest point approach is attractive since new BC DOFs are unnecessary, i.e., Ω(C) is not needed. However,
it can only be used for Dirichlet IBCs with the same value on both sides of C. That is, two-sided Dirichlet IBCs
cannot be imposed with the nearest point approach, nor can Neumann IBCs. The nearest point approach is also

only irst-order accurate since the nearest point can be Δ�
√
�/2 away from C. In Section 6, we observe that the

nearest point approach has a better error constant than the method of Auer et al. [2012], but a similar or worse
error constant than our irst-order IBC approach above (see Figure 9(d)).

5 Implementation Aspects

5.1 Closest Points and Computational Domain Setup

The method of computing closest points, and its cost, will depend on the underlying manifold representation.
In Appendix A, we discuss the computation of closest points for some popular representations, including
parameterized manifolds, triangulated surfaces, point clouds, signed-distance functions, and more general level-
set functions (i.e., implicit manifolds).
To solve PDEs with CPM, the irst step is to construct the computational domain Ω(S) around S. We use a

breadth-irst search (BFS) procedure to only compute cpS near Ω(S). We adopt a sparse-grid data structure and
allocate memory for it only as needed during the BFS. The BFS can be started from any grid point x0 within �Ω (S)
distance to the manifold. The BFS for Ω(S) construction is detailed in Algorithm 1. A similar BFS to Algorithm 1
is used to construct Ω(C) around C. The use of a BFS could fail if S is composed of disjoint pieces. However,
PDEs are only solved on a single, connected manifold throughout this paper. Since IBCs can consist of multiple
C, we perform a BFS for each C independently.
The computational tube-radius �Ω (S) given by (4) is an upper bound on the grid points needed in Ω(S). The

stencil set approach to construct Ω(S) given by Macdonald and Ruuth [2008, 2010] can reduce the number of
DOFs by including only the strictly necessary grid points for interpolation and FD stencils. It was shown by
Macdonald and Ruuth [2008] that the reduction in the number of DOFs is between 6-15% for S as the unit sphere.
We opted for implementation simplicity over using the stencil set approach due to this low reduction in the
number of DOFs.

5.2 Specifying Initial and Boundary Data

Manifold PDEs generally involve some given data on the manifold, for initial or boundary conditions, that must

irst be extended onto Ω(S) or Ω(C). Examples include �̂ in Poisson problems ΔS�̂ = �̂ , initial conditions
�̂ (� = 0) for time-dependent problems, or Dirichlet IBC values on C. The necessary extension procedure depends
on the speciic representation of the manifold and the data, e.g., an analytical function on a parameterization or
discrete data on mesh vertices. However, the extension must still be a CP extension: data at cpS (x�) (or cpC (x�))
is assigned to x� ∈ Ω(S) (or ∈ Ω(C)).

5.3 Operator Discretization

With the initial data on Ω(S) and Ω(C), the PDE is then discretized using the equations given in Sections 3 and 4.
Matrices E and L are constructed for the CP extension and discrete Laplacian, respectively. The standard 7-point

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 19

Algorithm 1: BFS to construct Ω(S)
Given x0 near S, i.e., with ∥x0 − cpS (x0)∥ ≤ �Ω (S)
Add x0 to Ω(S) and store cpS (x0)
Add x0 to the queue �
while � ≠ ∅ do

Set xcurrent ← � .front()
for each neighbour xnbr of xcurrent do

if xnbr has not been visited then
Compute cpS (xnbr)
if ∥xnbr − cpS (xnbr)∥ ≤ �Ω (S) then

Add xnbr to Ω(S) and store cpS (xnbr)
Add xnbr to �

end

end

end

Pop front of �
end

discrete Laplacian in R3 (5-point in R2) is used. In our implementation E and L are constructed as discussed by
Macdonald and Ruuth [2010]. Constructing the (sparse) matrices amounts to storing stencil weights for DOF

� in the columns of row � . Instead of M̃ = LE, we use the more numerically stable CPM approximation of the
Laplace-Beltrami operator [Macdonald et al. 2011; Macdonald and Ruuth 2010]

M = diag(L) + (L − diag(L))E.

5.4 Linear Solver

The linear system resulting from CPM could be solved with direct solvers, e.g., Eigen’s SparseLU was used in
Section 6.1, but they are only appropriate for smaller linear systems (usually obtained from 1D curves embedded
in R2). Iterative solvers are preferred for larger linear systems (as noted in [Chen and Macdonald 2015; Macdonald
and Ruuth 2010]), particularly from problems involving 2D surfaces embedded in R3 or higher. The linear system
is non-symmetric due to the closest point extension, therefore Eigen’s BiCGSTAB is an option for larger systems.
However, we show in Section 6.5 that using Eigen’s BiCGSTAB with the construction of the full matrix system
can be too memory intensive.
To eiciently accommodate large-scale problems, we have designed a custom BiCGSTAB solver tailored to

CPM. Our implementation closely follows Eigen’s BiCGSTAB solver1, with key diferences for memory-eiciency
and parallelization. This is achieved by exploiting a key property of iterative Krylov solvers: explicit construction
of the system matrix is not required (in contrast to direct solvers). For iterative Krylov solvers, only the action of
the matrix on a given input vector is required (i.e., the matrix-vector product).

Speciically, we implemented our solver with the goal of solving linear systems Au = f with

A =�I + � [diag(L) + (L − diag(L)) E] ,

where � ∈ {0, 1} and � ∈ {1,−Δ�,−Δ�/2}. This generalized form for A supports the applications described
in Sections 6 and 7. For example, setting � = � = 1 results in the linear system for the screened-Poisson

1https://eigen.tuxfamily.org/dox/BiCGSTAB_8h_source.html

ACM Trans. Graph.

https://eigen.tuxfamily.org/dox/BiCGSTAB_8h_source.html

20 • N. King, et al.

problem described in Section 6.3. The matrices E and L are stored explicitly, as discussed in Section 5.3, and the
matrix-vector product Au is computed as follows:

(1) Compute a = Eu.
(2) Compute b = (L − diag(L))a.
(3) Compute a = diag(L)u.
(4) Return v =�u + �a + �b.

OpenMP is used for parallelizing each of the steps over the DOFs.
In addition, iterative Krylov solvers allow for a preconditioner (i.e., approximate inverse operator) for improving

convergence of the linear solver. The preconditioner step requires solving the equationMz = r, whereM is an
approximation to A and r is the residual vector. Depending on the particular problem, we either use a diagonal
preconditioner or a damped-Jacobi preconditioner. Computing the diagonal entries of A would require extra
computations since the full matrix is not constructed. In practice, however, we found that the diagonal values of
�I + �diag(L) are a good enough approximation. (In our experiments, we have veriied that the ininity norm
of the error matches the result produced by Eigen’s solver.) For damped-Jacobi preconditioning, the iteration
u← u + �diag(L)−1r is applied for a ixed number of iterations with � = 2/3.

5.5 Visualization

The solution can be visualized in multiple ways. Demir and Westermann [2015] proposed a direct raycasting
approach based on the closest points cpS (x�) for x� ∈ Ω(S). The set of cpS (x�) can also be considered a
point cloud and visualized as such. Lastly, interpolation allows the solution to be transferred to any explicit
representation, e.g., triangle mesh, point cloud, etc.
For convenience, we visualize the surface solution at points cpS (x�) (e.g., Figure 18) or interpolate onto a

triangulation. If the given surface S is provided as a triangulation we use it; if a surface can be described by a
parameterization, we connect evenly spaced points in the parameter space to create a triangulation. Both point
clouds and triangulations are visualized using polyscope [Sharp et al. 2019b].

6 Convergence Studies

We begin our evaluation by verifying that our proposed IBC schemes achieve the expected convergence orders
on various analytical problems. We also compare our approach with the existing CPM approach of Auer et al.
[2012], the nearest point approach, as well as a standard mesh-based method for reference. Lastly, we compare
our partially matrix-free solver against Eigen’s SparseLU and BiCGSTAB implementations [Guennebaud et al.
2010] as well as Intel MKL PARDISO. All error values are computed using the max-norm. Throughout the rest
of the paper, the hat symbol has been dropped from manifold functions (e.g., �̂), since it is apparent from the
context.

6.1 Poisson Equation with Discontinuous Solution

Consider the Poisson equation

− �
2�

�� 2
= 2 cos(� − �C),

� (�−C) = 2,

� (�+C) = 22,

on the unit circle parameterized by � . The right-hand-side expression is found by diferentiating the exact solution

� (�) = 2 cos(� − �C) +
10

�
(� − �C),

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 21

ΔG ΔG ΔG ΔG ΔG

(a) Discontinous Poisson
Dirichlet IBC

(b) Heat Equation
Dirichlet IBC

(c) Heat Equation
Neumann IBC

(d) Screened Poisson
Closed Curve

(e) Screened Poisson
Open Curve

Fig. 7. Convergence studies and associated geometries for the model problems in Sections 6.1-6.3. The plots show results for
our CPM approach using first (blue) and second (orange) order IBCs, along with lines of slopes 1 (gray, dashed) and 2 (gray,
doted). In (a)-(c) analytical cpS are used, while (d) and (e) compute cpS from the level-set representation of S. All examples
use analytical cpC .

where �C is the location of the Dirichlet IBC. The Dirichlet IBC is two-sided and thus discontinuous at the point
�C , with � = 2 as � → �−

C
and � = 22 as � → �+

C
. We use �C = 1.022� ; no grid points coincide with the IBC

location.
Eigen’s SparseLU is used to solve the linear system for this problem on the circle embedded in R2. Figure 7(a)

shows that the irst and second-order IBCs discussed in Section 4 achieve the expected convergence rates. Neither
the nearest point approach (Section 4.8) nor the method of Auer et al. [2012] can handle discontinuous IBCs.

6.2 Heat Equation

CPM can also be applied to time-dependent problems. Consider the heat equation

��

��
= ΔS�, with

{
� = �, or

∇S� · bC = 0,
on C, (18)

where bC is the binormal direction to C that is also in the tangent plane of S, i.e., bC = nS × tC (see Section 4.7).
If imposing the Dirichlet IBC, the exact solution, �, is used as the prescribed function on C. Here we solve the
heat equation on the unit sphere with the exact solution

�(�, �, �) = �−2� cos(�),

where � is the azimuthal angle and � is the polar angle. The IBC is imposed with C as a circle deined by the
intersection of a plane with S. The initial condition is taken as �(�, �, 0) = cos(�).
Crank-Nicolson time-stepping [LeVeque 2007] (i.e., trapezoidal rule) is used with Δ� = 0.1Δ� until time

� = 0.1. Figure 7 (b) and (c) show convergence studies for (18) with Dirichlet and zero-Neumann IBCs imposed,
respectively. The expected order of accuracy for irst and second-order IBCs is achieved for both the Dirichlet

ACM Trans. Graph.

22 • N. King, et al.

and zero-Neumann cases. Recall that the nearest point approach and the method of Auer et al. [2012] cannot
handle Neumann IBCs.

6.3 Screened-Poisson Equation

Exact solutions for manifold PDEs can also be derived on more complex manifolds deined as level sets. Consider
the screened-Poisson problem in Section 4.6.5 of [Chen and Macdonald 2015], which was inspired by an example
by Dziuk [1988]. The surface is deined as S = {x ∈ R3 | (�1 − �23)2 + �22 + �23 = 1}, which we refer to as the Dziuk
surface.

The screened-Poisson equation we solve is

−ΔS� + � = � ,

∇S� · bC = 0,
(19)

with exact solution � (x) = �1�2 . Although the solution is simple, the function � is complicated; we derived it by
symbolic diferentiation using the formulas in [Chen and Macdonald 2015; Dziuk 1988].

The zero-Neumann IBC of (19) is satisied on the intersection of S with the �1�2-plane. From the deinition of
S, this intersection is the unit circle in the �1�2-plane. Figure 7 (d) and (e) show convergence studies imposing
the zero-Neumann IBC on the full circle (closed curve) and the arc with � ∈ [− 3�

4 ,
�
4] (open curve), respectively.

The expected order of accuracy is observed for the implementations of irst and second-order IBCs.

6.4 Diferent CPM approaches vs. a Mesh-Based Method

CPM is principally designed to solve problems on general manifolds, given by their closest point functions. The
closest point function can be thought of as a black box allowing many manifold representations to be handled
in a uniied framework. Hence, we emphasize that one should not expect CPM to universally surpass specially
tailored, well-studied approaches for particular manifold representations, such as inite elements on (quality)
triangle meshes. Nevertheless, mesh-based schemes provide a useful point of reference for our evaluation. CPM
also retains some advantages even for triangle meshes, such as mesh-independent behaviour.

With the above caveat in mind, we compare the various CPM approaches to the standard cotangent Laplacian
[Dziuk 1988; Pinkall and Polthier 1993] that approximates the Laplace-Beltrami operator on a triangulation of
the surface. We use the implementation from geometry-central [Sharp et al. 2019a], adapted slightly to include
IBCs. The Poisson equation −ΔS� = � is solved on the Dziuk surface deined in Section 6.3. The same exact
solution � (x) = �1�2 is used, but Dirichlet IBCs are imposed using this exact solution.

łGoodž and łbadž triangulations of the Dziuk surface, denoted T� and T� respectively, are used to illustrate the
dependence of the mesh-based method on triangulation quality (Figure 8). Both triangulations are constructed
starting from six vertices on S as in [Dziuk 1988]. An initial round of 1:4 subdivision is performed by adding new
vertices along each edge, at the midpoint for T� and at the 20% position for T� , to induce skinnier triangles in the
latter. The new vertices are projected to their closest points on S.

Evaluations under reinement for the mesh-based method are performed starting with the above irst-level T�
and T� . We reine with uniform 1:4 subdivision, for both T� and T�, by adding new vertices at midpoints of edges
and then projecting them onto S (see Figure 8). Delaunay edge lips are also performed to improve the quality of
T� at each reinement level.
Triangle mesh resolution is measured as the mean edge-length in T� or T� , whereas for CPM resolution is

measured as the uniform Δ� used in the computational-tube Ω(S). This core incompatibility makes it inappro-
priate to use resolution as the independent variable for comparative evaluations of error, computation time, or
memory usage. A more equitable comparison is to investigate computation time versus error and memory versus
error. Computation times for CPM include the construction of Ω(S) and Ω(C) (which involves computing cpS
and cpC) and the time for constructing and solving the linear system. Computation times for the mesh-based

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 23

T� T�

Fig. 8. Triangulations of the Dziuk surface used for testing. Top-let: Good-quality base triangulation, T� . Top-right: Low-
quality base triangulation, T� . Botom row: The same triangulations ater four rounds of refinement.

method include the triangulation reinement and the construction and solution of the linear system. Separate
evaluations are performed with C as a closed curve, an open curve, and a point, since CPM IBC enforcement is
slightly diferent for each type of C.

Closed Curve IBC. The boundary curve C is constructed using the lip geodesics algorithm in geometry-central

[Sharp et al. 2019a]. The resulting C is represented as a polyline P, which in general does not conform to edges
or vertices of T . For IBC enforcement, the nearest vertex in the triangulation T to each vertex in P is assigned
the prescribed Dirichlet value.
This treatment of Dirichlet IBCs for the mesh-based method is irst-order accurate in general. More accurate

(and involved) Dirichlet IBC approaches could be used as discussed in Section 2.3. However, we set these options
aside, as the goal of this comparison is simply to show that CPM with our irst and second-order IBC approaches
gives comparable results to basic mesh-based methods, that is, mesh-based methods where the representations of
S and C are held ixed, e.g., no (extrinsic or intrinsic) remeshing is performed.
Figure 9 (top row) compares all types of CPM IBC approaches against the mesh-based method on T� and T�

in columns (b) and (c). CPM with second-order IBCs achieves the lowest error for the same computation time
and memory usage as other approaches. The mesh-based method with T� outperforms the use of T� , as expected.
CPM with irst-order IBCs and nearest point approaches are similar and lie between the mesh-based method
with T� and T� . The method of Auer et al. [2012] has the largest error compared to all others. The expected order
of convergence is seen for all CPM IBC approaches in the error versus Δ� plot of Figure 9 (top row, (d)).

Open Curve IBC. The open curve C is also constructed using the lip geodesics algorithm in geometry-central

[Sharp et al. 2019a]. The Dirichlet IBC is enforced in the mesh-based solver in the same way as the closed curve
above. Figure 9 (middle row) shows the same ranking of the methods as in the closed curve case, except CPM
with irst-order IBCs now outperforms both triangulations and the nearest point CPM approach. The expected
order of convergence is seen for all CPM IBC approaches in Figure 9 (middle row, (d)).

Point IBC. The point C is intentionally chosen as one of the vertices in the base triangulation so that it is present
in all reinements of T� and T� . The Dirichlet IBC at C is imposed by replacing the vertex DOF in T with the
prescribed Dirichlet value. Figure 9 (bottom row) shows the results for a point C.
The mesh-based solver on T� converges with second-order accuracy (since the IBC is a vertex), but only

irst-order accuracy on T� . Therefore, the mesh-based method with T� outperforms CPM with second-order IBCs
in the larger error regime. In the lower error regime, the latter methods are similar. All other methods show the
same ranking as the open curve case.

The expected order of convergence is seen for all CPM IBC approaches in Figure 9 (bottom row, (d)). Notably,
the second-order IBC version of CPM exhibits slightly higher than expected errors at the inest grid resolution

ACM Trans. Graph.

24 • N. King, et al.

(a) (b) (c) (d)

ΔG

ΔG

ΔG

Fig. 9. A comparison of CPM vs. the mesh-based cotangent Laplacian for the Poisson equation with Dirichlet IBC. Top row:
Closed curve C. Middle row: Open curve C. Botom row: Point C. Columns (b) and (c) show computation time vs. error and
memory vs. error, respectively. Mesh results are shown separately for the T� and T� triangulations. Column (d) illustrates the
convergence behaviour of error vs. Δ� for only the CPM schemes. The cpS are computed from a level-set representation,
while cpC are computed from polyline representations for curves C and exactly for the point C.

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 25

ΔGΔGΔGΔG

Fig. 10. Let pair: Computation time vs. Δ� plots for the heat equation (18) with Dirichlet and zero-Neumann IBCs with four
solver options. Right pair: Memory vs. Δ� plots for the same problems and solvers. Our solver (orange) achieves the lowest
computation time and memory costs.

for the closed and open curve IBCs (see Figure 9, top and middle rows, (d)). This is caused by the resolution of the
polyline representation of C: at ine grid resolutions, the inherent sharp features of the coarse polyline C begin
to be resolved more fully by the discrete CP function. Accordingly, no such reduction in convergence order is
seen for the point IBC.

6.5 Linear System Solvers

Our partially matrix-free BiCGSTAB solver (see Section 5.4) is faster and more memory eicient than Eigen’s
SparseLU and BiCGSTAB implementations [Guennebaud et al. 2010] as well as the Intel MKL PARDISO. An
example of the improved eiciency is shown in Figure 10 for the heat problem in Section 6.2 with Dirichlet
and zero-Neumann IBCs. Solving the heat equation involves multiple linear system solves (i.e., one for each
time step). SparseLU requires the most computation time, even though it prefactors the matrix once and just
performs forward/backward solves for each time step. SparseLU also uses the most memory, as expected. PARDISO
facilitates parallelism during factorization, enhancing the speed of the initialization process compared to Eigen’s
SparseLU. However, the forward/backward solves are still conducted sequentially, limiting the magnitude of the
performance improvement.
Table 2 gives the max and average computation time speedup, �spdup, and memory reduction, �red, for the

results in Figure 10. The computation time speedup compared to Eigen’s SparseLU (similarly for BiCGSTAB and
PARDISO) is computed as

�spdup = � (SparseLU)/� (Ours),
where� (SparseLU) and� (Ours) are the computation times of SparseLU and our solver, respectively. The memory
reduction factor is calculated in an analogous manner with computation times replaced by memory consumption.
The max and average �spdup and�red are computed over all Δ� .

The speedup of our solver is signiicant compared to Eigen’s SparseLU and BiCGSTAB as well as PARDISO.
The memory reduction of our method is signiicant compared to Eigen’s SparseLU and PARDISO, but less
signiicant compared to Eigen’s BiCGSTAB. The speedup exhibits problem-dependence since �spdup factors in
Table 2 are larger for the zero-Neumann IBC compared to the Dirichlet IBC. However, as expected,�red is not
problem-dependent.

ACM Trans. Graph.

26 • N. King, et al.

Table 2. Ratios of computation time�spdup and memory usage�red for Eigen’s SparseLU and BiCGSTAB as well as PARDISO
as compared to our tailored BiCGSTAB solver, for the experiments of Figure 10.

Solver IBC
�spdup �red

Max Avg. Max Avg.

Eigen’s SparseLU
Dirichlet 16.6 11.8 17.9 9.1
Neumann 86.2 38.3 18.1 9.1

Eigen’s BiCGSTAB
Dirichlet 9.5 6.6 1.9 1.8
Neumann 40.9 18.0 1.9 1.8

MKL PARDISO
Dirichlet 13.7 10.5 10.6 7.3
Neumann 54.2 27.3 10.3 7.0

ΔG ΔG

ΔG ΔG

Fig. 11. A comparison of CPM with quadratic vs. cubic interpolation stencils for the heat (top row) and Poisson (botom row)
problems of Figure 7 (b) and (d). Comparable results are achieved, but quadratic is oten faster while cubic typically exhibits
more regular convergence.

7 Applications

We now show the ability of our CPM approach to solve PDEs with IBCs that are common in applications from
geometry processing: difusion curves, geodesic distance, vector ield design, harmonic maps, and reaction-
difusion textures.

Quadratic polynomial interpolation, i.e., � = 2, is used for all the examples in this section. Current CPM theory
suggests that only irst-order accuracy can be expected with quadratic polynomial interpolation, but CPM has
been observed to give second-order convergence numerically (see [Macdonald and Ruuth 2010], Section 4.1.1).
This behaviour is conirmed with IBCs in Figure 11.

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 27

The main motivation for choosing quadratic interpolation is to obtain smaller computational tube-radii, �Ω (S) ,
which allows higher curvature S and C to be handled with larger Δ� . The resulting Ω(S) and Ω(C) contain
fewer DOFs and therefore the computation is more eicient. Furthermore, Figure 11 shows that, for the same
Δ� , quadratic interpolation has lower computation times. Quadratic interpolation is 1.1-2.1 times faster than
cubic interpolation in Figure 11. We used � = 3 in the convergence studies of Section 6 because the error for
second-order BCs with � = 2 can sometimes be less regular (i.e., decreasing unevenly or non-monotonically)
than with � = 3 (Figure 11, bottom right).
CPM with irst-order IBCs is used in all the examples in this section. The geodesic distance, vector ield

design, and harmonic map algorithms used here are themselves all inherently irst-order accurate; hence using
second-order IBCs would only improve accuracy near C. Second-order IBCs could have been used for difusion
curves and reaction-difusion textures, but the irst-order method was used for consistency. Note also that any
surface represented as a mesh is scaled (with ixed aspect ratio) to it in [−1, 1]3.

7.1 Difusion Curves

Difusion curves ofer a sparse representation of smoothly varying colours for an image [Orzan et al. 2008]
or surface texture [Jeschke et al. 2009]. Obtaining colours over all of S requires solving the Laplace-Beltrami
equation with IBCs:

ΔS�
�
= 0, with

{
�� = �� , or

∇S�� · bC = 0.
on C. (20)

The Laplace-Beltrami equation (20) is solved for each colour channel �� independently with CPM. The colour
vector is composed of all the colour channels, e.g., for RGB colours u = [�1, �2, �3]� . Dirichlet IBCs, �� = �� on
C, are used to specify the colour values at sparse locations on S. These colours spread over all of S when the
Laplace-Beltrami equation is solved. Zero-Neumann IBCs can be used to treat C as a passive barrier that colours
cannot cross. Two-sided IBCs along C are also easily handled, and can even be of mixed Dirichlet-Neumann type
(not to be confused with Robin BCs).

The surface of the Nefertiti bust [Al-Badri and Nelles 2024] is coloured by solving the Laplace-Beltrami equation
with CPM with Δ� = 0.00315 and IBCs speciied by difusion curves in Figure 1 (a). IBC curves are polylines
created using the lip geodesics algorithm in geometry-central [Sharp et al. 2019a]. Most curves are two-sided
Dirichlet IBCs (white curves, Figure 1 (a) left). However, the red and green band on the headdress is created using
two-sided red-green Dirichlet IBCs vertically and two-sided Neumann-Dirichlet IBCs horizontally (black curves,
Figure 1 (a) left).

Mixed-Codimensional Objects. The generality of CPM allows PDEs on mixed-codimensional objects to be solved.
The theoretical assumption that cpS is unique is violated in this case (near pieces of difering codimension).
However, CPM gives the expected result in practice on mixed-codimensional objects (e.g., Figure 4.4 of [Macdonald
and Ruuth 2010]).

Figure 12 shows a difusion curves example (with Δ� = 0.05) featuring a mixed 1D and 2D object embedded in
R
3. This mixed-codimensional S is created using analytical closest point functions for the torus, sphere, and line

segment. The torus has minor radius � = 1 and major radius � = 3, while the sphere is of radius 1.25. The closest
point to S is determined by computing the closest point to each of the torus, sphere, and line segments, then
taking the closest of all four. The two curves C in this example are two-sided Dirichlet IBCs. C on the torus is a
torus knot speciied by the parametric equation

� (�) = � (�) cos(��), � (�) = � (�) sin(��), � (�) = sin(��), (21)

with � (�) = � + cos(��), � = 3, � = 7, and � ∈ [0, 2�]. Closest points for the torus knot are computed using the
optimization problem discussed in Appendix A. C on the sphere is an analytical closest point function for a circle

ACM Trans. Graph.

28 • N. King, et al.

Fig. 12. Difusion curves on a nonmanifold object of mixed codimension. Line segments connect the torus to the sphere,
which are all represented with analytical cpS . The cpC for the circle on the sphere is computed analytically, while cpC for
the torus knot is computed from a parametrization.

Fig. 13. CPM applied to a codimension-zero difusion curve problem, with the Dirichlet colour value varying along the
white IBC curve. Top row: At an insuficient grid resolution of Δ� = 0.05 (let), high curvature regions exhibit errors near the
curve’s medial axis (right). Botom row: A high-resolution grid with Δ� = 0.005 (let) resolves the artifacts (right). The cpS
are computed analytically and cpC are computed from a parametric representation.

deined as the intersection of the sphere and a plane. Notice the colour from the torus to the sphere blends across
the line segments as expected (see Figure 12 zoom).

Codimension-Zero Manifolds. Interestingly, CPM can also be applied with codimension-zero manifolds (see
Section 6.2.4 of [Macdonald et al. 2013]). A codimensional-zero manifold is a solid object that is a subset of
R
dim(S) . Consider a codimension-zero S, with a boundary �S. The computational domain Ω(S) consists of

all grid points x� ∈ S (having cpS (x�) = x�) plus a layer of grid points outside S where cpS (x�) ∈ �S and
∥x� − cpS (x�)∥ ≤ �Ω (S) .
Figure 13 shows an example of applying CPM to the difusion curves problem with S as the square [−1, 1]2

and Ω(S) ⊂ R2.
A parametric curve on the interior of S deines a difusion curve C as a two-sided Dirichlet IBC, given by

� (�) = � (�) cos(�) + �, � (�) = � (�) sin(�) + �, (22)

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 29

where

� (�) =
cos(�)

(
1
2 (� + �) + sin(��) + sin(��)

)
+ 1

2 (� + �)
� + � ,

with � = 3, � = 4, � = − 1
2 , and � ∈ [0, 2�]. Note that the colour varies along C from red to green inside C and

blue to green outside C. (Such colour variations along boundaries C can also easily be applied to problems where
the embedding domain has higher dimension than S.) First-order zero-Neumann exterior BCs are applied on �S
naturally by CPM, which enforces no (conormal, i.e., normal to �� and in the tangent space of S) colour gradient
at �S.

The grid spacing Δ� needs to be ine enough near C to give an accurate solution. Artifacts can occur if stencils
undesirably cross the medial axis of C when Δ� is too large (cf. Figure 13 top and bottom rows). A promising
direction of future work is therefore to explore the use of adaptive grids based on the geometry of C. Adaptivity
would reduce the total number of DOFs in the linear system and thus improve eiciency. Adaptive grids based on
the geometry of S would also improve eiciency when codim(S) > 0.

Applying CPMwith codim(S) = 0 represents an alternative to (or generalization of) various existing embedded
boundary methods for irregular domains, e.g., [Gibou et al. 2002; Ng et al. 2009; Schwartz et al. 2006]. Advantages
and disadvantages of this approach should be explored further in future work. One advantage shown byMacdonald
et al. [2013] is the ability to couple volumetric and surface PDEs in a uniied framework.

7.2 Geodesic Distance

The heat method for geodesic distance computation [Crane et al. 2013] has been implemented on many surface
representations, including polygonal surfaces, subdivision surfaces [De Goes et al. 2016b], spline surfaces [Nguyen
et al. 2016], tetrahedral meshes [Belyaev and Fayolle 2015], and point clouds [Crane et al. 2013], with each requiring
nonnegligible tailoring and implementation efort. By introducing our Dirichlet IBC treatment for CPM, we
enable a single implementation covering all these cases, since closest points can be computed to these and many
other manifold representations.

The heat method approximates the geodesic distance � using the following three steps:

(1) Solve ��
��

= ΔS� to give �� at time �,
(2) Evaluate the vector ield X = −∇S��/∥∇S�� ∥,
(3) Solve ΔS� = ∇S · X for � .

Step (1) uses a Dirac-delta heat source for a point C or a generalized Dirac distribution over a curve C as the
initial condition. The time discretization of step (1) employs implicit Euler, for one time-step, which is equivalent
(up to a multiplicative constant) to solving

(I − �ΔS)�� = 0 on S\C,
�� = 1 on C. (23)

The discrete system for (23) can be written as Av = f , where A ∈ R(�S+�C)×(�S+�C) and v, f ∈ R�S+�C .
Imposing irst-order IBCs involves the Heaviside step function for f . That is, f� = 0 if � is in the PDE DOF set

(� ∈ �S) and f� = 1 if � is in the BC DOF set (� ∈ �C). When imposing this IBC in (23), CPM can experience Runge’s
phenomenon due to the polynomial interpolation used for the CP extension. Therefore, we approximate the
Heaviside step function with a smooth approximation as

f� =
1

2
tanh

(
−� ∥cpS−C (x�)∥

)
+ 1

2
, with � =

atanh(1 − �)
�

.

The parameters � and � correspond to the łextentž [−�, �] and the maximum error of the approximation outside
of the extent, respectively. That is, when ∥cpS−C (x�)∥ = � , the error in approximating the Heaviside function is �
and the error becomes smaller further outside of [−�, �]. We choose � = �Ω (S) and � = Δ� for our results.

ACM Trans. Graph.

30 • N. King, et al.

Exact Polyhedral CPM Heat Method (Ours) Mesh Heat Method

Fig. 14. CPM vs. mesh-based methods for geodesic distances to a point on a triangulation of the Dziuk surface. Consistent
results are observed.

Step (3) of the heat method also involves a Dirichlet IBC, � = 0 on C, since the geodesic distance is zero for
points on C. No special treatment is required for this IBC. To improve accuracy, steps (2) and (3) are applied
iteratively as discussed by Belyaev and Fayolle [2015]. Two extra iterations of steps (2) and (3) are applied in all
our examples of the CPM-based heat method.
We use Eigen’s SparseLU to solve (only) the linear systems arising from step (1) of the heat method. Using

BiCGSTAB (either Eigen’s or our custom solver) results in an incorrect solution despite the iterative solver
successfully converging, even under a relative residual tolerance of 10−15. We observed that the small time-step of
the heat method, Δ� = Δ�2, causes diiculties for BiCGSTAB. The reason is that values far from the heat sources
are often extremely close to zero. Tiny errors in these values are tolerated by BiCGSTAB, but lead to disastrously
inaccurate gradients in step (2), and thus incorrect distances in step (3). Another option is to calculate smoothed
distances (see Section 3.3 of [Crane et al. 2013]) using larger time-steps Δ� =�Δ�2 with� ≥ 100; in this scenario
BiCGSTAB encounters no problems. Our partially matrix-free BiCGSTAB solver is nevertheless successfully used
for step (3) of the heat method.
Figure 14 shows the geodesic distance to a single source point on the Dziuk surface, where our CPM-based

approach (with Δ� = 0.0125) is compared to exact polyhedral geodesics [Mitchell et al. 1987] and the mesh-based
heat method. Implementations of the latter two methods are drawn from geometry-central [Sharp et al. 2019a].
All three approaches yield similar results.

For the example in Figure 14, closest points are computed from the same triangulation used in the exact
polyhedral and mesh-based heat method. However, closest points can also be directly computed from the level-set
Dziuk surface (as in Section 6.3). To our knowledge, the heat method has not been applied on level-set surfaces
before.
We showcase the ability of our CPM to compute geodesic distance on general manifold representations.

Figure 15 visualizes the geodesic distance to an open curve on the łDecoTetrahedronž [Palais et al. 2023] level-set
surface,

S =

{
x ∈ R3

����
3︁

�=1

(
(�� − 2)2 (�� + 2)2 − 10�2�

)

+ 3
(
�21�

2
2 + �21�23 + �22�23

)
+ 6�1�2�3 = −22

}
.

S and C can also have mixed representations. For example, Figure 1 (b) shows the geodesic distance (using
Δ� = 0.00625) to the trefoil knot (a.k.a. torus knot with � = 2 and � = 3, see (21)) on a torus with minor and major
radii 1 and 2, respectively. The trefoil knot uses a parametric representation while the torus uses an analytical
closest point representation.

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 31

Fig. 15. Geodesic distance to a polyline curve (black) visualized on the łDecoTetrahedronž level-set surface computed using
CPM with Δ� = 0.025. The closest points themselves are directly rendered.

7.3 Vector Field Design

Designing tangent vector ields on surfaces is useful in many applications including texture synthesis, non-
photorealistic rendering, quad mesh generation, and luid animation [De Goes et al. 2016a; Zhang et al. 2006].
One approach for vector ield design involves the user specifying desired directions at a sparse set of surface
locations, which are then used to construct the ield over the entire surface. Adapting ideas from Turk [2001] and
Wei and Levoy [2001], we interpret the user-speciied directions as Dirichlet IBCs and use difusion to obtain the
vector ield over the whole surface.

We iterate between heat low of the vector ield and projections onto the tangent space to obtain the tangent
vector ield over all of S. Speciically, each iteration involves the following steps:

(1) Perform heat low independently for each component of u = [�1, �2, �3]� according to

���

��
= ΔS�

� , with

{
�� = �� , or

∇S�� · bC = 0,
on C,

starting from the vector ield after the previous iteration.
(2) Project u(x�) onto the tangent space of S using nS at cpS (x�)

u(x�) =
(
I − nSn�S

)
u(x�).

One time-step of heat low is performed on each iteration using implicit Euler with Δ� = 0.1Δ� . A total of 10
iterations are used for all examples. The vector ield for the irst iteration consists of zero vectors unless the
direction is speciied by an IBC.
Dirichlet IBCs g = [�1, �2, �3]� can be speciied at points or curves. For point Dirichlet IBCs the direction of

g is any direction in the tangent space of S. Dirichlet IBCs on curves could also specify any direction in the
tangent space of S, but designing vector ields is more intuitive when g is the unit tangent direction tC along C.
Zero-Neumann IBCs are also used within our framework to block the vector ield from difusing across C.
Figure 1 (c) shows an example of a vector ield designed on the Möbius strip using Δ� = 0.0064. The Möbius

strip is actually a triangulated surface in this example, although its parametric form could be used instead (see
[Macdonald et al. 2011]). Zero-Neumann exterior BCs are imposed automatically by CPMwith irst-order accuracy
on the geometric boundary. This example shows the ability of our approach to handle open and nonorientable
surfaces. There are four points and two curves specifying the IBCs in Figure 1 (c). A circular closed curve

ACM Trans. Graph.

32 • N. King, et al.

Fig. 16. Vector field design on a parametric surface of revolution, with Dirichlet IBCs on a parametric curve and points
shown in white.

demonstrates that vortices can be created. The other curve on the Möbius strip enforces a zero-Neumann IBC
that blocks direction changes in the vector ield (see Figure 1 (c) zoom).

Figure 16 shows another example on a parametric surface of revolution (with Δ� = 0.025), which is constructed
by revolving the planar parametric curve (22) with � = 1

2 around the �-axis. All IBCs in this example are Dirichlet
IBCs. Sinks and sources in the vector ield are created with four Dirichlet point IBCs. The curve IBC is a two-sided
Dirichlet IBC that lips the direction of the vector ield across C (see Figure 16 zoom).

A inal vector ield design example, on the Lucy surface, is given in Figure 17. A point cloud representation of
the Lucy surface (vertices of a mesh [The Stanford 3D Scanning Repository 2024] with ~1 million vertices) is
used and the closest point function is deined to return the nearest neighbour; for dense enough point clouds
this suices. For less dense point clouds a smoother closest point function is required, for example using a
moving-least-squares based projection method [Liu et al. 2006; Yingjie and Liling 2011]. Nevertheless, the variable
point density (i.e., higher density on head, wings, hands, and feet) of the Lucy point cloud in Figure 17 (left) does
not present any issue in this example.

7.4 Harmonic Maps

A map between two manifolds, S1 and S2, matches locations on S1 with locations on S2. The map can be used to
analyze diferences between S1 and S2 or to transfer data from one manifold to the other. Harmonic maps are a
speciic type of map that appears in numerous domains, e.g., mathematical physics [Bartels 2005] and medical
imaging [Shi et al. 2009, 2007]. In computer graphics, harmonic maps can be used for many applications such as
texture transfer, quad mesh transfer, and interpolating intermediate poses from key-frames of a character [Ezuz
et al. 2019].

King and Ruuth [2017] considered applying CPM to compute harmonic maps u(y) : S1 → S2. Adapting their
approach, we compute the harmonic map using the gradient descent low

�u

��
= Π�uS2

(ΔS1
u),

u(y, 0) = f (y),

u(y, �) = g(y), for y ∈ C1,

(24)

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 33

Fig. 17. Vector field design on a point cloud surface (let), with Dirichlet IBCs on polyline curves and points shown in white.
The resulting vector field is visualized with flow lines on a triangulation of the point cloud (right).

where Π�uS2 is the projection operator at the point u onto the tangent space of S2. The vector ΔS1u is deined
componentwise, i.e., ΔS1u = [ΔS1�1,ΔS1�

2,ΔS1�
3]� . The f (y) and g(y) are the initial map (from S1 to S2) and

the landmark map (from C1 ⊂ S1 to C2 ⊂ S2), respectively. The subsets C1 and C2 can be landmark points or
curves on S1 and S2 that are enforced to match using our new Dirichlet IBC treatment; such IBCs were not
considered by King and Ruuth [2017].

An operator splitting approach was used by King and Ruuth [2017], which allows (24) to be solved with a PDE
on S1 alone. Speciically, one time-step consists of the following:

(1) Solve (24) without the Π�uS2 term using CPM on Ω(S1) with Ω(C1) to enforce the IBC.
(2) Project the solution from (1) onto S2.

Denote the solution from step (1) at x� ∈ Ω(S1) and time-step � by v�� . The projection in step (2) simply moves

v�� to its closest point on S2 by setting u�� = cpS2 (v
�
�). One time-step of explicit Euler is used for step (1) with

Δ� = 0.1Δ�2 starting from u�−1.
To perform the above gradient descent low a valid initial map u0 is needed to start from. Generating such

initial maps in the general case has not yet been addressed for CPM [King and Ruuth 2017]. Approaches based
on geodesic distance to landmark curves/points C1, C2 could potentially be adapted [Ezuz et al. 2019; Shi et al.
2007]. However, for our illustrative example of incorporating IBCs while computing harmonic maps, we opt for
a simple (but restrictive) initial map construction. The surface S1 is given by a triangulation and deformed to
create S2 while maintaining the same vertex connectivity. Therefore, the barycentric coordinates of each triangle
can be used to initially map any point on S1 to a point on S2.
Figure 18 shows an example of computing harmonic maps from the Bob [Crane 2024] surface S1 to its

deformed version S2. Grid spacing Δ� = 0.00663 is used for Ω(S1). The surfaces are visualized as point clouds.
S1 is visualized with the set of closest points of grid points in Ω(S1). Each point in the point cloud for S1 has a
corresponding point location on S2 given through the mapping u. A texture is added to the surface of S1 and
transferred to S2 through the mapping u.

ACM Trans. Graph.

34 • N. King, et al.

(a) S1 with Texture

(b) Initial Map onto S2

(c) Harmonic Map onto S2
w/o IBCs

(d) Harmonic Map onto S2
w/ IBCs

Fig. 18. Maps from S1 to S2 with a texture for visualizing the mapping. Landmark curves (Dirichlet IBCs) C1 and C2 are
shown in white. (a) S1 with texture. (b) S2 with texture from a noisy initial map. (c) S2 with a CPM harmonic mapped
texture without IBCs. (d) S2 with a harmonic mapped texture using our CPM approach satisfying the IBCs. The surfaces are
displayed as point clouds. The cpS1 and cpS2 are computed from triangulations, while cpC1 and cpC2 are computed from
polylines.

To emphasize the efect of computing the harmonic map, noise is added to the initial map (see Figure 18 (b))
before performing the gradient descent low. The gradient descent low is evolved to steady state using 1500 and
200 time steps with and without the IBC in Figure 18 (d) and (c), respectively. The harmonic map with a Dirichlet
IBC stretches on one side of C2 and compresses on the other side to satisfy both the PDE and IBC. Comparing the
zoom of Figure 18 (c) and (d), the point cloud density in (d) is more sparse on one side of C2 than in (c) due to the
stretching of the map, leaving visual gaps between points in the cloud. The distortion is expected unless the IBC
map g is a harmonic map itself.

7.5 Reaction-Difusion Textures

Much research in geometry processing has focused on Poisson and difusion problems. There are however
applications that require solving more general PDEs, e.g., reaction-difusion textures [Turk 1991]. Reaction-
difusion textures involve solving coupled equations on surfaces. These PDEs can form patterns from random
initial conditions and have been solved on meshes [Turk 1991], level sets [Bertalmıo et al. 2001], and closest
point surfaces [Macdonald et al. 2013]. Here we impose IBCs to control regions of the texture, emphasizing the
generality of CPM, and our novel boundary condition treatment, with respect to PDE type.

The Gray-Scott model [Pearson 1993]{
��
��

= ��ΔS� − ��2 + � (1 − �),
��
��

= ��ΔS� + ��2 − (� + �)�,
(25)

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 35

Fig. 19. Reaction-difusion texture on a fish surface with zero Dirichlet IBCs around the eye and on the tail. A two-sided zero
Dirichlet-Neumann IBC is imposed on the dorsal fin. The surface is coloured yellow for high concentrations of reactant �
and purple for low concentrations. The cpS are computed from a triangulation, while the cpC are computed from polylines.

with {
� = � or ∇S� · bC = 0,

� = ℎ or ∇S� · bC = 0,
on C, (26)

is solved with CPM. Figure 19 shows � on a ish [Crane 2019] for a set of IBCs. The constants �� = 1.11 × 10−5,
�� = ��/3, � = 0.054, � = 0.063 are used with forward Euler time-stepping until � = 10, 000 with Δ� = 0.9 and
Δ� = 0.01. The initial condition is taken as � = 1 − � , � = �/2 where � is given by small random perturbations
around

1

2
�100(�−0.1)

2 + 1

2
.

Zero Dirichlet IBCs allow stripes to be placed around the dorsal in and tail. The upper side of the dorsal in IBC
is a zero Neumann IBC, which causes the pattern to intersect perpendicular to the IBC curve. A closed (zero
Dirichlet) IBC curve allows for control of concentrations of the reactants � and � in the eye.

8 Limitations and Future Work

As we have discussed and demonstrated, CPM is a powerful tool for solving manifold PDEs since it provides a
uniied framework for general manifold characteristics, general manifold representations, and general PDEs. Our
work extends CPM to solve manifold PDEs with interior boundary conditions (Dirichlet and zero-Neumann)
while obtaining up to second-order accuracy. The ability to enforce IBCs enables CPM to be applied to many
PDE-based geometry processing tasks and applications which were not previously possible. Additionally, we
have developed a runtime and memory-eicient implementation allowing for the treatment of higher-detail
surfaces without specialized hardware. To encourage wider adoption of CPM, we have made the code for our
framework publicly available at https://github.com/nathandking/cpm-ibc. Below, we outline some of CPM’s
existing limitations and describe a few exciting directions for future work.

Grid Resolution in Practice. Existing CPM theory assumes a unique closest point function cpS in the computational

tube Ω(S). For general S, the closest point cpS (x) is rarely unique for all x ∈ R� . For smooth, compact manifolds,

however, cpS (x) is unique for x in a tubular neighbourhood N(S) ⊆ R� surrounding S with suiciently small
tube radius �N(S) [Marz and Macdonald 2012].
Uniqueness of cpS is equivalent to requiring N(S) ∩med(S) = ∅, since by deinition the medial axis of S,

denoted med(S), is the subset of R� that has at least two closest points on S. The reach(S) is the minimum
distance from S to med(S). Thus, for a uniform radius tube, to ensure uniqueness of cpS the tube radius must

ACM Trans. Graph.

https://github.com/nathandking/cpm-ibc

36 • N. King, et al.

ΔG = 0.0125

ΔG = 0.00625 ΔG = 0.003125

Fig. 20. Results for three grid resolutions used to solve a difusion curves problem to colour the surface of a dragon. The
resolution is illustrated by a small block of grid cells (best viewed by zooming). The cpS are computed from a triangulation,
while the cpC are from polylines.

satisfy �N(S) < reach(S). Hence, N(S) depends on the geometry of S since reach(S) depends on curvatures
and bottlenecks (thin regions) of S (see Section 3 of [Aamari et al. 2019]).

In the discrete setting, the computational tube-radius �Ω (S) must be less than reach(S). Rearranging (4) means
Δ� must satisfy

Δ� <

reach(S)︂
(� − 1)

(
�+1
2

)2
+
(
� + �+1

2

)2
to ensure a unique cpS on Ω(S). However, in practice CPM can often be used successfully with larger Δ� ,
depending on the PDE to be solved and the accuracy requirements of the application.

In many graphics applications the visual appearance is paramount. Consider a difusion curves example on a
dragon [The Stanford 3D Scanning Repository 2024]. Figure 20 shows the resultant surface colouring at diferent
grid resolutions. Artifacts can be observed for Δ� = 0.0125: unintended blending of blue and red on the head
yields purple, while the zoomed-in dragon scale incorrectly shows hints of blue appearing in a red region. For
Δ� = 0.003125 (and arguably Δ� = 0.00625) the result has converged to a visually acceptable, artifact-free
result. However, the Δ� required to give a unique cpS for the dragon is Δ� < 1.28 × 10−6. This assumes no
thin bottlenecks exist, i.e., reach(S) is computed based on only principal curvatures (computed directly on the
mesh using geometry-central [Sharp et al. 2019a]). Therefore, Δ� has always been determined empirically for
practical applications of CPM.

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 37

The need to choose Δ� experimentally is a limitation that costs the user time. A priori determination of a
łcorrectž grid spacing Δ� is an open challenge: it will require knowledge about the speciic PDE to be solved,
the manifold it is to be solved on, and the accuracy requirements (perceptual, numerical, etc.) of the user. In
general, a priori error estimation has been rare in computer graphics applications. A notable exception is the
p-reinement FEM scheme of Schneider et al. [2018], which uses an a priori error estimate based on the geometry
of the (volumetric) domain.

BC Types, Higher-Order Accuracy, and Other PDEs. CPM work to date has only addressed Dirichlet and zero-
Neumann (exterior) BCs. Macdonald et al. [2013] solved a surface-to-bulk coupled PDE with Robin BCs on the
boundary of the bulk (but S was closed, i.e., �S = ∅). Extending CPM to impose inhomogeneous-Neumann, Robin,
and other types of BCs is an important area of future work. Fortunately, the interior BC framework developed
here directly generalizes existing CPM approaches for exterior BCs; therefore, our work likely makes any future
extensions of CPM for other exterior BC types immediately applicable as interior BCs as well.
Third-order and higher (exterior and interior) BCs are also important for higher-order PDE discretizations.

CPM itself extends naturally to higher order, but CPM with higher-order exterior BCs has not yet been explored.
Macdonald et al. [2011] pointed out that a replacement for cpS is required to incorporate the curvature of S near
�S. For higher-order interior BCs an improved S⊥ crossing test (12), involving curvatures of S near C, is likely
also needed.

We primarily focused on Poisson and difusion problems, but CPM has been applied to numerous other PDEs
(see Section 2). In principle, our approach to IBC enforcement should also readily extend to those settings. This was
conirmed for reaction-difusion equations in Section 7.5. Extending CPM to approximate previously unexplored
operators, such as the relative Dirac operator [Liu et al. 2017] or the connection Laplacian [Sharp et al. 2019c],
would allow other geometry processing applications to beneit from CPM.

Eficiency. The discrete setup using a uniform grid near S was chosen for its simplicity and use of well-studied
Cartesian numerical methods (i.e., Lagrange interpolation and inite diferences). However, the ideal radius of
CPM’s computational tube is dictated by the curvature and/or bottlenecks of S and C (see Section 3.1). Higher
curvatures or narrow bottlenecks force the uniform grid spacing to be small, leading to ineiciency due to a large
number of DOFs.
One way to improve the runtime and memory eiciency of CPM on uniform grids is to use parallelization

on specialized hardware, e.g., GPU [Auer et al. 2012] or distributed memory [May et al. 2022]. However, the
number of DOFs with a uniform grid can be higher than necessary, since the grid is allowed to be coarser in low
curvature regions and away from tight bottlenecks of S and C. Near bottlenecks with low curvature, duplicate
DOFs on either side of the medial axis could be introduced to avoid reining while ensuring data is extended from
the correct part of S (similar to how the current work distinguishes diferent sides of an IBC). This would result
in a nonmanifold grid similar to the work of Mitchell et al. [2015] and Chuang [2013]. Conversely, near high
curvature regions, spatial adaptivity (e.g., octrees) could be used to provide locally higher resolution. Combining
duplicate DOFs and adaptivity is, therefore, a promising direction to make CPM more eicient (both in runtime
and memory) for complex surfaces, without recourse to specialized hardware.
Exploring other approximations of the CP extension and diferential operators in the Cartesian embedding

space could also improve eiciency. For example, combining Monte Carlo methods [Rioux-Lavoie et al. 2022;
Sawhney and Crane 2020; Sawhney et al. 2022; Sugimoto et al. 2023] with CPM is one interesting avenue. Monte
Carlo methods can avoid computing the global solution, so they may be more eicient when the solution is only
desired on a local portion of S.

Smoothness ofS and C. Most CPMwork and theory is based on smooth manifolds. However, WENO interpolation
has been used to improve the grid-based CPM (i.e., the form used in this paper) for nonsmooth surfaces (e.g.,

ACM Trans. Graph.

38 • N. King, et al.

surfaces with sharp features) [Auer et al. 2012; Macdonald and Ruuth 2008]. Cheung et al. [2015] used duplicated
DOFs (similar to the current work) near the sharp feature with a radial-basis function discretization of CPM.
However, such discretizations can sufer from ill-conditioned linear systems. Therefore, it would be interesting to
instead explore altering stencils (similar to our IBC approach) for the grid-based CPM near sharp features to use
data from the łbest sidež of the sharp feature. In this context, the BC curve C would instead be the sharp feature
and the PDE is still imposed on C instead of a BC.
The theoretical restriction of smoothness also applies to the curve C. Therefore, our IBC approach is theo-

retically restricted to curves without kinks or intersections. In practice, we are still able to obtain the expected
result when C has sharp features or intersections, e.g., Figure 1 (a) involves many intersecting curves (in the
band of the headdress) that also create sharp corners. Similarly CPM gives expected results in practice for
mixed-codimensional objects as seen in Figure 12 where sharp features are present when difering codimensional
pieces meet (one does however observe a decrease in the empirical convergence order). The development of a
sound theoretical understanding of CPM’s behaviour near sharp features and intersections is interesting future
work.

CPM ofers an exciting, uniied framework for manifold PDEs on łblack boxž closest point representations, which
we have extended with accurate interior BCs. Above, we have outlined a partial roadmap of CPM’s signiicant
untapped potential; we hope that others in the computer graphics community will join us in exploring it.

Acknowledgments

Nathan King was supported in part by the QEII-GSST and Ontario Graduate Scholarships. Mridul Aanjaneya
was supported in part by the National Science Foundation under awards CCF-2110861, IIS-2132972, IIS-2238955
and CCF-2312220 as well as a research gift from Red Hat, Inc. and Houdini licenses from SideFX Software. Any
opinions, indings and conclusions, or recommendations expressed in this material are those of the authors and
do not necessarily relect the views of the National Science Foundation. Steven Ruuth was supported in part
by the NSERC Discovery grant program (RGPIN 2022-03302). Christopher Batty was supported in part by the
NSERC Discovery grant program (RGPIN-2021-02524) and the CFI-JELF program (Grant 40132).

References
Eddie Aamari, Jisu Kim, Frédéric Chazal, Bertrand Michel, Alessandro Rinaldo, and Larry Wasserman. 2019. Estimating the reach of a

manifold. Electronic Journal of Statistics 13, 1 (2019), 1359ś1399.

David Adalsteinsson and James A Sethian. 1995. A fast level set method for propagating interfaces. J. Comput. Phys. 118, 2 (1995), 269ś277.

Nora Al-Badri and Jan Nikolai Nelles. 2024. Nefertiti. Downloaded from https://cs.cmu.edu/~kmcrane/Projects/ModelRepository, original

source https://nefertitihack.alloversky.com/.

Reynaldo J. Arteaga and Steven J. Ruuth. 2015. Laplace-Beltrami spectra for shape comparison of surfaces in 3D using the closest point

method. In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 4511ś4515.

Stefan Auer, Colin B. Macdonald, Marc Treib, Jens Schneider, and Rüdiger Westermann. 2012. Real-time luid efects on surfaces using the

closest point method. In Computer Graphics Forum, Vol. 31. Wiley Online Library, 1909ś1923.

Stefan Auer and Rüdiger Westermann. 2013. A semi-Lagrangian closest point method for deforming surfaces. In Computer Graphics Forum,

Vol. 32. Wiley Online Library, 207ś214.

Vinicius C. Azevedo, Christopher Batty, and Manuel M. Oliveira. 2016. Preserving geometry and topology for luid lows with thin obstacles

and narrow gaps. ACM Trans. Graph. 35, 4 (2016), 1ś12.

Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. Levin, and Alec Jacobson. 2018. Fast winding numbers for soups and clouds. ACM

Trans. Graph. 37, 4 (2018), 1ś12.

Sören Bartels. 2005. Stability and convergence of inite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal. 43, 1

(2005), 220ś238.

Jacob Bedrossian, James H. Von Brecht, Siwei Zhu, Eftychios Sifakis, and Joseph M. Teran. 2010. A second order virtual node method for

elliptic problems with interfaces and irregular domains. J. Comput. Phys. 229, 18 (2010), 6405ś6426.

ACM Trans. Graph.

https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://nefertitihack.alloversky.com/

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 39

Alexander G. Belyaev and Pierre-Alain Fayolle. 2015. On variational and PDE-based distance function approximations. In Computer Graphics

Forum, Vol. 34. Wiley Online Library, 104ś118.

Jean-Paul Berrut and Lloyd N. Trefethen. 2004. Barycentric Lagrange interpolation. SIAM Rev. 46, 3 (2004), 501ś517.

Marcelo Bertalmıo, Li-Tien Cheng, Stanley Osher, and Guillermo Sapiro. 2001. Variational problems and partial diferential equations on

implicit surfaces. J. Comput. Phys. 174, 2 (2001), 759ś780.

Erik Burman, Susanne Claus, Peter Hansbo, Mats G. Larson, and André Massing. 2015a. CutFEM: discretizing geometry and partial diferential

equations. Internat. J. Numer. Methods Engrg. 104, 7 (2015), 472ś501.

Erik Burman, Peter Hansbo, and Mats G. Larson. 2015b. A stabilized cut inite element method for partial diferential equations on surfaces:

the LaplaceśBeltrami operator. Computer Methods in Applied Mechanics and Engineering 285 (2015), 188ś207.

Erik Burman, Peter Hansbo, Mats G. Larson, and Sara Zahedi. 2019. Stabilized CutFEM for the convection problem on surfaces. Numer. Math.

141 (2019), 103ś139.

Chieh Chen and Richard Tsai. 2017. Implicit boundary integral methods for the Helmholtz equation in exterior domains. Research in the

Mathematical Sciences 4, 1 (2017), 19.

Yujia Chen and Colin B. Macdonald. 2015. The closest point method and multigrid solvers for elliptic equations on surfaces. SIAM Journal on

Scientiic Computing 37, 1 (2015), A134śA155.

Ka C. Cheung, Leevan Ling, and Steven J. Ruuth. 2015. A localized meshless method for difusion on folded surfaces. J. Comput. Phys. 297

(2015), 194ś206.

Jay Chu and Richard Tsai. 2018. Volumetric variational principles for a class of partial diferential equations deined on surfaces and curves.

Research in the Mathematical Sciences 5, 2 (2018), 19.

Ming Chuang. 2013. Grid-based inite elements system for solving Laplace-Beltrami equations on 2-manifolds. Ph. D. Dissertation. Johns Hopkins

University.

Ming Chuang, Linjie Luo, Benedict J. Brown, Szymon Rusinkiewicz, and Michael Kazhdan. 2009. Estimating the Laplace-Beltrami operator by

restricting 3D functions. In Computer Graphics Forum, Vol. 28. Wiley Online Library, 1475ś1484.

KeenanCrane. 2019. Fish. Downloadedmodiied version from odedstein-meshes https://github.com/odedstein/meshes/tree/master/objects/ish,

originally from https://cs.cmu.edu/~kmcrane/Projects/ModelRepository.

Keenan Crane. 2024. Bob. Downloaded from https://cs.cmu.edu/~kmcrane/Projects/ModelRepository.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A new approach to computing distance based on heat low.

ACM Trans. Graph. 32, 5 (2013), 1ś11.

Fernando De Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. 2016b. Subdivision exterior calculus for geometry processing. ACM

Trans. Graph. 35, 4 (2016), 1ś11.

Fernando De Goes, Mathieu Desbrun, and Yiying Tong. 2016a. Vector ield processing on triangle meshes. In ACM SIGGRAPH 2016 Courses.

1ś49.

Ismail Demir and Rüdiger Westermann. 2015. Vector-to-closest-point octree for surface ray-casting. In Vision, Modeling & Visualization,

David Bommes, Tobias Ritschel, and Thomas Schultz (Eds.). The Eurographics Association. https://doi.org/10.2312/vmv.20151259

Gerhard Dziuk. 1988. Finite elements for the Beltrami operator on arbitrary surfaces. Springer.

Gerhard Dziuk and Charles M. Elliott. 2007. Surface inite elements for parabolic equations. Journal of Computational Mathematics (2007),

385ś407.

Danielle Ezuz, Justin Solomon, and Mirela Ben-Chen. 2019. Reversible harmonic maps between discrete surfaces. ACM Trans. Graph. 38, 2

(2019), 1ś12.

Prerna Gera and David Salac. 2017. CahnśHilliard on surfaces: A numerical study. Applied Mathematics Letters 73 (2017), 56ś61.

Frederic Gibou, Ronald P. Fedkiw, Li-Tien Cheng, and Myungjoo Kang. 2002. A second-order-accurate symmetric discretization of the Poisson

equation on irregular domains. J. Comput. Phys. 176, 1 (2002), 205ś227.

John B. Greer. 2006. An improvement of a recent Eulerian method for solving PDEs on general geometries. Journal of Scientiic Computing 29,

3 (2006), 321ś352.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

Jefrey L. Hellrung Jr., Luming Wang, Eftychios Sifakis, and Joseph M. Teran. 2012. A second order virtual node method for elliptic problems

with interfaces and irregular domains in three dimensions. J. Comput. Phys. 231, 4 (2012), 2015ś2048.

Yi Hong, Dengming Zhu, Xianjie Qiu, and Zhaoqi Wang. 2010. Geometry-based control of ire simulation. The Visual Computer 26, 9 (2010),

1217ś1228.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral meshing in the wild. ACM Trans.

Graph. 37, 4 (2018), 60:1ś60:14.

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. https://libigl.github.io/.

Stefan Jeschke, David Cline, and Peter Wonka. 2009. Rendering surface details with difusion curves. In ACM SIGGRAPH Asia 2009 papers.

1ś8.

ACM Trans. Graph.

https://github.com/odedstein/meshes/tree/master/objects/fish
https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://doi.org/10.2312/vmv.20151259
http://eigen.tuxfamily.org
https://libigl.github.io/

40 • N. King, et al.

Peter Kaufmann, Sebastian Martin, Mario Botsch, Eitan Grinspun, and Markus Gross. 2009. Enrichment textures for detailed cutting of shells.

In ACM SIGGRAPH 2009 papers. 1ś10.

Theodore Kim, Jerry Tessendorf, and Nils Thuerey. 2013. Closest point turbulence for liquid surfaces. ACM Trans. Graph. 32, 2 (2013), 1ś13.

Nathan D. King and Steven J. Ruuth. 2017. Solving variational problems and partial diferential equations that map between manifolds via the

closest point method. J. Comput. Phys. 336 (2017), 330ś346.

Catherine Kublik, Nicolay M. Tanushev, and Richard Tsai. 2013. An implicit interface boundary integral method for Poisson’s equation on

arbitrary domains. J. Comput. Phys. 247 (2013), 279ś311.

Catherine Kublik and Richard Tsai. 2016. Integration over curves and surfaces deined by the closest point mapping. Research in the

Mathematical Sciences 3, 1 (2016), 3.

Randall J. LeVeque. 2007. Finite diference methods for ordinary and partial diferential equations: steady-state and time-dependent problems.

SIAM.

Jian Liang and Hongkai Zhao. 2013. Solving partial diferential equations on point clouds. SIAM Journal on Scientiic Computing 35, 3 (2013),

A1461śA1486.

Hsueh-Ti D. Liu, Alec Jacobson, and Keenan Crane. 2017. A Dirac operator for extrinsic shape analysis. In Computer Graphics Forum, Vol. 36.

Wiley Online Library, 139ś149.

Yu-Shen Liu, Jean-Claude Paul, Jun-Hai Yong, Pi-Qiang Yu, Hui Zhang, Jia-Guang Sun, and Karthik Ramani. 2006. Automatic least-squares

projection of points onto point clouds with applications in reverse engineering. Computer-Aided Design 38, 12 (2006), 1251ś1263.

Colin B. Macdonald, Jeremy Brandman, and Steven J. Ruuth. 2011. Solving eigenvalue problems on curved surfaces using the closest point

method. J. Comput. Phys. 230, 22 (2011), 7944ś7956.

Colin B. Macdonald, Barry Merriman, and Steven J. Ruuth. 2013. Simple computation of reactionśdifusion processes on point clouds.

Proceedings of the National Academy of Sciences 110, 23 (2013), 9209ś9214. pmid:23690616.

Colin B. Macdonald and Steven J. Ruuth. 2008. Level set equations on surfaces via the closest point method. Journal of Scientiic Computing

35, 2-3 (2008), 219ś240.

Colin B. Macdonald and Steven J. Ruuth. 2010. The implicit closest point method for the numerical solution of partial diferential equations

on surfaces. SIAM Journal on Scientiic Computing 31, 6 (2010), 4330ś4350.

Zoë Marschner, Paul Zhang, David Palmer, and Justin Solomon. 2021. Sum-of-squares geometry processing. ACM Trans. Graph. 40, 6 (2021),

1ś13.

Lindsay Martin and Yen-Hsi R. Tsai. 2020. Equivalent extensions of HamiltonśJacobiśBellman equations on hypersurfaces. Journal of

Scientiic Computing 84, 3 (2020), 1ś29.

Thomas Marz and Colin B. Macdonald. 2012. Calculus on surfaces with general closest point functions. SIAM J. Numer. Anal. 50, 6 (2012),

3303ś3328.

Sean P. Mauch. 2003. Eicient algorithms for solving static Hamilton-Jacobi equations. Ph. D. Dissertation. California Institute of Technology.

Pasadena, California.

Ian C. May, Ronald D. Haynes, and Steven J. Ruuth. 2020. Schwarz solvers and preconditioners for the closest point method. SIAM Journal on

Scientiic Computing 42, 6 (2020), A3584śA3609.

Ian C.T. May, Ronald D. Haynes, and Steven J. Ruuth. 2022. A closest point method library for PDEs on surfaces with parallel domain

decomposition solvers and preconditioners. Numerical Algorithms (2022), 1ś23.

Joseph S.B. Mitchell, David M. Mount, and Christos H. Papadimitriou. 1987. The discrete geodesic problem. SIAM J. Comput. 16, 4 (1987),

647ś668.

Nathan Mitchell, Mridul Aanjaneya, Rajsekhar Setaluri, and Eftychios Sifakis. 2015. Non-manifold level sets: A multivalued implicit surface

representation with applications to self-collision processing. ACM Transactions on Graphics 34, 6 (2015), 1ś9.

Nicolas Moës, John Dolbow, and Ted Belytschko. 1999. A inite element method for crack growth without remeshing. Internat. J. Numer.

Methods Engrg. 46, 1 (1999), 131ś150.

Neil Molino, Zhaosheng Bao, and Ron Fedkiw. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans.

Graph. 23, 3 (2004), 385ś392.

Dieter Morgenroth, Stefan Reinhardt, Daniel Weiskopf, and Bernhard Eberhardt. 2020. Eicient 2D simulation on moving 3D surfaces. In

Computer Graphics Forum, Vol. 39. Wiley Online Library, 27ś38.

Yen Ting Ng, Chohong Min, and Frédéric Gibou. 2009. An eicient luidśsolid coupling algorithm for single-phase lows. J. Comput. Phys.

228, 23 (2009), 8807ś8829.

Thien Nguyen, Kȩstutis Karčiauskas, and Jörg Peters. 2016. �1 inite elements on non-tensor-product 2D and 3D manifolds. Appl. Math.

Comput. 272 (2016), 148ś158.

Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle Thollot, and David Salesin. 2008. Difusion curves: A vector

representation for smooth-shaded images. ACM Trans. Graph. 27, 3 (2008), 1ś8.

Richard Palais, Hermann Karcher, et al. 2023. 3DXM Virtual Math Museum. https://virtualmathmuseum.org.

John E Pearson. 1993. Complex patterns in a simple system. Science 261, 5118 (1993), 189ś192.

ACM Trans. Graph.

https://virtualmathmuseum.org

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 41

Argyrios Petras, Leevan Ling, Cécile Piret, and Steven J. Ruuth. 2019. A least-squares implicit RBF-FD closest point method and applications

to PDEs on moving surfaces. J. Comput. Phys. 381 (2019), 146ś161.

Argyrios Petras, Leevan Ling, and Steven J. Ruuth. 2018. An RBF-FD closest point method for solving PDEs on surfaces. J. Comput. Phys. 370

(2018), 43ś57.

Argyrios Petras, Leevan Ling, and Steven J. Ruuth. 2022. Meshfree semi-Lagrangian methods for solving surface advection PDEs. Journal of

Scientiic Computing 93, 1 (2022), 1ś22.

Argyrios Petras and Steven J. Ruuth. 2016. PDEs on moving surfaces via the closest point method and a modiied grid based particle method.

J. Comput. Phys. 312 (2016), 139ś156.

Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1 (1993),

15ś36.

Cécile Piret. 2012. The orthogonal gradients method: A radial basis functions method for solving partial diferential equations on arbitrary

surfaces. J. Comput. Phys. 231, 14 (2012), 4662ś4675.

Yixuan Qiu. 2023. LBFGS++. https://lbfgspp.statr.me/.

Martin Reuter, Franz-ErichWolter, and Niklas Peinecke. 2006. LaplaceśBeltrami spectra as ‘Shape-DNA’of surfaces and solids. Computer-Aided

Design 38, 4 (2006), 342ś366.

Damien Rioux-Lavoie, Ryusuke Sugimoto, Tümay Özdemir, Naoharu H. Shimada, Christopher Batty, Derek Nowrouzezahrai, and Toshiya

Hachisuka. 2022. A Monte Carlo method for luid simulation. ACM Trans. Graph. 41, 6 (2022), 1ś16.

Steven J. Ruuth and Barry Merriman. 2008. A simple embedding method for solving partial diferential equations on surfaces. J. Comput.

Phys. 227, 3 (2008), 1943ś1961.

Rohan Sawhney. 2022. fcpw: Fastest Closest Points in the West. https://github.com/rohan-sawhney/fcpw.

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo geometry processing: a grid-free approach to PDE-based methods on volumetric

domains. ACM Trans. Graph. 39, 4 (2020), 123: 1ś123: 18.

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-free Monte Carlo for PDEs with spatially varying coeicients.

ACM Trans. Graph. 41, 4 (2022), 1ś17.

Robert Saye. 2014. High-order methods for computing distances to implicitly deined surfaces. Communications in Applied Mathematics and

Computational Science 9, 1 (2014), 107ś141.

Teseo Schneider, Yixin Hu, Jérémie Dumas, Xifeng Gao, Daniele Panozzo, and Denis Zorin. 2018. Decoupling simulation accuracy from mesh

quality. ACM Transactions on Graphics (2018).

Peter Schwartz, Michael Barad, Phillip Colella, and Terry Ligocki. 2006. A Cartesian grid embedded boundary method for the heat equation

and Poisson’s equation in three dimensions. J. Comput. Phys. 211, 2 (2006), 531ś550.

Nicholas Sharp et al. 2019b. Polyscope. www.polyscope.run.

Nicholas Sharp and Keenan Crane. 2020. You can ind geodesic paths in triangle meshes by just lipping edges. ACM Trans. Graph. 39, 6

(2020), 1ś15.

Nicholas Sharp, Keenan Crane, et al. 2019a. Geometry Central. www.geometry-central.net.

Nicholas Sharp and Alec Jacobson. 2022. Spelunking the deep: guaranteed queries on general neural implicit surfaces via range analysis.

ACM Trans. Graph. 41, 4, Article 107 (July 2022), 16 pages. https://doi.org/10.1145/3528223.3530155

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019c. The vector heat method. ACM Trans. Graph. 38, 3 (2019), 1ś19.

Yonggang Shi, Jonathan H. Morra, Paul M. Thompson, and Arthur W. Toga. 2009. Inverse-consistent surface mapping with Laplace-Beltrami

eigen-features. In International Conference on Information Processing in Medical Imaging. Springer, 467ś478.

Yonggang Shi, Paul M. Thompson, Ivo Dinov, Stanley Osher, and Arthur W. Toga. 2007. Direct cortical mapping via solving partial diferential

equations on implicit surfaces. Medical Image Analysis 11, 3 (2007), 207ś223.

John Strain. 1999. Fast tree-based redistancing for level set computations. J. Comput. Phys. 152, 2 (1999), 664ś686.

Ryusuke Sugimoto, Terry Chen, Yiti Jiang, Christopher Batty, and Toshiya Hachisuka. 2023. A practical walk-on-boundary method for

boundary value problems. ACM Trans. Graph. 42, 4 (July 2023). https://doi.org/10.1145/3592109

The Stanford 3D Scanning Repository. 2024. Lucy and XYZ RGB Dragon. Downloaded modiied version of Lucy from https://animium.com/

2013/11/lucy-angel-3d-model. Original Lucy and XYZ RGB Dragon meshes at https://graphics.stanford.edu/data/3Dscanrep.

Li Tian, Colin B. Macdonald, and Steven J. Ruuth. 2009. Segmentation on surfaces with the closest point method. In 2009 16th IEEE International

Conference on Image Processing (ICIP). IEEE, 3009ś3012.

Greg Turk. 1991. Generating textures on arbitrary surfaces using reaction-difusion. ACM SIGGRAPH Computer Graphics 25, 4 (1991), 289ś298.

Greg Turk. 2001. Texture synthesis on surfaces. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques.

347ś354.

Hui Wang, Yongxu Jin, Anqi Luo, Xubo Yang, and Bo Zhu. 2020. Codimensional surface tension low using moving-least-squares particles.

ACM Trans. Graph. 39, 4 (2020), 42ś1.

Li-Yi Wei and Marc Levoy. 2001. Texture synthesis over arbitrary manifold surfaces. In Proceedings of the 28th annual conference on Computer

graphics and interactive techniques. 355ś360.

ACM Trans. Graph.

https://lbfgspp.statr.me/
https://github.com/rohan-sawhney/fcpw
www.polyscope.run
www.geometry-central.net
https://doi.org/10.1145/3528223.3530155
https://doi.org/10.1145/3592109
https://animium.com/2013/11/lucy-angel-3d-model
https://animium.com/2013/11/lucy-angel-3d-model
https://graphics.stanford.edu/data/3Dscanrep

42 • N. King, et al.

Junxiang Yang, Yibao Li, and Junseok Kim. 2020. A practical inite diference scheme for the NavierśStokes equation on curved surfaces in

R
3. J. Comput. Phys. (2020), 109403.

Zhang Yingjie and Ge Liling. 2011. Improved moving least squares algorithm for directed projecting onto point clouds. Measurement 44, 10

(2011), 2008ś2019.

Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2006. Vector ield design on surfaces. ACM Trans. Graph. 25, 4 (2006), 1294ś1326.

A Closest Point Computation

Some manifolds allow closest points to be computed analytically, e.g., lines, circles, planes, spheres, cylinders,
and tori. We use the analytical expressions for exact closest points in all examples for which they exist. For
parameterized manifolds, closest points can be computed using standard numerical optimization techniques, e.g.,
Ruuth and Merriman [2008] used Newton’s method for various manifolds, such as a helix. For examples in this
paper, we solve

argmin
t

1

2
∥p(t) − x� ∥2,

for the parameters t (e.g., t = � for a 1D curves and t = [�, �]� for a 2D surface), where p(t) ∈ S and x� ∈ Ω(S).
LBFGS++ [Qiu 2023] is used to solve the optimization problem. An initial guess for cpS (x�) is taken as the nearest
neighbour in a point cloud PS of the parametric manifold. The point cloud PS is constructed using � equispaced
points of the parameter t.
Computing closest points to triangulated surfaces is also well-studied [Auer et al. 2012; Mauch 2003; Strain

1999]. Notably, the work of Auer et al. [2012] implements the closest point evaluation on a GPU. There also exist
open source libraries that support computing closest points to triangle meshes, e.g., libigl [Jacobson et al. 2018].
Here we use the library fcpw [Sawhney 2022] to compute closest points to triangulated surfaces and polyline
curves.
The simplest way to compute closest points to a point cloud is to take the nearest neighbour as the closest

point. As discussed by Macdonald et al. [2013] this choice can be inaccurate if the point cloud is not dense enough.
Wang et al. [2020] (Figure 17) showed the inaccuracy of using nearest neighbours as closest points with CPM on
a difusion problem. Several more accurate approaches for closest points to point clouds have been developed
[Liu et al. 2006; Martin and Tsai 2020; Petras et al. 2022; Yingjie and Liling 2011].

Closest points can also be computed from analytical signed-distance functions � (x) as
cpS (x) = x − � (x)∇� (x). (27)

Equation (27), however, is not valid for more general level-set functions � . High-order accuracy of closest points
from level-set functions (sampled on a grid) can be obtained using the method of Saye [2014]. For the examples
in this paper, we use the ideas of Saye [2014] but with analytical expressions for � . Speciically, an initial guess
cp★ of the closest point is obtained using a Newton-style procedure, starting with cp0 = x� , and iterating

cp�+1 = cp� −
� (cp�)∇� (cp�)
∥∇� (cp�)∥2

,

with stopping criterion ∥cp�+1 − cp� ∥ < 10−10 . Then Newton’s method

y�+1 = y� − (�2 � (y�))−1∇� (y�),
is used to optimize

� (cp, �) = 1

2
∥cp − x� ∥2 + �� (cp),

where y = [cp, �]� and ∥y�+1 − y� ∥ < 10−10 is used as the stopping criterion. The initial Lagrange multiplier
is �0 = (x� − cp★) · ∇� (cp★)/∥∇� (cp★)∥2. Analytical expressions for ∇� (y) and �2 � (y) are computed using
analytical expressions of ∇� and �2� .

ACM Trans. Graph.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 43

Closest points for objects composed of multiple parts can be computed by obtaining the closest point to
each independent manifold irst. Then the closest point to the combined object is taken as the closest of the
independent manifold closest points (e.g., the torus and sphere joined by line segments in Figure 12).

Closest points can be computed for many other representations. For example, closest points to neural implicit
surfaces can be computed using the work of Sharp and Jacobson [2022]. Further references for closest point
computation are given in Section 5.1 of [Sawhney and Crane 2020].

Received 4 May 2023; revised 31 May 2024; accepted 3 June 2024

ACM Trans. Graph.

	Abstract
	1 Introduction
	2 Related Work
	2.1 CPM in Applied Mathematics
	2.2 CPM in Computer Graphics
	2.3 Interior Boundary Conditions on Manifolds
	2.4 Efficiency of CPM

	3 Closest Point Method and Exterior Boundary Conditions
	3.1 Continuous Setting
	3.2 Discrete Setting
	3.3 Exterior Boundary Conditions for Open Manifolds

	4 Interior Boundary Conditions
	4.1 Adding Interior Boundary DOFs
	4.2 S Crossing Test
	4.3 Stencil Modifications
	4.4 Open Curves C in R3
	4.5 Points C in R3
	4.6 Localizing Computation Near C
	4.7 Improving Robustness of S Crossing Test
	4.8 A Nearest Point Approach for Dirichlet IBCs

	5 Implementation Aspects
	5.1 Closest Points and Computational Domain Setup
	5.2 Specifying Initial and Boundary Data
	5.3 Operator Discretization
	5.4 Linear Solver
	5.5 Visualization

	6 Convergence Studies
	6.1 Poisson Equation with Discontinuous Solution
	6.2 Heat Equation
	6.3 Screened-Poisson Equation
	6.4 Different CPM approaches vs. a Mesh-Based Method
	6.5 Linear System Solvers

	7 Applications
	7.1 Diffusion Curves
	7.2 Geodesic Distance
	7.3 Vector Field Design
	7.4 Harmonic Maps
	7.5 Reaction-Diffusion Textures

	8 Limitations and Future Work
	Acknowledgments
	References
	A Closest Point Computation

