
A Closest Point Method for PDEs on Manifolds with Interior Boundary
Conditions for Geometry Processing

NATHAN KING, Department of Computer Science, University of Waterloo, Waterloo, Canada

HAOZHE SU, LightSpeed Studios, Los Angeles, United States

MRIDUL AANJANEYA, Department of Computer Science, Rutgers University, Piscataway, United States

STEVEN RUUTH, Department of Mathematics, Simon Fraser University, Burnaby, Canada

CHRISTOPHER BATTY, Department of Computer Science, University of Waterloo, Waterloo, Canada

(b) Geodesic Distance (c) Vector Field Design

Fig. 1. We extend the closest point method to support solving PDEs on manifolds with interior boundary conditions. Our method enables the solution of

various geometry processing tasks on general surfaces, given only the ability to perform closest point queries. (a) Coloring a triangulated surface using

diffusion curves. (b) Geodesic distance to a parametric curve (black) on an analytical closest point surface. (c) Vector field design on a triangulation of a

Möbius strip, which is an open and nonorientable surface.

Many geometry processing techniques require the solution of partial

differential equations (PDEs) on manifolds embedded in R2 or R3, such as

Nathan King was supported in part by the QEII-GSST and Ontario Graduate Scholar-
ships. Mridul Aanjaneya was supported in part by the National Science Foundation
under awards CCF-2110861, IIS-2132972, IIS-2238955, and CCF-2312220 as well as a
research gift from Red Hat, Inc. and Houdini licenses from SideFX Software. Steven
Ruuth was supported in part by the NSERC Discovery grant program (RGPIN 2022-
03302). Christopher Batty was supported in part by the NSERC Discovery grant pro-
gram (RGPIN-2021-02524) and the CFI-JELF program (Grant 40132).
Authors’ Contact Information: Nathan King, Department of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada; e-mail: n5king@uwaterloo.ca;
Haozhe Su, LightSpeed Studios, Los Angeles, California, United States; e-mail:
haozhesu@global.tencent.com; Mridul Aanjaneya, Department of Computer Science,
Rutgers University, Piscataway, New Jersey, United States; e-mail: mridul.aanjaneya@
rutgers.edu; Steven Ruuth, Department of Mathematics, Simon Fraser University,
Burnaby, British Columbia, Canada; e-mail: sruuth@sfu.ca; Christopher Batty, De-
partment of Computer Science, University of Waterloo, Waterloo, Ontario, Canada;
e-mail: christopher.batty@uwaterloo.ca.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0730-0301/2024/08-ART159
https://doi.org/10.1145/3673652

curves or surfaces. Such manifold PDEs often involve boundary conditions

(e.g., Dirichlet or Neumann) prescribed at points or curves on the mani-

fold’s interior or along the geometric (exterior) boundary of an open mani-

fold. However, input manifolds can take many forms (e.g., triangle meshes,

parametrizations, point clouds, implicit functions, etc.). Typically, one must

generate a mesh to apply finite element-type techniques or derive spe-

cialized discretization procedures for each distinct manifold representa-

tion. We propose instead to address such problems in a unified manner

through a novel extension of the closest point method (CPM) to handle inte-

rior boundary conditions. CPM solves the manifold PDE by solving a vol-

umetric PDE defined over the Cartesian embedding space containing the

manifold and requires only a closest point representation of the manifold.

Hence, CPM supports objects that are open or closed, orientable or not, and

of any codimension. To enable support for interior boundary conditions,

we derive a method that implicitly partitions the embedding space across

interior boundaries. CPM’s finite difference and interpolation stencils are

adapted to respect this partition while preserving second-order accuracy.

Additionally, we develop an efficient sparse-grid implementation and nu-

merical solver that can scale to tens of millions of degrees of freedom, al-

lowing PDEs to be solved on more complex manifolds. We demonstrate

our method’s convergence behavior on selected model PDEs and explore

several geometry processing problems: diffusion curves on surfaces, geo-

desic distance, tangent vector field design, harmonic map construction, and

reaction-diffusion textures. Our proposed approach thus offers a powerful

and flexible new tool for a range of geometry processing tasks on general

manifold representations.

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

HTTPS://ORCID.ORG/0000-0003-4105-0189
HTTPS://ORCID.ORG/0009-0002-8534-8964
HTTPS://ORCID.ORG/0000-0002-5286-8173
HTTPS://ORCID.ORG/0000-0002-9557-3375
HTTPS://ORCID.ORG/0000-0003-3830-7772
mailto:permissions@acm.org
https://doi.org/10.1145/3673652
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673652&domain=pdf&date_stamp=2024-08-09

159:2 • N. King et al.

CCS Concepts: • Mathematics of computing → Discretization; Par-

tial differential equations; • Computing methodologies → Shape

analysis;

Additional Key Words and Phrases: Manifold partial differential equations,

embedding methods, closest point method, boundary conditions, geome-

try processing, diffusion curves, geodesic distance, vector field design, har-

monic maps, reaction-diffusion textures

ACM Reference Format:

Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christo-

pher Batty. 2024. A Closest Point Method for PDEs on Manifolds with In-

terior Boundary Conditions for Geometry Processing. ACM Trans. Graph.

43, 5, Article 159 (August 2024), 26 pages. https://doi.org/10.1145/3673652

1 Introduction

A manifold partial differential equation is a partial differential

equation (PDE) whose solution is restricted to lie on a manifold
S. Such manifold PDEs arise naturally in many fields, including
applied mathematics, mathematical physics, image processing,
computer vision, fluid dynamics, and computer graphics. We focus
on geometry processing, where a numerical solution is typically
sought by approximating the manifold as a mesh and discretizing
the PDE using finite element or discrete exterior calculus tech-
niques. However, the introduction of a mesh entails some draw-
backs. One must perform mesh generation if the input manifold is
not given as a mesh. The mesh quality also strongly influences the
resulting solution and therefore remeshing is required if the input
mesh is of low quality or inappropriate resolution. Both mesh
generation and remeshing are nontrivial tasks. Finally, depending
on the chosen numerical method, the discretization of a particular
manifold PDE can differ significantly from the corresponding dis-
cretized PDE on Cartesian domains; further analysis can be needed
to derive an appropriate convergent scheme for the manifold case.

A powerful alternative is the use of embedding techniques,
which solve the manifold problem by embedding it into a sur-
rounding higher-dimensional Cartesian space. The closest point

method (CPM) [Ruuth and Merriman 2008] is an especially attrac-
tive instance of this strategy, as it offers a remarkable combination
of simplicity and generality. Its simplicity lies in its ability to lever-
age standard Cartesian numerical methods in the embedding space
to solve the desired manifold problem, given only a closest point
function for the manifold. Its generality lies in its support for di-
verse manifold characteristics, manifold representations, and man-
ifold PDEs.

Requiring only a closest point function allows input manifolds
to be open or closed, orientable or not, and of any codimension
or even mixed codimension. Closest point queries are available
for many common manifold representations (as highlighted by
Sawhney and Crane [2020]), and therefore CPM can be applied
to meshes, level sets, point clouds, parametric manifolds, con-
structive solid geometry, neural implicit surfaces, and so on
(see Figure 2). Such generality is appealing given the increasing
demand for algorithms that can ingest general “in-the-wild”
and high-order geometries [Barill et al. 2018; Hu et al. 2018;
Marschner et al. 2021; Sawhney and Crane 2020]. Furthermore,
the embedding PDE solved on the Cartesian domain is often simply
the Cartesian analog of the desired manifold PDE. Thus, CPM has
been applied to the heat equation, Poisson and screened-Poisson

Fig. 2. CPM can be applied to any manifold representation that supports

closest point queries, including parametrizations, meshes, and point

clouds, as well as discrete or continuous level sets and closest point

functions.

equations, Laplace-Beltrami eigenproblem, biharmonic equation,
advection-diffusion and reaction-diffusion equations, Hamilton-
Jacobi equation, Navier-Stokes equation, Cahn-Hilliard equation,
computation of (p-)harmonic maps, and more.

Yet, despite the desirable properties of CPM and its adoption in
applied mathematics, CPM has only infrequently been employed
by computer graphics researchers, and almost exclusively for fluid
animation [Auer et al. 2012; Auer and Westermann 2013; Hong et al.
2010; Kim et al. 2013; Morgenroth et al. 2020]. In the present work,
we demonstrate CPM’s wider potential value for computer graph-
ics problems by extending CPM to handle several applications in
geometry processing: diffusion curves on surfaces, geodesic dis-
tance, tangent vector field design, harmonic maps with feature
(landmark) points and curves, and reaction-diffusion textures.

However, a crucial limitation of the existing CPM stands in the
way of the objective above. CPM supports standard boundary con-
ditions on the geometric (exterior) boundary of an open manifold,
∂S, but it does not yet support accurate interior boundary con-

ditions (IBCs), i.e., boundary conditions at manifold points or
curves away from ∂S. CPM’s use of the embedding space makes
enforcing IBCs nontrivial, but they are vital for the applications
above. For example, the curves in diffusion curves or the source
points for geodesic distance computation generally lie on the inte-
rior of S. Therefore, we propose a novel mechanism that enables
accurate IBC enforcement for CPM in R2 and R3 while retaining
its simplicity and generality.

To scale up to surfaces with finer details, we further develop a
tailored numerical framework and solver. The computational do-
main is only required near S, so we use a sparse grid structure
to improve memory efficiency. We then develop a custom pre-
conditioned BiCGSTAB solver for solving the linear system that
also better utilizes memory. The combination of the sparse grid
structure near S and the custom solver allows us to efficiently

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

https://doi.org/10.1145/3673652

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 159:3

scale to tens of millions of degrees of freedom. To foster wider
adoption of CPM, our code has been released publicly at https://
github.com/nathandking/cpm-ibc.

In summary, the key contributions of our work are to:

— introduce a novel treatment of interior boundary conditions
for CPM with up to second-order accuracy;

— employ a sparse grid structure and develop a custom solver
for memory efficiency, which enables scaling to tens of mil-
lions of degrees of freedom; and

— demonstrate the effectiveness of our new CPM scheme for
several geometry processing tasks.

2 Related Work

2.1 CPM in Applied Mathematics

CPM was introduced by Ruuth and Merriman [2008], who ap-
plied it to diffusion, advection, advection-diffusion, mean curva-
ture flow of curves on surfaces, and reaction-diffusion. They drew
inspiration from earlier embedding methods based on level sets
[Bertalmıo et al. 2001; Greer 2006], while eliminating the restric-
tion to closed manifolds, supporting more general PDEs, and al-
lowing for narrow-banding without loss of convergence order.
Subsequently, CPM has been shown to be effective for a wide
range of additional PDEs including the screened-Poisson (a.k.a.
positive-Helmholtz) equation [Chen and Macdonald 2015; May
et al. 2020], Hamilton-Jacobi equations/level-set equations [Mac-
donald and Ruuth 2008], biharmonic equations [Macdonald and
Ruuth 2010], Cahn-Hilliard equation [Gera and Salac 2017], Navier-
Stokes equation [Auer et al. 2012; Yang et al. 2020], construction
of (p-)harmonic maps [King and Ruuth 2017], and more. Despite
being initially designed for manifold PDEs, CPM can additionally
be applied to volumetric (codimension-0) problems and surface-to-
bulk coupling scenarios [Macdonald et al. 2013]. Related closest
point mapping approaches have also been used to handle integral
equations [Chen and Tsai 2017; Chu and Tsai 2018; Kublik et al.
2013; Kublik and Tsai 2016].

Some prior work on CPM has focused on problems of relevance
to geometry processing. For example, Macdonald et al. [2011] com-
puted eigenvalues and eigenfunctions of the Laplace-Beltrami op-
erator via CPM, and the resulting eigenvalues of surfaces were
used by Arteaga and Ruuth [2015] to compute the “Shape-DNA”
[Reuter et al. 2006] for clustering similar surfaces into groups. Seg-
mentation of data on surfaces was demonstrated by Tian et al.
[2009], who adapted the Chan-Vese algorithm common in image
processing. Different approaches to compute normals and curva-
tures were discussed in the appendix of the original CPM paper
[Ruuth and Merriman 2008].

CPM has mostly been used on static manifolds with a uniform
grid in the embedding space as the computational domain. How-
ever, Petras and Ruuth [2016] combined CPM with a grid-based
particle method to solve PDEs on moving surfaces. A mesh-free
CPM approach was investigated in Cheung et al. [2015], Petras
et al. [2019, 2018, 2022], and Piret [2012] using radial-basis
functions.

The CutFEM family of methods [Burman et al. 2015a] rep-
resents another embedding approach. They use finite elements

(rather than finite differences) on a non-conforming simplicial
embedding mesh. They have been used to solve various manifold
PDEs (e.g., Laplace-Beltrami [Burman et al. 2015b], convection
[Burman et al. 2019]).

2.2 CPM in Computer Graphics

Embedding methods similar to CPM have also been proposed and
used in the computer graphics community. Perhaps most closely
related is the work of Chuang et al. [2009], who solved Poisson
problems using the finite element method over a function space
consisting of 3D grid-based B-spline basis functions restricted to
the shape’s surface. They demonstrated geometry processing ap-
plications such as texture back-projection and curvature estima-
tion. They also showed that the observed eigenspectra are much
less dependent on the surface triangulation than with standard
mesh-based methods. While their approach has some conceptual
connections to CPM, it does not possess the same degree of sim-
plicity or generality as CPM, nor does it support IBCs. The thesis
by Chuang [2013] further demonstrates an extension of this ap-
proach to use locally non-manifold grids to address narrow bot-
tlenecks, where two pieces of a surface are close in Euclidean dis-
tance but far apart in geodesic distance. Our work also introduces a
non-manifold grid structure, but with the distinct aim of handling
IBCs.

CPM itself has been applied in computer graphics, primarily for
fluid animation. Hong et al. [2010] used a modified CPM to evolve
and control the motion of flame fronts restricted to surfaces. The
work of Kim et al. [2013] increased the apparent spatial resolution
of an existing volumetric liquid simulation by solving a wave simu-
lation on the liquid surface. The surface wave equation and Navier-
Stokes equations were solved by Auer et al. [2012] with a real-time
implementation on the GPU. Auer and Westermann [2013] subse-
quently extended this work to support deforming surfaces given
by a sequence of time-varying triangle meshes (predating the mov-
ing surface work of Petras and Ruuth [2016] in computational
physics). Morgenroth et al. [2020] employed CPM for one-way cou-
pling between a volumetric fluid simulation and a surface fluid
simulation for applications such as oil films spreading on liquid
surfaces.

Wang et al. [2020] coupled moving-least-squares approx-
imations on codimension-1 and 2 objects with grid-based
approximations for codimension-0 operators in surface-tension
driven Navier-Stokes systems. The ability of CPM to handle
mixed-codimension objects makes it an ideal candidate for a
unified solver.

2.3 Interior Boundary Conditions on Manifolds

Existing numerical methods for manifold PDEs support IBCs in
various ways depending on the chosen manifold representation
and method of discretization. In the Dirichlet case, the nearest
degrees of freedom (DOFs) to the interior boundary can often
simply be assigned the desired Dirichlet value. For example, on a
point cloud representation, the nearest interior points in the cloud
could be set to the Dirichlet value, similar to how exterior Dirichlet
BCs have been handled in point clouds [Liang and Zhao 2013].
With triangle mesh-based discretizations (finite element, discrete

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

https://github.com/nathandking/cpm-ibc

159:4 • N. King et al.

exterior calculus, etc.) one can similarly enforce the Dirichlet
condition at the nearest surface vertices to the interior boundaries.
However, enforcing the IBC at the nearest DOF is inaccurate if the
DOF does not lie exactly on the interior boundary C (i.e., the mesh
does not precisely conform to C). Specifically, an error of O(‖h‖)
is introduced where ‖h‖ is the distance between the nearest DOF
and C. Moreover, only Dirichlet conditions can be treated in this
manner; depending on the chosen manifold representation and/or
discretization, it can be nontrivial to enforce Neumann boundary
conditions.

For Dirichlet IBCs in CPM, Auer et al. [2012, 2013] fixed all
the nearest DOFs in the embedding space within a ball centered
around C (considering only the case when C is a point). This again
is only first-order accurate, incurring an O(Δx) error, where Δx is
the grid spacing in the embedding space. Enforcing the IBC over a
ball effectively inflates the boundary region to a wider area of the
surface. That is, a circular region of the surface around the point C
will be fixed with the prescribed condition. We show in Section 6
that this approach can also be applied to boundary curves, but the
observed error is much larger compared to our proposed method.
Moreover, it cannot be applied when Dirichlet values differ on each
side of C.

With a surface triangulation, a more accurate approach is to
remesh the surface with constrained Delaunay refinement (pos-
sibly with an intrinsic triangulation) so vertices or edges of the
mesh conform to C, as discussed, for example, by Sharp and Crane
[2020]. However, this necessarily introduces remeshing as an extra
preprocess. Another mesh-based approach, which avoids remesh-
ing, is the extended finite element method [Kaufmann et al. 2009;
Moës et al. 1999], which uses modified basis functions to enforce
non-conforming boundaries or discontinuities.

Most similar to our approach is the method of Shi et al. [2007],
who enforced Dirichlet IBCs for a manifold PDE method based
on level sets. As with CPM, solving surface PDEs with level sets
[Bertalmıo et al. 2001] involves extending the problem to the sur-
rounding embedding space. For such embedding methods, it is cru-
cial not only to account for the interior boundary itself but also
its influence into the associated embedding space. To do so, the
approach of Shi et al. [2007] explicitly constructs a triangulation
to represent a normal manifold S⊥ (see Equation (6)) extending
outwards from the interior boundary curve C (notably contrast-
ing with the implicit nature of level-sets). They then perform geo-
metric tests to determine if stencils intersect S⊥ and modify the
discretization locally. We instead introduce a simple triangulation-
free approach to determine if stencils cross S⊥ that only involves
closest points, bypassing explicit construction of S⊥. Moreover,
such level-set approaches necessarily require a well-defined inside
and outside, which makes handling open manifolds, nonorientable
manifolds, and manifolds of codimension-two or higher impossible
with a single level set.

Our proposed CPM extension overcomes several limitations
of the existing CPM (Dirichlet-only) IBC treatment of Auer
et al. [2012]. We demonstrate that our method can easily be ex-
tended to second-order, for both Dirichlet and zero-Neumann
cases. It can also handle jump discontinuities in Dirichlet values
across interior boundary curves. Furthermore, our approach sup-
ports what we call mixed boundary conditions, e.g., Dirichlet on

one side and Neumann on the other. Both jump discontinuities and
mixed IBCs are useful for various applications, such as diffusion
curves [Orzan et al. 2008].

The key attribute of our IBC approach that allows the above flex-
ibility for BC types is the introduction of new DOFs near C. This
idea shares conceptual similarities with virtual node algorithms
[Molino et al. 2004], which have been used for codimension-zero
problems [Azevedo et al. 2016; Bedrossian et al. 2010; Hellrung Jr.
et al. 2012]. It is also similar to the CPM work of Cheung et al.
[2015], who used new DOFs near sharp features of S (albeit with
the radial-basis function discretization of CPM).

2.4 Efficiency of CPM

CPM involves constructing a computational domain Ω(S) in the

embedding space Rd surrounding S. Linear systems resulting
from the PDE discretization on Ω(S) must then be solved. For
large systems (usually resulting from problems with d ≥ 3) mem-
ory consumption is dominated by the storage of Ω(S). However,
computation time is dominated by the linear system solve.

CPM naturally allows Ω(S) to occupy only a narrow tubular re-
gion of the embedding space near S, analogous to narrow banding
for level-set techniques [Adalsteinsson and Sethian 1995]. There-
fore, the number of unknowns scales with dim(S) rather than d .
Note that dim(S) ≤ d for manifold PDEs. The linear system solve
will be faster with fewer unknowns, so it is important that the con-
struction of the computational domain be carried out local to S
only. Ruuth and Merriman [2008] used a simple procedure to con-
struct Ω(S) that involved storing a uniform grid in a bounding box
of S and computing the closest point for every grid point in the
bounding box. Finally, an indexing array was used to label which
grid points are within a distance rΩ(S) of S, where rΩ(S) is the
computational tube-radius (see Equation (4)).

The procedure of Ruuth and Merriman [2008] gives linear sys-
tems that scale with dim(S), but memory usage and closest point
computation still scale with d . Macdonald and Ruuth [2010] used
a breadth-first-search (BFS), starting at a grid point near S, that
allows the number of closest points computed to scale with dim(S).
We use a similar BFS when constructing Ω(S); see Section 5 for de-
tails. However, Macdonald and Ruuth [2010] still required storing
the grid in the bounding box ofS, while we adopt sparse grid struc-
tures that achieve efficient memory use by allocating only grid
points of interest instead of the full grid.

May et al. [2020] overcame memory restrictions arising from
storing the full bounding-box grid by using domain decomposi-
tion to solve the PDE with distributed memory parallelism. The
code detailed by May et al. [2022] is publicly available but requires
specialized hardware to exploit distributed memory parallelism.

Auer et al. [2012] also used specialized hardware, i.e., their CPM-
based fluid simulator was implemented on a GPU. However, they
employed a two-level sparse block structure for memory-efficient
construction of Ω(S) that is also suitable for the CPU. A coarse-
level grid in the bounding box of S is used to find blocks of the
fine-level grid (used to solve the PDE) that intersect S. Thus, the
memory usage to construct the fine-level grid Ω(S) scales with
dim(S), as desired. The coarse-level grid still scales with d, but
does not cause memory issues, because its resolution is much
lower than the fine-level one. We adopt a similar approach for

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 159:5

constructing Ω(S), although our implementation is purely CPU-
based.

There has also been work on efficient linear system solvers
for CPM. Chen and Macdonald [2015] developed a geometric
multigrid solver for the manifold screened-Poisson equation. May
et al. [2020, 2022] proposed Schwarz-based domain decomposi-
tion solvers and preconditioners for elliptic and parabolic manifold
PDEs. We implement a custom BiCGSTAB solver (with OpenMP
parallelism), as detailed in Section 5.4, that avoids explicit construc-
tion of the full linear system. Our solver is more efficient, with
respect to memory and computation time (see Section 6.5), com-
pared to Eigen’s SparseLU and BiCGSTAB implementations [Guen-
nebaud et al. 2010] as well as the Intel MKL PARDISO. Moreover,
it circumvents the intricacies associated with implementing multi-
grid or domain decomposition techniques.

3 Closest Point Method and Exterior Boundary
Conditions

3.1 Continuous Setting

Consider a manifold S embedded in Rd , where d ≥ dim(S). The
closest point method uses a closest point (CP) representation of

S, which is a mapping from points x ∈ Rd to points cpS(x) ∈
S. The point cpS(x) is defined as the closest point on S to x in
Euclidean distance, i.e.,

cpS(x) = arg min
y∈S

‖x − y‖.

A CP representation can be viewed as providing both implicit and

explicit representations. The mapping cpS : Rd → S representsS
implicitly: A traditional scalar (though unsigned) implicit manifold
can be recovered by computing the distance ‖x − cpS(x)‖. Mean-
while, the closest points themselves give an explicit representation
of S, albeit without connectivity (i.e., a point cloud).

CPM embeds the manifold problem into the space surrounding
S. Consider a tubular neighborhood defined as

N(S) =
{
x ∈ Rd

��� ‖x − cpS(x)‖ ≤ rN(S)
}
,

where rN(S) is called the tube radius. The in-
set (top) shows an example of a tube N(S)
(gray) around a 1D curve S (colored) em-
bedded in R2. To solve manifold PDEs with
CPM an embedding PDE is constructed on
N(S), whose solution agrees with the solu-
tion of the manifold PDE at points y ∈ S.
Let û(y), for y ∈ S, and u(x), for x ∈
N(S), denote the solutions to the manifold
PDE and embedding PDE, respectively. Fun-
damentally, CPM is based on extending man-
ifold data û from S ontoN(S) such that the
data is constant in the normal direction of
S. This task is accomplished using the clos-

est point extension, which is the composition
of û with cpS , i.e., we take u(x) = û(cpS(x))
for all x ∈ N(S). The inset (bottom) visual-
izes u ∈ N(S) resulting from the CP exten-
sion of û ∈ S (inset, top).

Crucially, Ruuth and Merriman [2008] observed that this ex-
tension allows manifold differential operators LS on S to be re-
placed with Cartesian differential operators L onN(S). Since the
function u on N(S) is constant in the normal direction, u only
changes in the tangential direction of S. Hence, Cartesian gradi-
ents on N(S) are equivalent to manifold gradients for points on
the manifold. By a similar argument, manifold divergence opera-
tors can be replaced by Cartesian divergence operators on N(S).
Higher-order derivatives are handled by combining these gradient
and divergence principles with CP extensions onto N(S).

In this section, we illustrate CPM for solving the manifold Pois-

son equation ΔSû = f̂ , with the embedding PDE Δû(cpS(x)) =
f̂ (cpS(x)) or equivalently Δu(x) = f (x). (Technically, this em-
bedding PDE is ill-posed, because f (x) is constant in the normal
direction of S, but Δu(x) is not. It is used here for ease of expo-
sition. Chen and Macdonald [2015, Section 2.3] and Macdonald
et al. [2011] discuss the well-posed version that modifies Δu(x).
The well-posed version is used in our numerical examples; see
Section 5.3.)

3.2 Discrete Setting

In the discrete setting, the computational domain is a collection of
Cartesian grid points Ω(S) ⊆ N(S)with uniform spacing Δx . The
closest point cpS(xi) to each grid point xi ∈ Ω(S) is computed
and stored. Discrete approximations of the CP extension and dif-
ferential operators are needed to solve the embedding PDE. For our
example Poisson equation, Δu(x) = f (x), we need to approximate

the CP extensions u(x) = û(cpS(x)) and f (x) = f̂ (cpS(x)), as well
as the Laplacian Δ. Interpolation is used to approximate the CP
extension, and finite-differences (FDs) are used for differential
operators.

The CP extension requires interpolation, since cpS(xi) is gener-
ally not a grid point in Ω(S). Thus, the manifold value û(cpS(xi))
is approximated by interpolating from discrete values ui ≈ u(xi)
stored at grid points xi ∈ Ω(S) surrounding cpS(xi). The inter-
polation degree should be chosen such that interpolation error
does not dominate the solution. Throughout, we use barycentric-
Lagrange interpolation with polynomial degree p [Berrut and Tre-
fethen 2004]. This is an efficient form of Lagrange interpolation
for CPM [Ruuth and Merriman 2008, Section 2.5]. (Manifold data

given in the manifold PDE problem, e.g., the function f̂ or an ini-
tial condition for time-dependent problems, is extended onto Ω(S)
in a different way that depends on the data representation. See
Section 5.2 for details.)

For a given grid point xk ∈ Ω(S),we have the following approx-
imation of the closest point extension:

û(cpS(xk)) = u(xk) ≈
∑
j ∈Ik

wk
j uj , (1)

where Ik denotes the set of indices corresponding to grid points in

the interpolation stencil for the query point cpS(xk) and wk
j are

the barycentric-Lagrange interpolation weights corresponding to
each grid point in Ik .

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

159:6 • N. King et al.

FD discretizations on Ω(S) are used to approximate a Cartesian
differential operator L as

Lu(xi) ≈
∑

k ∈Di

l i
k
uk , (2)

where Di denotes the set of indices corresponding to grid points
in the FD stencil centered at the grid point xi . The FD weights
are denoted l i

k
for each xk with k ∈ Di . For example, the com-

mon second-order centered-difference for the discrete Laplacian
has weights 1/(Δx)2 if k � i and −2d/(Δx)2 if k = i .

With these CP extension and differential operator approxima-
tions, the Laplace-Beltrami operator ΔSû is approximated on Ω(S)
as

ΔSû(cpS(xi)) ≈
∑

k ∈Di

l i
k

���
∑
j ∈Ik

wk
j uj

	
� . (3)

Hence, to solve the discrete embedding PDE (for ΔSû = f̂), we
form a linear system using the equation∑

k ∈Di

l i
k

���
∑
j ∈Ik

wk
j uj

	
� = fi

to solve for unknowns ui at grid points xi ∈ Ω(S). Finally, the
solution to the original manifold PDE can be recovered at any y ∈
S by interpolation as needed. The reader may refer to prior CPM
work [Macdonald et al. 2011; Macdonald and Ruuth 2010; Ruuth
and Merriman 2008] for further background.

Tube Radius of the Computational Domain. One could use a grid

Ω(S) that completely fills Rd , but this choice is inefficient, since
only a subset of those points (i.e., those near S) affect the nu-
merical solution on the manifold. It is only required that all grid
points within the interpolation stencil of any point on the man-
ifold have accurate approximations of the differential operators.
Barycentric-Lagrange interpolation uses a hypercube stencil of
p + 1 grid points in each dimension. Consider a hyper-cross FD
stencil that uses q grid points from the center of the stencil in each
dimension. An upper bound estimate of the computational tube-
radius, rΩ(S), for the computational domain Ω(S) is Ruuth and
Merriman [2008]

rΩ(S) = Δx

√
(d − 1)

(
p + 1

2

)2

+

(
q +

p + 1

2

)2

. (4)

Therefore, our computational domain Ω(S) consists of all grid
points xi satisfying ‖xi − cpS(xi)‖ ≤ rΩ(S). Explicit construction
of Ω(S) is discussed in Section 5.1.

3.3 Exterior Boundary Conditions for Open Manifolds

When the manifold S is open (i.e., its geometric boundary ∂S � ∅)
some choice of boundary condition (BC) must usually be im-
posed on ∂S (e.g., Dirichlet, Neumann). We will refer to these as
exterior boundary conditions. In many applications, however, simi-
lar types of boundary conditions may be needed at locations on the
interior of S, irrespective of S being open or closed. In this case,
interior boundary conditions (IBCs) should be enforced on a
subset C ⊂ S, which typically consists of points C on a 1D curve
S, or points and/or curves C on a 2D surface S. Our proposed ap-
proach for IBCs in Section 4 builds on existing CPM techniques

Fig. 3. The boundary subset Ω(∂S) (purple points) for a curve S (blue)

comprises those grid points in Ω(S) (black grid) whose closest point is on

the boundary ∂S (white point). The points xi ∈ Ω(∂S) are those past the

normal manifold S⊥ based at ∂S (green).

for applying exterior BCs at open manifold boundaries, which we
review below.

A subset Ω(∂S) ⊂ Ω(S) of grid points called the boundary sub-
set is used to enforce exterior BCs. It consists of all xi satisfying
cpS(xi) ∈ ∂S, i.e., grid points whose closest manifold point is on
the boundary of S. Equivalently,

Ω(∂S) =
{
xi ∈ Ω(S)

�� cpS(xi) = cp∂S(xi)
}
, (5)

where cp∂S is the closest point function to ∂S. Geometrically,
Ω(∂S) is a half-tubular region of grid points past ∂S, halved by
the manifold orthogonal to S at ∂S defined by

S⊥ = {x ∈ N(S) | x = y + t nS(y), y ∈ ∂S, |t | ≤ rΩ(S)}, (6)

when S is codimension one. The manifold normal at y ∈ ∂S is
defined as the limiting normal nS(y) = limz→y nS(z), where z ∈ S
and nS(z) is the unit normal of S at z. Figure 3 illustrates this for
a 1D curve embedded in R2.

CPM naturally applies first-order homogeneous Neumann BCs,
∇Sû · n∂S = 0, where n∂S is the unit conormal of ∂S. The conor-
mal is a vector normal to ∂S, tangential to S, and oriented out-
ward [Dziuk and Elliott 2007]. Therefore, n∂S(y) � nS(y) for
y ∈ ∂S, and n∂S(y) is orthogonal to nS(y), since n∂S(y) is in
the tangent space of S. The CP extension propagates manifold
data constant in both nS and n∂S at ∂S. Hence, finite differenc-
ing across the boundary subset Ω(∂S)will measure zero conormal
derivatives [Ruuth and Merriman 2008], and the discretization of
the manifold differential operator can be used without any changes
at xi ∈ Ω(∂S).

However, to enforce first-order Dirichlet BCs on ∂S, the CP ex-
tension step must be changed. The prescribed Dirichlet value at
the closest point of xi ∈ Ω(∂S) is extended to xi (instead of the in-
terpolated value in Equation (1)). That is, the CP extension assigns
ui = û(cpS(xi)) for all xi ∈ Ω(∂S), where û(cpS(xi)) is the Dirich-
let value at cpS(xi) ∈ ∂S. Only this extension procedure changes;
the FD discretization is unchanged for all exterior BC types and
orders.

For improved accuracy, second-order Dirichlet and zero-
Neumann exterior BCs were introduced by Macdonald et al. [2011]
using a simple modification to the closest point function. The clos-
est point function is replaced with

cpS(x) = cpS(2cpS(x) − x). (7)

Effectively, rather than finding the closest point, this expression
determines a “reflected” point and returns its closest point instead.

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 159:7

Fig. 4. On the left, a normal manifold S⊥ (green) extends perpendicularly

outwards from a curve C (white) where an IBC is to be applied. On the

right, closest points cpS(xi) for xi ∈ Ω(C) (yellow and purple) cannot be

globally partitioned into two disjoint sets by C on a nonorientable S (blue).

Observe that cpS satisfies cpS(xj) = cpS(xj) if xj � Ω(∂S)
(and cpS(x) is unique). Therefore, no
change occurs to CPM on the interior
of S (see inset, bottom), so we continue
to use cpS(x) for x ∈ Ω(S) \ Ω(∂S).
However, for boundary points xk ∈
Ω(∂S), we have cpS(xk) � cpS(xk),
since cpS(xk) is a point on the interior
of S while cpS(xk) is a point on ∂S
(see inset, top). Hence, for a flat mani-
fold, û(cpS(xk)) gives the interior mir-
ror value for xk . For a general, curved
manifold, û(cpS(xk)) gives an approximate mirror value.

Thus, replacing cpS with cpS will naturally apply second-order
homogeneous Neumann exterior BCs: Approximate mirror values
are extended to xk ∈ Ω(∂S), so the effective conormal derivative
becomes zero at ∂S. This approach generalizes popular methods
for codimension-zero problems with embedded boundaries, where
mirror values are also assigned to ghost points (see, e.g., Section
2.12 of LeVeque [2007]). In practice, the only change required is to
replace Ik and corresponding weights in Equation (1) with those
for cpS(xk).

Second-order Dirichlet exterior BCs similarly generalize their
codimension-zero counterparts, e.g., the ghost fluid method [Gi-
bou et al. 2002] that fills ghost point values by linear extrapolation.
The CP extension at xk ∈ Ω(∂S) becomes u(xk) = 2û(cpS(xk)) −
u(cpS(x)), where û(cpS(xk)) is the prescribed Dirichlet value on
∂S. Hence, for xk ∈ Ω(∂S), we change Equation (1) to

uk = 2û(cpS(xk)) −
∑

j ∈Ik

wk
j uj , (8)

where Ik andwk
j are the interpolation stencil indices and weights

for cpS(xk), respectively.
Remark that S can have multiple boundaries, so there may be

multiple Ω(∂S) regions where this BC treatment must be applied.

4 Interior Boundary Conditions

As discussed in Section 3, the discrete setting of CPM involves two
main operations: interpolation for CP extensions and finite dif-

ferences (FDs) for differential operators. Exterior BCs are han-
dled by modifying the CP extension interpolation while keeping

Table 1. A Summary of Symbols Used in this Article

Symbol Description

S Manifold

C Subset of S where IBC is enforced

dim(S) Dimension of manifold S
d Dimension of embedding space surrounding S
û Manifold intrinsic function

u Function in embedding space Rd

N(S) Tubular neighborhood surrounding S
nS Unit manifold normal vector

n∂S Unit conormal vector along ∂S
S⊥ Manifold orthogonal to S along C
cpS(x) Closest point in S to x ∈ Rd

cpC(x) Closest point in C to x ∈ Rd

cpS−C(x) Difference between closest point to S and C
Ω(S) Grid surrounding S (subset of N(S))
Ω(C) Interior boundary subset of Ω(S)
Ω(∂S) (Exterior) boundary subset of Ω(S)
Ω(∂C) Boundary subset of interior boundary subset Ω(C)
rN(S) Tube radius of N(S)
rΩ(S) Computational tube-radius

NS Number of grid points in Ω(S)
NC Number of grid points in Ω(C)
JS Set of indices for xi ∈ Ω(S)
JC Set of indices for xα ∈ Ω(C)
i Index in JS
α Index in JC
xi Grid point in Ω(S)
xα Grid point in Ω(C)
Di Indices of grid points in finite-difference stencil of xi

Ii Indices of grid points in interpolation stencil of cpS(xi)

the finite differencing the same (Section 3.3). Below, we describe
our proposed technique to extend CPM with support for interior
BCs, which consists of two key changes: adding new degrees of

freedom (DOFs) and carefully altering both the interpolation and
FD stencils.

Table 1 summarizes important notation. For the rest of this ar-
ticle, we focus on the cases where the manifold S is a curve em-
bedded in R2 or a surface embedded in R3. Let C ⊂ S denote the
interior region where the BC is to be applied, which can be a point
(in 2D or 3D) or an open or closed curve (in 3D). Since CPM is an
embedding method, we must consider the influence of C on the
embedding spaceN(S). Let S⊥ denote a (conceptual) manifold or-
thogonal toS along C, i.e., analogous toS⊥ defined in Equation (6)
for the exterior boundary case, but with ∂S replaced by C. See
Figure 4 (left) for an example curve C on a surface S and its nor-
mal manifold S⊥ at C.

4.1 Adding Interior Boundary DOFs

Exterior BCs incorporate the BC using grid points xi ∈ Ω(∂S) as
defined in Equation (5). These grid points xi ∈ Ω(∂S) are only
needed to enforce the exterior BC, since they lie on the opposite
side ofS⊥ fromS. Therefore, CP extension stencils for xi ∈ Ω(∂S)
can be safely modified to enforce exterior BCs.

For interior BCs, the situation is more challenging. Similar to
Ω(∂S), a new interior boundary subset Ω(C) ⊂ Ω(S) is defined as

Ω(C) = {xi ∈ Ω(S) | ‖xi − cpC(xi)‖ ≤ rΩ(S)}, (9)

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

159:8 • N. King et al.

Fig. 5. A conceptual illustration of our approach to interior boundaries for a point C (white) on a curve S (blue) in R2. Left column: Duplicated BC DOFs

are generated in the boundary subset Ω(C) around C (thick black grid). Middle column: The normal manifold S⊥ (green) locally partitions the grid into

two sides (yellow, purple). Right column: The modified grid connectivity is illustrated by warping it into R3.

where cpC is the closest point function of C. Comparing with
Equation (5), the subsets Ω(∂S) and Ω(C) are defined in the same
way, except Ω(∂S) has the extra property cpS(xi) = cp∂S(xi) for
all xi ∈ Ω(∂S); i.e., points in the exterior boundary subset have
a closest manifold point that is also their closest boundary point.
Grid points in the interior boundary subset do not: xi ∈ Ω(C) will
in general have cpS(xi) � cpC(xi) unless the point xi ∈ S⊥.

Ideally, we would use the grid points xi ∈ Ω(C) to enforce the
IBC, analogous to the exterior case. However, the tubular volume
surrounding C, {x ∈ N(S) | ‖x − cpC(x)‖ ≤ rΩ(S)}, which con-
tains Ω(C), also intersects with S. Therefore, we cannot simply
repurpose and modify CP extension stencils for xi ∈ Ω(C), since
they are needed to solve the manifold PDE on S \ C.

We propose to add a second set of spatially colocated DOFs,
called the BC DOFs, at all xi ∈ Ω(C). The BC DOFs allow us to
apply similar techniques for interior BCs, as was done for exterior
BCs. Specifically, given a computational domain Ω(S) of NS grid
points and the subset Ω(C) of NC grid points, the discrete linear
system to be solved will now involve NS + NC DOFs. We order
the BC DOFs after the original PDE DOFs. That is, indices in the set
JS = {j ∈ N | 0 ≤ j < NS} give xj ∈ Ω(S),while indices in the set
JC = {α ∈ N | NS ≤ α < NS +NC} give xα ∈ Ω(C). Throughout,
we use Greek letters to denote indices in JC to clearly distinguish
from indices in JS . Note that for every BC DOF α ∈ JC there is a
corresponding PDE DOF j ∈ JS such that xα = xj . The key ques-
tion then becomes: When do we use PDE DOFs versus BC DOFS?

Intuitively, the answer is simple: interpolation and FD stencils
(Ii andDi from Equations (1) and (2)) must only use manifold data
û from the same side of S⊥ that the stencil belongs to. Therefore,
if a stencil involves manifold data on the opposite side of S⊥, then
the IBC must be applied using the BC DOFs.

Figure 5 gives a conceptual illustration of the process for a point
C on a circle S embedded in R2. Both BC DOFs and PDE DOFs are

present in the region of Ω(C). The BC DOFs are partitioned into
one of two sets depending on which side of S⊥ the closest point
cpS(xi) is on. The original grid Ω(S) and duplicated portion Ω(C)
are cut, and each half of Ω(C) is joined to the opposing side of
Ω(S).

The same treatment of BCs as in the exterior case is then applied
on this nonmanifold grid Ω(S) ∪ Ω(C). That is, the required mod-
ifications to the CP extension interpolation stencils in Section 3.3
are applied. Unlike the exterior BC case, however, changes to FD
stencils do occur for IBCs, since Ω(C) and Ω(S) are cut and joined
to opposite sides of each other.

If S is orientable, then this intuitive picture in Figure 5 is an
accurate depiction of the necessary grid connectivity. That is, near
C, we must duplicate DOFs and cut and join opposite pieces of
Ω(S) and Ω(C) to produce regions (similar to Ω(∂S)) where BCs
can be imposed. However, if S is nonorientable, then the closest
points cpS(xi) for xi ∈ Ω(C) cannot be globally partitioned into
two sides. For example, on the Möbius strip in Figure 4 (right), an
apparent flip in the partitioning of cpS(xi) is unavoidable, as one
moves along a curve C that loops around the whole strip.

Fortunately, IBCs can still be enforced on nonorientable
manifolds, because the manifold can be oriented locally. The
interpolation and FD stencils only perform operations in a small
local region of Ω(S), so locally orienting the manifold is sufficient
to enforce IBCs.

4.2 S⊥ Crossing Test

We must keep computation local to each stencil to handle nonori-
entable manifolds. Therefore, first consider testing if any two clos-
est points of x1, x2 ∈ N(S) are on opposite sides of S⊥. A naive
approach would be to construct S⊥ explicitly, e.g., with a sur-
face triangulation (as was done by Shi et al. [2007]) and then test
if the line segment between cpS(x1) and cpS(x2) intersects the

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 159:9

Fig. 6. For two points x1, x2 ∈ N(S), we can determine if the closest

points, cpS(x1), cpS(x2), lie on opposite sides of C based on their orienta-

tions relative to the corresponding closest points on C, cpC(x1), cpC(x2).

triangulation. However, building an explicit surface is counter to
the implicit spirit of CPM.

Determining if cpS(x1) and cpS(x2) are on opposite sides of
S⊥ can instead be accomplished based on closest points on C. Let
cpC(x1) and cpC(x2) be the closest points to x1 and x2 on C, re-
spectively. Define the vector cpS−C(x) as

cpS−C(x) ≡ cpS(x) − cpC(x). (10)

Denote the locally oriented unit normal to S⊥ at y ∈ C as nS⊥(y).
The function

F (x) ≡ cpS−C(x) · nS⊥(cpC(x)) (11)

will have different signs for F (x1) and F (x2) if cpS(x1) and cpS(x2)
are on different sides of S⊥, or equivalently F (x1)F (x2) < 0. How-
ever, this direct test would require computing nS⊥ along C and
locally orienting that normal vector.

Instead of checking the directions cpS−C relative to the locally
oriented normals nS⊥ , we can check the directions of cpS−C(x1)
and cpS−C(x2) relative to each other. As illustrated in Figure 6, if
cpS(x1) and cpS(x2) are on opposite sides of S⊥, then the associ-
ated cpS−C(x) vectors will point in opposing directions; thus, we
can simply check if their dot product is negative:

cpS−C(x1) · cpS−C(x2) < 0. (12)

In practice, we find Equation (12) sufficient to obtain second-order
accuracy in the convergence studies of Section 6 on smooth S and
C.

When x is close toS⊥ the vector cpS−C(x) ≈ 0,which can result
in an inaccurate classification of which side cpS(x) is on. There-

fore, if ‖cpS−C(x)‖ = O(Δx2), then the point cpS(x) is considered
to lie on C and can be safely assigned to either side while main-
taining second-order accuracy. In practice, we consider cpS(x) to

lie on C if ‖cpS−C(x)‖ < 0.1Δx2.
As we have noted, the locality of thisS⊥ crossing test allows it to

handle nonorientable manifolds with CPM and IBCs. However, on
orientable manifolds, one can still globally orient stencils in Ω(C)
to impose different values or types of IBCs on either side of C. For
example, different prescribed Dirichlet values on each side of C are
useful for vector field design. Mixing Dirichlet and Neumann IBCs
on C in this way can also be useful for diffusion curves.

4.3 Stencil Modifications

In this section, we describe how to use the S⊥ crossing test to im-
pose IBCs by altering interpolation and FD stencils. The S⊥ cross-
ing test (12) allows us to determine if any two points x1, x2 ∈ N(S)
have closest points cpS(x1), cpS(x2) on opposite sides of S⊥. Ul-
timately, we employ this test to determine if the closest points
cpS(xj) for j ∈ Ii or Di are on the opposite side of S⊥ rela-
tive to a stencil for xi , so the stencil can use the correct PDE vs.
BC data.

A stencil is itself assigned to a particular side of S⊥ based on
the location of an associated point on S that we call the stencil di-

rector, denoted y�. For the FD stencil of xi , the stencil director is
y�i = cpS(xi), since grid data at xi corresponds to manifold data at
cpS(xi). For the interpolation stencil of xi used for the CP exten-
sion, the stencil director is the interpolation query point cpS(xi),
i.e., y�i = cpS(xi). Each stencil director also has a corresponding

stencil direction denoted d�. For FD and CP extension interpolation
stencils d�i = cpS−C(xi) = y�i − cpC(xi).

It is, however, not always the case that y�i = cpS(xi). Interpo-
lation of the solution on the grid Ω(S) ∪ Ω(C) can also be used
to obtain the final solution at any set of manifold points. For ex-
ample, if one desires to transfer the solution to a mesh or a point
cloud (e.g., for display or downstream processing), then interpola-
tion can be used to obtain the solution on vertices of the mesh or
points in the cloud (see Section 5.5). In this case, the stencil director
is just the interpolation query point y� = yq ∈ S and the stencil

direction is d� = y� − cpC(y�).

PDE DOF Modifications. The first step to incorporate IBCs is
to alter the stencils for the PDE DOFs in JS . The computation in
both Equations (1) and (2) for i ∈ JS has the form

ui =
∑

j ∈Gi

ci
juj ,

where Gi ⊂ JS are indices corresponding to grid points in the
stencil for i (i.e., Gi = Ii or Gi = Di) and ci

j are corresponding

weights.
To incorporate IBCs, the index j ∈ Gi is replaced with its cor-

responding BC DOF index α ∈ JC if data at xj comes from the

opposite side of S⊥. The corresponding stencil weight ci
j remains

unchanged. Using the S⊥ crossing test (12), for all j ∈ Gi , we re-
place j ∈ JS with its corresponding α ∈ JC if

d�i · cpS−C(xj) < 0. (13)

If our equations are written in matrix form, then these modifica-
tions to the PDE DOFs above would change NS × NS matrices to
be size NS × (NS + NC). The next step is to add the BC equations
for the BC DOFs in JC , resulting in square matrices again of size
(NS + NC) × (NS + NC).

BC DOF Modifications. Finite-difference stencils are added for
the BC DOFs with α ∈ JC and modified in a similar way to the
PDE DOFs above. The same grid connectivity is present in Ω(C)
as the corresponding portion of Ω(S) (except at the boundary of
Ω(C)). Therefore, the same FD stencils on Ω(S) are used on Ω(C)
except with indices β ∈ JC (and indices not present in Ω(C), i.e.,
grid points in Ω(S) around the edge of Ω(C), are removed). Hence,

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

159:10 • N. King et al.

using the S⊥ crossing test (12) for all β ∈ Dα , the index β ∈ JC is
replaced with its corresponding j ∈ JS if

d�α · cpS−C(xβ) < 0. (14)

The CP extension BC equations discussed in Section 3.3 for ex-
terior BCs are used on the BC DOFs with α ∈ JC . However, first-
order zero-Neumann IBCs are no longer automatically imposed
as in Section 3.3. Instead, for first-order zero-Neumann IBCs, the
CP extension extends manifold data û at cpC(xα) for xα ∈ Ω(C),
i.e.,

û(cpC(xα)) = u(xα) ≈
∑

β ∈Iα
wα

β
uβ .

Once again, the S⊥ crossing test (12) is used to ensure DOFs are
used from the correct sides of S⊥. In this case, the stencil director
(interpolation query point) is y�α = cpC(xα), which gives d�α = 0,

since y�α is on both C and S. However, the vector d�α ≡ cpS(xα) −
cpC(xα) gives the correct direction to define which side of S⊥ the
interpolation stencil belongs to. Then, for all β ∈ Iα , we replace
β ∈ JC with its corresponding j ∈ JS if Equation (14) holds.

For second-order zero-Neumann IBCs, the only modification re-
quired is to replace cpC(x) with

cpC(x) = cpS(2cpC(x) − x). (15)

Note that Equation (15) is different from the form used for exterior
BCs in Equation (7), as it involves both cpS and cpC . However, the
purpose of this modified closest point function (15) remains the
same, i.e., the point cpC(x) is an approximate mirror location.

The CP extension equations for BC DOFs, with α ∈ JC , to
enforce Dirichlet IBCs are analogous to Section 3.3. The pre-
scribed Dirichlet value, û on C, is extended for first-order Dirich-
let IBCs, i.e., u(x) = û(cpC(x)) or in the discrete setting uα =

û(cpC(xα)). For second-order Dirichlet IBCs, the extension is
u(x) = 2û(cpC(x)) − u(cpC(x)), which becomes analogous to
Equation (8) in the discrete setting.

4.4 Open Curves C in R3

Past the endpoints of an open curve C the PDE should be solved
without the IBC being enforced. However, the set Ω(C) includes
half-spherical regions of grid points past the boundary point ∂C.
These half-spherical regions are analogous to the exterior bound-
ary subsets Ω(∂S) in Section 3.3 and are defined as

Ω(∂C) = {xα ∈ Ω(C) | cpC(xα) = cp∂C(xα)}. (16)

We do not perform the modifications of Section 4.3 for points
xα ∈ Ω(∂C), since this would enforce the IBC where only the PDE
should be solved. In other words, the BC DOFs in Ω(∂C) are not
added to the linear system.

4.5 Points C in R3

Remarkably, and unlike for open curves, when C is a point on S
embedded in R3, no change to the stencil modification procedure
in Section 4.3 is needed. To understand why, consider two simpler
options. First, without any boundary treatment whatsoever near
C, the PDE is solved but the IBC is ignored. Second, a naive first-
order treatment simply sets either the nearest grid point or a ball
of grid points around C to the Dirichlet value; however, at those

grid points, the PDE is now ignored. Instead, the grid points near
C should be influenced by the IBC at C, while also satisfying the
PDE.

Under the procedure of Section 4.3, the cpS−C(xj) and d�i vec-
tors will point radially outward from the point C (approximately
in the tangent space of S at C). The S⊥ crossing test (12) becomes
a half-space test, where the plane P partitioning the space goes
through C with its normal given by the stencil direction vector,
d�i . In the stencil for y�i , points on the same side of P as y�i are
treated as PDE DOFs, while points on the opposite side receive the
IBC treatment (either first- or second-order, as desired). However,
the direction of d�i , and hence the half-space, changes for each

grid point’s stencil (radially around C). The d�i changes because

the location of y�i changes for each i with cpC(xi) fixed at C. This
spinning of P radially around C allows the PDE and the IBC to
be enforced simultaneously, since both PDE and IBC equations are
added to the linear system for all points xi ∈ Ω(C).

Therefore, for a point C ∈ S ⊂ R3, our first-order Dirichlet
IBC method acts as an improvement of the approach of Auer et al.
[2012], where only points xj ∈ Ω(C) on one side of P (which re-
volves around C) are fixed with the prescribed Dirichlet value. We
observe that this reduces the error constant compared to Auer et al.
[2012] in convergence studies in Section 6. Furthermore, our ap-
proach in Section 4.3 allows us to achieve second-order accuracy,
whereas the method of Auer et al. [2012] is restricted to first-order
accuracy. Neumann IBCs at a point C are not well-defined, since
there is no preferred direction conormal to C.

4.6 Localizing Computation Near C
Computation to enforce IBCs should only be performed locally
around C for efficiency. The new BC DOFs satisfy this require-
ment, since they are only added at grid points xi within a distance
rΩ(S) of C. This banding of Ω(C) is possible for the same reason
it is possible to band Ω(S) (see Section 3.2): Grid points are only
needed nearS and C, because accurate approximations of differen-
tial operators are only needed at grid points within interpolation
stencils.

The use of the S⊥ crossing test (12) has been discussed in terms
of checking all interpolation and FD stencils in Ω(S) and Ω(C)
above. For efficiency, we would rather only check if cpS(x1) and
cpS(x2) are on different sides of S⊥ if x1 and x2 are near C. How-
ever, depending on the geometry ofS and C, points xi � Ω(C) can
have stencils for interpolating at cpS(xi) that cross S⊥, so testing
only points xi ∈ Ω(C) does not suffice.

We therefore check stencils that include grid points xi ∈ Ω(S)
with ‖xi − cpC(xi)‖ < 2rΩ(S) for all the examples in this article.
The closest points cpC(xi) are needed to compute ‖xi − cpC(xi)‖.
Computation of cpC for all xi ∈ Ω(S) is avoided using a similar
breadth-first search to the one used in the construction of Ω(S)
(see Algorithm 1, discussed in Section 5).

4.7 Improving Robustness of S⊥ Crossing Test

In practice, manifolds with small bumps of high curvature rela-
tive to the grid resolution can cause the S⊥ crossing test (12) to
be inaccurate. For example, the headdress of the Nefertiti mesh in
Figure 1(a) has many small bumps, which causes the cpS−C and d�

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 159:11

vectors to be far from orthogonal to S⊥ and C. The closest points
near C are then misclassified as being on the wrong side of S⊥.

To make Equation (12) more robust, we modify the cpS−C and

d� vectors to be orthogonal to S⊥ and C before computing the dot
product. We illustrate this for a surface (2D manifold) embedded
in R3 throughout this section. For this case, Equation (12) is used
with cpS−C(x) replaced by

cp⊥S−C(x) =
(
I − nSnT

S − tCtTC

)
cpS−C(x), (17)

(and similarly for d�), where I is the identity matrix and tC is the
unit tangent vector along C. The manifold normal nS and tangent
tC are evaluated at cpC(x). Projecting out the nS and tC com-
ponents is equivalent to projecting cpS−C(x) onto nS⊥(cpC(x)).
Therefore, the S⊥ crossing test (12) becomes equivalent to the di-
rect test that checks if F (x1)F (x2) < 0 (see Section 4.2), but without
needing to orient nS⊥ . The vectors nS and tC must be evaluated
at cpC(x), since the vector cpS−C(x) starts at cpC(x) (and goes to
cpS(x)). When C is a single point, the tangent direction is unde-
fined, so only the nS component is projected out in this case. Let
us now consider how to compute nS and tC .

For a codimension-one manifold S the Jacobian of the closest
point function, JcpS , is the projection operator onto the tangent
space of S for points on the manifold [King and Ruuth 2017; Marz
and Macdonald 2012]. Therefore, for a surface in R3, the eigenvec-
tors of JcpS are the manifold normal nS and two tangent vectors.
However, two arbitrary tangent vectors of S will not suffice; we
need the tangent tC along C. The curve C ∈ R3 has codimension
two. The corresponding Jacobian for C, JcpC , is likewise equiva-
lent to a projection operator onto the tangent space of C [Kublik
and Tsai 2016]. However, the eigenvectors of JcpC only provide a
unique tangent vector tC , since the normal and binormal to C can
freely rotate around tC . Hence, we compute the manifold normal
nS from the eigendecomposition of JcpS , while tC is computed
from the eigendecomposition of JcpC .

Second-order centered FDs in Ω(S) are used to compute JcpS .
The Jacobian JcpS is only equivalent to the tangent space projec-
tion operator at points on S. Therefore, a CP extension must be
performed to obtain the projection operator at all points xi ∈
Ω(S), i.e., JcpS (xi) = JcpS (cpS(xi)). In the discrete setting, the CP
extension is computed with the same interpolation discussed in
Section 3.2. The Jacobian of cpC is computed similarly over Ω(C).

From the above computation of JcpS and JcpC , the projection
operators are known at points cpS(xi) and cpC(xi), respectively.
However, since the nS vectors are computed from JcpS , they are
not yet available at cpC(xi) where we need them. The nS vectors
are therefore computed at cpC(xi) via barycentric-Lagrange inter-
polation (with the same degree p polynomials as the CP extension).
Interpolating nS vectors requires some care, since they are unori-

ented manifold normals. We adapt a technique proposed by Auer
et al. [2012]: When interpolating nS , given at points xi ∈ Ω(S),
we locally orient the vectors within each interpolation stencil by
negating vectors satisfying

nS(xi) · nS(x̃) < 0,

where x̃ is a single, fixed grid point in the interpolation stencil.

ALGORITHM 1: BFS to construct Ω(S)
Given x0 near S, i.e., with ‖x0 − cpS(x0)‖ ≤ rΩ(S)
Add x0 to Ω(S) and store cpS(x0)
Add x0 to the queue Q

while Q � ∅ do
Set xcurrent ← Q .front()

for each neighbor xnbr of xcurrent do

if xnbr has not been visited then
Compute cpS(xnbr)
if ‖xnbr − cpS(xnbr)‖ ≤ rΩ(S) then

Add xnbr to Ω(S) and store cpS(xnbr)
Add xnbr to Q

end

end

end

Pop front of Q

end

4.8 A Nearest Point Approach for Dirichlet IBCs

It is also interesting to consider a nearest point approach for
handling Dirichlet IBCs at C, similar to techniques discussed in
Section 2.3 for other manifold representations. That is, simply fix
the grid points xi ∈ Ω(S) nearest to C with the prescribed Dirich-
let value and remove them as DOFs. If C is a point, then a single
grid point is assigned the Dirichlet value and removed as a DOF.
If C is a curve, then a set of nearest grid points is obtained (i.e.,
a raster representation of C) and removed as DOFs by assigning
Dirichlet values. To our knowledge, this approach has not been
used with CPM in any previous work.

This nearest point approach is attractive, since new BC DOFs
are unnecessary, i.e., Ω(C) is not needed. However, it can only be
used for Dirichlet IBCs with the same value on both sides of C.
That is, two-sided Dirichlet IBCs cannot be imposed with the near-
est point approach, nor can Neumann IBCs. The nearest point ap-
proach is also only first-order accurate, since the nearest point can

be Δx
√
d/2 away from C. In Section 6, we observe that the near-

est point approach has a better error constant than the method of
Auer et al. [2012], but a similar or worse error constant than our
first-order IBC approach above (see Figure 9(d)).

5 Implementation Aspects

5.1 Closest Points and Computational Domain Setup

The method of computing closest points, and its cost, will depend
on the underlying manifold representation. In Appendix A, we dis-
cuss the computation of closest points for some popular represen-
tations, including parametrized manifolds, triangulated surfaces,
point clouds, signed-distance functions, and more general level-set
functions (i.e., implicit manifolds).

To solve PDEs with CPM, the first step is to construct the com-
putational domain Ω(S) aroundS. We use a BFS procedure to only
compute cpS near Ω(S). We adopt a sparse-grid data structure and
allocate memory for it only as needed during the BFS. The BFS can
be started from any grid point x0 within rΩ(S) distance to the man-
ifold. The BFS for Ω(S) construction is detailed in Algorithm 1. A
similar BFS to Algorithm 1 is used to construct Ω(C) around C. The
use of a BFS could fail ifS is composed of disjoint pieces. However,

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

159:12 • N. King et al.

PDEs are only solved on a single, connected manifold throughout
this article. Since IBCs can consist of multiple C, we perform a BFS
for each C independently.

The computational tube-radius rΩ(S) given by Equation (4) is
an upper bound on the grid points needed in Ω(S). The stencil

set approach to construct Ω(S) given by Macdonald and Ruuth
[2008, 2010] can reduce the number of DOFs by including only the
strictly necessary grid points for interpolation and FD stencils. It
was shown by Macdonald and Ruuth [2008] that the reduction in
the number of DOFs is between 6%–15% for S as the unit sphere.
We opted for implementation simplicity over using the stencil set
approach due to this low reduction in the number of DOFs.

5.2 Specifying Initial and Boundary Data

Manifold PDEs generally involve some given data on the manifold,
for initial or boundary conditions, that must first be extended onto

Ω(S) or Ω(C). Examples include f̂ in Poisson problems ΔSû = f̂ ,
initial conditions û(t = 0) for time-dependent problems, or Dirich-
let IBC values on C. The necessary extension procedure depends
on the specific representation of the manifold and the data, e.g., an
analytical function on a parametrization or discrete data on mesh
vertices. However, the extension must still be a CP extension: Data
at cpS(xi) (or cpC(xi)) is assigned to xi ∈ Ω(S) (or ∈ Ω(C)).

5.3 Operator Discretization

With the initial data on Ω(S) and Ω(C), the PDE is then discretized
using the equations given in Sections 3 and 4. Matrices E and L

are constructed for the CP extension and discrete Laplacian, re-
spectively. The standard 7-point discrete Laplacian in R3 (5-point
in R2) is used. In our implementation, E and L are constructed
as discussed by Macdonald and Ruuth [2010]. Constructing the
(sparse) matrices amounts to storing stencil weights for DOF i in

the columns of row i . Instead of M̃ = LE, we use the more numeri-
cally stable CPM approximation of the Laplace-Beltrami operator
[Macdonald et al. 2011; Macdonald and Ruuth 2010]

M = diag(L) + (L − diag(L))E.

5.4 Linear Solver

The linear system resulting from CPM could be solved with di-
rect solvers, e.g., Eigen’s SparseLU was used in Section 6.1, but
they are only appropriate for smaller linear systems (usually ob-
tained from 1D curves embedded in R2). Iterative solvers are pre-
ferred for larger linear systems (as noted in Chen and Macdonald
[2015] and Macdonald and Ruuth [2010]), particularly from prob-
lems involving 2D surfaces embedded in R3 or higher. The linear
system is non-symmetric due to the closest point extension, there-
fore, Eigen’s BiCGSTAB is an option for larger systems. However,
we show in Section 6.5 that using Eigen’s BiCGSTAB with the con-
struction of the full matrix system can be too memory-intensive.

To efficiently accommodate large-scale problems, we have de-
signed a custom BiCGSTAB solver tailored to CPM. Our implemen-
tation closely follows Eigen’s BiCGSTAB solver,1 with key differ-
ences for memory-efficiency and parallelization. This is achieved
by exploiting a key property of iterative Krylov solvers: Explicit
construction of the system matrix is not required (in contrast to

1https://eigen.tuxfamily.org/dox/BiCGSTAB_8h_source.html

direct solvers). For iterative Krylov solvers, only the action of the
matrix on a given input vector is required (i.e., the matrix-vector
product).

Specifically, we implemented our solver with the goal of solving
linear systems Au = f with

A =mI + n [diag(L) + (L − diag(L))E] ,

where m ∈ {0, 1} and n ∈ {1,−Δt ,−Δt/2}. This generalized form
for A supports the applications described in Sections 6 and 7. For
example, setting m = n = 1 results in the linear system for the
screened-Poisson problem described in Section 6.3. The matrices
E and L are stored explicitly, as discussed in Section 5.3, and the
matrix-vector product Au is computed as follows:

(1) Compute a = Eu.
(2) Compute b = (L − diag(L))a.
(3) Compute a = diag(L)u.
(4) Return v =mu + na + nb.

OpenMP is used for parallelizing each of the steps over the DOFs.
In addition, iterative Krylov solvers allow for a preconditioner

(i.e., approximate inverse operator) for improving convergence of
the linear solver. The preconditioner step requires solving the
equation Mz = r, where M is an approximation to A and r is
the residual vector. Depending on the particular problem, we ei-
ther use a diagonal preconditioner or a damped-Jacobi precondi-
tioner. Computing the diagonal entries of A would require extra
computations, since the full matrix is not constructed. In practice,
however, we found that the diagonal values ofmI + ndiag(L) are a
good enough approximation. (In our experiments, we have verified
that the infinity norm of the error matches the result produced by
Eigen’s solver.) For damped-Jacobi preconditioning, the iteration
u ← u + ωdiag(L)−1r is applied for a fixed number of iterations
with ω = 2/3.

5.5 Visualization

The solution can be visualized in multiple ways. Demir and West-
ermann [2015] proposed a direct raycasting approach based on the
closest points cpS(xi) for xi ∈ Ω(S). The set of cpS(xi) can also be
considered a point cloud and visualized as such. Last, interpolation
allows the solution to be transferred to any explicit representation,
e.g., triangle mesh, point cloud, and so on.

For convenience, we visualize the surface solution at points
cpS(xi) (e.g., Figure 18) or interpolate onto a triangulation. If the
given surface S is provided as a triangulation, then we use it; if
a surface can be described by a parametrization, then we connect
evenly spaced points in the parameter space to create a triangu-
lation. Both point clouds and triangulations are visualized using
polyscope [Sharp et al. 2019b].

6 Convergence Studies

We begin our evaluation by verifying that our proposed IBC
schemes achieve the expected convergence orders on various ana-
lytical problems. We also compare our approach with the existing
CPM approach of Auer et al. [2012], the nearest point approach,
as well as a standard mesh-based method for reference. Last, we
compare our partially matrix-free solver against Eigen’s SparseLU
and BiCGSTAB implementations [Guennebaud et al. 2010] as well
as Intel MKL PARDISO. All error values are computed using the

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

https://eigen.tuxfamily.org/dox/BiCGSTAB_8h_source.html

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 159:13

Fig. 7. Convergence studies and associated geometries for the model problems in Sections 6.1–6.3. The plots show results for our CPM approach using first

(blue) and second (orange) order IBCs, along with lines of slopes 1 (gray, dashed) and 2 (gray, dotted). In (a)–(c), analytical cpS are used, while (d) and (e)

compute cpS from the level-set representation of S. All examples use analytical cpC .

max-norm. Throughout the rest of the article, the hat symbol has
been dropped from manifold functions (e.g., û), since it is apparent
from the context.

6.1 Poisson Equation with Discontinuous Solution

Consider the Poisson equation

− ∂
2u

∂θ2
= 2 cos(θ − θC),

u(θ−C) = 2,

u(θ+C) = 22,

on the unit circle parametrized by θ . The right-hand-side expres-
sion is found by differentiating the exact solution

u(θ) = 2 cos(θ − θC) +
10

π
(θ − θC),

where θC is the location of the Dirichlet IBC. The Dirichlet IBC is
two-sided and thus discontinuous at the point θC , with u = 2 as
θ → θ−C and u = 22 as θ → θ+C . We use θC = 1.022π ; no grid

points coincide with the IBC location.
Eigen’s SparseLU is used to solve the linear system for this prob-

lem on the circle embedded in R2. Figure 7(a) shows that the first-
and second-order IBCs discussed in Section 4 achieve the expected
convergence rates. Neither the nearest point approach (Section 4.8)
nor the method of Auer et al. [2012] can handle discontinuous
IBCs.

6.2 Heat Equation

CPM can also be applied to time-dependent problems. Consider
the heat equation

∂u

∂t
= ΔSu, with

{
u = д, or

∇Su · bC = 0,
on C, (18)

where bC is the binormal direction to C that is also in the tangent
plane of S, i.e., bC = nS × tC (see Section 4.7). If imposing the
Dirichlet IBC, then the exact solution, д, is used as the prescribed
function on C. Here, we solve the heat equation on the unit sphere
with the exact solution

д(θ ,ϕ, t) = e−2t cos(ϕ),

where θ is the azimuthal angle and ϕ is the polar angle. The IBC is
imposed with C as a circle defined by the intersection of a plane
with S. The initial condition is taken as д(θ ,ϕ, 0) = cos(ϕ).

Crank-Nicolson timestepping [LeVeque 2007] (i.e., trapezoidal
rule) is used with Δt = 0.1Δx until time t = 0.1. Figures 7(b)
and (c) show convergence studies for Equation (18) with Dirich-
let and zero-Neumann IBCs imposed, respectively. The expected
order of accuracy for first- and second-order IBCs is achieved for
both the Dirichlet and zero-Neumann cases. Recall that the nearest
point approach and the method of Auer et al. [2012] cannot handle
Neumann IBCs.

6.3 Screened-Poisson Equation

Exact solutions for manifold PDEs can also be derived on more
complex manifolds defined as level sets. Consider the screened-
Poisson problem in Section 4.6.5 of Chen and Macdonald [2015],
which was inspired by an example by Dziuk [1988]. The surface is
defined as S = {x ∈ R3 | (x1 −x2

3)
2 +x2

2 +x
2
3 = 1}, which we refer

to as the Dziuk surface.
The screened-Poisson equation we solve is

−ΔSu + u = f ,

∇Su · bC = 0,
(19)

with exact solution u(x) = x1x2. Although the solution is simple,
the function f is complicated; we derived it by symbolic differenti-
ation using the formulas in Chen and Macdonald [2015] and Dziuk
[1988].

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

159:14 • N. King et al.

Fig. 8. Triangulations of the Dziuk surface used for testing. Top-left: Good-

quality base triangulation, Tд . Top-right: Low-quality base triangulation,

Tb . Bottom row: The same triangulations after four rounds of refinement.

The zero-Neumann IBC of Equation (19) is satisfied on the in-
tersection of S with the x1x2-plane. From the definition of S, this
intersection is the unit circle in the x1x2-plane. Figures 7(d) and
(e) show convergence studies imposing the zero-Neumann IBC on

the full circle (closed curve) and the arc with θ ∈ [− 3π
4 ,

π
4] (open

curve), respectively. The expected order of accuracy is observed
for the implementations of first- and second-order IBCs.

6.4 Different CPM approaches vs. a Mesh-based Method

CPM is principally designed to solve problems on general man-
ifolds, given by their closest point functions. The closest point
function can be thought of as a black box allowing many manifold
representations to be handled in a unified framework. Hence, we
emphasize that one should not expect CPM to universally surpass
specially tailored, well-studied approaches for particular manifold
representations, such as finite elements on (quality) triangle
meshes. Nevertheless, mesh-based schemes provide a useful point
of reference for our evaluation. CPM also retains some advantages
even for triangle meshes, such as mesh-independent behavior.

With the above caveat in mind, we compare the various CPM ap-
proaches to the standard cotangent Laplacian [Dziuk 1988; Pinkall
and Polthier 1993] that approximates the Laplace-Beltrami oper-
ator on a triangulation of the surface. We use the implementa-
tion from geometry-central [Sharp et al. 2019a], adapted slightly
to include IBCs. The Poisson equation −ΔSu = f is solved on
the Dziuk surface defined in Section 6.3. The same exact solution
u(x) = x1x2 is used, but Dirichlet IBCs are imposed using this exact
solution.

“Good” and “bad” triangulations of the Dziuk surface, denoted
Tд and Tb , respectively, are used to illustrate the dependence of
the mesh-based method on triangulation quality (Figure 8). Both
triangulations are constructed starting from six vertices on S as
in Dziuk [1988]. An initial round of 1:4 subdivision is performed

by adding new vertices along each edge, at the midpoint for Tд
and at the 20% position for Tb , to induce skinnier triangles in
the latter. The new vertices are projected to their closest points
on S.

Evaluations under refinement for the mesh-based method are
performed starting with the above first-level Tд and Tb . We refine
with uniform 1:4 subdivision, for both Tд and Tb , by adding new
vertices at midpoints of edges and then projecting them onto S
(see Figure 8). Delaunay edge flips are also performed to improve
the quality of Tд at each refinement level.

Triangle mesh resolution is measured as the mean edge-length
in Tд or Tb , whereas, for CPM, resolution is measured as the uni-
form Δx used in the computational-tube Ω(S). This core incompat-
ibility makes it inappropriate to use resolution as the independent
variable for comparative evaluations of error, computation time,
or memory usage. A more equitable comparison is to investigate
computation time versus error and memory versus error. Compu-
tation times for CPM include the construction of Ω(S) and Ω(C)
(which involves computing cpS and cpC) and the time for con-
structing and solving the linear system. Computation times for the
mesh-based method include the triangulation refinement and the
construction and solution of the linear system. Separate evalua-
tions are performed with C as a closed curve, an open curve, and
a point, since CPM IBC enforcement is slightly different for each
type of C.

Closed Curve IBC. The boundary curve C is constructed using
the flip geodesics algorithm in geometry-central [Sharp et al.
2019a]. The resulting C is represented as a polyline P, which in
general does not conform to edges or vertices of T . For IBC en-
forcement, the nearest vertex in the triangulation T to each vertex
in P is assigned the prescribed Dirichlet value.

This treatment of Dirichlet IBCs for the mesh-based method
is first-order accurate, in general. More accurate (and involved)
Dirichlet IBC approaches could be used as discussed in Section 2.3.
However, we set these options aside, as the goal of this comparison
is simply to show that CPM with our first- and second-order
IBC approaches gives comparable results to basic mesh-based
methods, that is, mesh-based methods where the representations
of S and C are held fixed, e.g., no (extrinsic or intrinsic) remeshing
is performed.

Figure 9 (top row) compares all types of CPM IBC approaches
against the mesh-based method on Tд and Tb in columns (b) and
(c). CPM with second-order IBCs achieves the lowest error for the
same computation time and memory usage as other approaches.
The mesh-based method with Tд outperforms the use of Tb , as
expected. CPM with first-order IBCs and nearest point approaches
are similar and lie between the mesh-based method with Tд
and Tb . The method of Auer et al. [2012] has the largest error
compared to all others. The expected order of convergence is seen
for all CPM IBC approaches in the error versus Δx plot of Figure 9
(top row, (d)).

Open Curve IBC. The open curve C is also constructed using the
flip geodesics algorithm in geometry-central [Sharp et al. 2019a].
The Dirichlet IBC is enforced in the mesh-based solver in the same
way as the closed curve above. Figure 9 (middle row) shows the

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 159:15

Fig. 9. A comparison of CPM vs. the mesh-based cotangent Laplacian for the Poisson equation with Dirichlet IBC. Top row: Closed curve C. Middle row:

Open curve C. Bottom row: Point C. Columns (b) and (c) show computation time vs. error and memory vs. error, respectively. Mesh results are shown

separately for the Tд and Tb triangulations. Column (d) illustrates the convergence behavior of error vs. Δx for only the CPM schemes. The cpS are

computed from a level-set representation, while cpC are computed from polyline representations for curves C and exactly for the point C.

same ranking of the methods as in the closed curve case, except
CPM with first-order IBCs now outperforms both triangulations
and the nearest point CPM approach. The expected order of con-
vergence is seen for all CPM IBC approaches in Figure 9 (middle
row, (d)).

Point IBC. The point C is intentionally chosen as one of the ver-
tices in the base triangulation so it is present in all refinements of
Tд and Tb . The Dirichlet IBC at C is imposed by replacing the ver-
tex DOF in T with the prescribed Dirichlet value. Figure 9 (bottom
row) shows the results for a point C.

The mesh-based solver on Tд converges with second-order ac-
curacy (since the IBC is a vertex), but only first-order accuracy on
Tb . Therefore, the mesh-based method with Tд outperforms CPM
with second-order IBCs in the larger error regime. In the lower er-
ror regime, the latter methods are similar. All other methods show
the same ranking as the open curve case.

The expected order of convergence is seen for all CPM IBC ap-
proaches in Figure 9 (bottom row, (d)). Notably, the second-order
IBC version of CPM exhibits slightly higher than expected errors
at the finest grid resolution for the closed and open curve IBCs
(see Figure 9, top and middle rows, (d)). This is caused by the

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

159:16 • N. King et al.

Fig. 10. Left pair: Computation time vs. Δx plots for the heat equation (18) with Dirichlet and zero-Neumann IBCs with four solver options. Right pair:

Memory vs. Δx plots for the same problems and solvers. Our solver (orange) achieves the lowest computation time and memory costs.

Table 2. Ratios of Computation Time Tspdup and Memory Usage

Mred for Eigen’s SparseLU and BiCGSTAB as Well as PARDISO

as Compared to Our Tailored BiCGSTAB Solver, for the

Experiments of Figure 10

Solver IBC
Tspdup Mred

Max Avg. Max Avg.

Eigen’s SparseLU
Dirichlet 16.6 11.8 17.9 9.1

Neumann 86.2 38.3 18.1 9.1

Eigen’s BiCGSTAB
Dirichlet 9.5 6.6 1.9 1.8

Neumann 40.9 18.0 1.9 1.8

MKL PARDISO
Dirichlet 13.7 10.5 10.6 7.3

Neumann 54.2 27.3 10.3 7.0

resolution of the polyline representation of C: At fine grid reso-
lutions, the inherent sharp features of the coarse polyline C begin
to be resolved more fully by the discrete CP function. Accordingly,
no such reduction in convergence order is seen for the point IBC.

6.5 Linear System Solvers

Our partially matrix-free BiCGSTAB solver (see Section 5.4) is
faster and more memory-efficient than Eigen’s SparseLU and
BiCGSTAB implementations [Guennebaud et al. 2010] as well as
the Intel MKL PARDISO. An example of the improved efficiency is
shown in Figure 10 for the heat problem in Section 6.2 with Dirich-
let and zero-Neumann IBCs. Solving the heat equation involves
multiple linear system solves (i.e., one for each timestep). SparseLU
requires the most computation time, even though it prefactors the
matrix once and just performs forward/backward solves for each
timestep. SparseLU also uses the most memory, as expected. PAR-
DISO facilitates parallelism during factorization, enhancing the
speed of the initialization process compared to Eigen’s SparseLU.
However, the forward/backward solves are still conducted sequen-
tially, limiting the magnitude of the performance improvement.

Table 2 gives the max and average computation time speedup,
Tspdup, and memory reduction, Mred, for the results in Figure 10.
The computation time speedup compared to Eigen’s SparseLU
(similarly for BiCGSTAB and PARDISO) is computed as

Tspdup = T (SparseLU)/T (Ours),

where T (SparseLU) and T (Ours) are the computation times of
SparseLU and our solver, respectively. The memory reduction fac-
tor is calculated in an analogous manner with computation times
replaced by memory consumption. The max and average Tspdup
and Mred are computed over all Δx .

The speedup of our solver is significant compared to Eigen’s
SparseLU and BiCGSTAB as well as PARDISO. The memory reduc-
tion of our method is significant compared to Eigen’s SparseLU and
PARDISO, but less significant compared to Eigen’s BiCGSTAB. The
speedup exhibits problem-dependence, since Tspdup factors in Ta-
ble 2 are larger for the zero-Neumann IBC compared to the Dirich-
let IBC. However, as expected, Mred is not problem-dependent.

7 Applications

We now show the ability of our CPM approach to solve PDEs with
IBCs that are common in applications from geometry processing:
diffusion curves, geodesic distance, vector field design, harmonic
maps, and reaction-diffusion textures.

Quadratic polynomial interpolation, i.e., p = 2, is used for all the
examples in this section. Current CPM theory suggests that only
first-order accuracy can be expected with quadratic polynomial in-
terpolation, but CPM has been observed to give second-order con-
vergence numerically (see Macdonald and Ruuth [2010], Section
4.1.1). This behavior is confirmed with IBCs in Figure 11.

The main motivation for choosing quadratic interpolation is
to obtain smaller computational tube-radii, rΩ(S), which allows
higher curvature S and C to be handled with larger Δx . The re-
sulting Ω(S) and Ω(C) contain fewer DOFs and therefore the com-
putation is more efficient. Furthermore, Figure 11 shows that, for
the same Δx , quadratic interpolation has lower computation times.
Quadratic interpolation is 1.1–2.1 times faster than cubic interpo-
lation in Figure 11. We used p = 3 in the convergence studies
of Section 6, because the error for second-order BCs with p = 2
can sometimes be less regular (i.e., decreasing unevenly or non-
monotonically) than with p = 3 (Figure 11, bottom right).

CPM with first-order IBCs is used in all the examples in this
section. The geodesic distance, vector field design, and harmonic
map algorithms used here are themselves all inherently first-order
accurate; hence, using second-order IBCs would only improve

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 159:17

Fig. 11. A comparison of CPM with quadratic vs. cubic interpolation sten-

cils for the heat (top row) and Poisson (bottom row) problems of Fig-

ures 7(b) and (d). Comparable results are achieved, but quadratic is often

faster, while cubic typically exhibits more regular convergence.

accuracy near C. Second-order IBCs could have been used for dif-
fusion curves and reaction-diffusion textures, but the first-order
method was used for consistency. Note also that any surface repre-
sented as a mesh is scaled (with fixed aspect ratio) to fit in [−1, 1]3.

7.1 Diffusion Curves

Diffusion curves offer a sparse representation of smoothly varying
colors for an image [Orzan et al. 2008] or surface texture [Jeschke
et al. 2009]. Obtaining colors over all of S requires solving the
Laplace-Beltrami equation with IBCs:

ΔSu
i = 0, with

{
ui = дi , or

∇Sui · bC = 0.
on C. (20)

The Laplace-Beltrami equation (20) is solved for each color chan-
nel ui independently with CPM. The color vector is composed of
all the color channels, e.g., for RGB colors u = [u1,u2,u3]T . Dirich-
let IBCs,ui = дi on C, are used to specify the color values at sparse
locations onS. These colors spread over all ofS when the Laplace-
Beltrami equation is solved. Zero-Neumann IBCs can be used to
treat C as a passive barrier that colors cannot cross. Two-sided
IBCs along C are also easily handled and can even be of mixed
Dirichlet-Neumann type (not to be confused with Robin BCs).

The surface of the Nefertiti bust [Al-Badri and Nelles 2024] is
colored by solving the Laplace-Beltrami equation with CPM with
Δx = 0.00315 and IBCs specified by diffusion curves in Figure 1(a).
IBC curves are polylines created using the flip geodesics algorithm
in geometry-central [Sharp et al. 2019a]. Most curves are two-
sided Dirichlet IBCs (white curves, Figure 1(a) left). However, the
red and green band on the headdress is created using two-sided red-

Fig. 12. Diffusion curves on a nonmanifold object of mixed codimension.

Line segments connect the torus to the sphere, which are all represented

with analytical cpS . The cpC for the circle on the sphere is computed ana-

lytically, while cpC for the torus knot is computed from a parametrization.

green Dirichlet IBCs vertically and two-sided Neumann-Dirichlet
IBCs horizontally (black curves, Figure 1(a), left).

Mixed-codimensional Objects. The generality of CPM allows
PDEs on mixed-codimensional objects to be solved. The theoretical
assumption that cpS is unique is violated in this case (near pieces
of differing codimension). However, CPM gives the expected result
in practice on mixed-codimensional objects (e.g., Figure 4.4 of Mac-
donald and Ruuth [2010]).

Figure 12 shows a diffusion curves example (with Δx = 0.05)
featuring a mixed 1D and 2D object embedded in R3. This mixed-
codimensionalS is created using analytical closest point functions
for the torus, sphere, and line segment. The torus has minor radius
r = 1 and major radiusR = 3, while the sphere is of radius 1.25. The
closest point to S is determined by computing the closest point to
each of the torus, sphere, and line segments, then taking the closest
of all four. The two curves C in this example are two-sided Dirich-
let IBCs. C on the torus is a torus knot specified by the parametric
equation

x(s) = v(s) cos(as), y(s) = v(s) sin(as), z(s) = sin(bs), (21)

withv(s) = R+cos(bs), a = 3, b = 7, and s ∈ [0, 2π]. Closest points
for the torus knot are computed using the optimization problem
discussed in Appendix A. C on the sphere is an analytical closest
point function for a circle defined as the intersection of the sphere
and a plane. Notice the color from the torus to the sphere blends
across the line segments as expected (see Figure 12, zoom).

Codimension-zero Manifolds. Interestingly, CPM can also be ap-
plied with codimension-zero manifolds (see Section 6.2.4 of Mac-
donald et al. [2013]). A codimensional-zero manifold is a solid ob-

ject that is a subset of Rdim(S). Consider a codimension-zero S,
with a boundary ∂S. The computational domain Ω(S) consists of
all grid points xi ∈ S (having cpS(xi) = xi) plus a layer of grid
points outsideS where cpS(xi) ∈ ∂S and ‖xi −cpS(xi)‖ ≤ rΩ(S).

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

159:18 • N. King et al.

Fig. 13. CPM applied to a codimension-zero diffusion curve problem, with

the Dirichlet color value varying along the white IBC curve. Top row: At

an insufficient grid resolution of Δx = 0.05 (left), high curvature regions

exhibit errors near the curve’s medial axis (right). Bottom row: A high-

resolution grid with Δx = 0.005 (left) resolves the artifacts (right). The

cpS are computed analytically and cpC are computed from a parametric

representation.

Figure 13 shows an example of applying CPM to the diffusion
curves problem with S as the square [−1, 1]2 and Ω(S) ⊂ R2.

A parametric curve on the interior ofS defines a diffusion curve
C as a two-sided Dirichlet IBC, given by

x(s) = v(s) cos(s) + c, y(s) = v(s) sin(s) + c, (22)

where

v(s) =
cos(s)

(
1
2 (a + b) + sin(as) + sin(bs)

)
+ 1

2 (a + b)

a + b
,

with a = 3, b = 4, c = − 1
2 , and s ∈ [0, 2π]. Note that the color

varies along C from red to green inside C and blue to green out-
side C. (Such color variations along boundaries C can also easily
be applied to problems where the embedding domain has higher
dimension than S.) First-order zero-Neumann exterior BCs are ap-
plied on ∂S naturally by CPM, which enforces no (conormal, i.e.,
normal to ∂S and in the tangent space of S) color gradient at ∂S.

The grid spacing Δx needs to be fine enough near C to give an
accurate solution. Artifacts can occur if stencils undesirably cross
the medial axis of C when Δx is too large (cf. Figure 13 top and
bottom rows). A promising direction of future work is therefore
to explore the use of adaptive grids based on the geometry of C.
Adaptivity would reduce the total number of DOFs in the linear
system and thus improve efficiency. Adaptive grids based on the
geometry of S would also improve efficiency when codim(S) > 0.

Applying CPM with codim(S) = 0 represents an alternative to
(or generalization of) various existing embedded boundary meth-
ods for irregular domains, e.g., Gibou et al. [2002], Ng et al. [2009],

and Schwartz et al. [2006]. Advantages and disadvantages of this
approach should be explored further in future work. One advan-
tage shown by Macdonald et al. [2013] is the ability to couple vol-
umetric and surface PDEs in a unified framework.

7.2 Geodesic Distance

The heat method for geodesic distance computation [Crane et al.
2013] has been implemented on many surface representations, in-
cluding polygonal surfaces, subdivision surfaces [De Goes et al.
2016b], spline surfaces [Nguyen et al. 2016], tetrahedral meshes
[Belyaev and Fayolle 2015], and point clouds [Crane et al. 2013],
with each requiring nonnegligible tailoring and implementation
effort. By introducing our Dirichlet IBC treatment for CPM, we en-
able a single implementation covering all these cases, since clos-
est points can be computed to these and many other manifold
representations.

The heat method approximates the geodesic distance ϕ using
the following three steps:

(1) Solve ∂u
∂t
= ΔSu to give ut at time t ,

(2) Evaluate the vector field X = −∇Sut /‖∇Sut ‖,
(3) Solve ΔSϕ = ∇S · X for ϕ.

Step (1) uses a Dirac-delta heat source for a point C or a generalized
Dirac distribution over a curve C as the initial condition. The time
discretization of step (1) employs implicit Euler, for one timestep,
which is equivalent (up to a multiplicative constant) to solving

(I − tΔS)vt = 0 on S\C,
vt = 1 on C. (23)

The discrete system for Equation (23) can be written as Av = f ,

where A ∈ R(NS+NC)×(NS+NC) and v, f ∈ RNS+NC .
Imposing first-order IBCs involves the Heaviside step function

for f . That is, fi = 0 if i is in the PDE DOF set (i ∈ JS) and fi = 1 if
i is in the BC DOF set (i ∈ JC). When imposing this IBC in Equa-
tion (23), CPM can experience Runge’s phenomenon due to the
polynomial interpolation used for the CP extension. Therefore, we
approximate the Heaviside step function with a smooth approxi-
mation as

fi =
1

2
tanh

(
−k ‖cpS−C(xi)‖

)
+

1

2
, with k =

atanh(1 − ϵ)
e

.

The parameters e and ϵ correspond to the “extent” [−e, e] and the
maximum error of the approximation outside of the extent, respec-
tively. That is, when ‖cpS−C(xi)‖ = e , the error in approximating
the Heaviside function is ϵ and the error becomes smaller further
outside of [−e, e]. We choose e = rΩ(S) and ϵ = Δx for our results.

Step (3) of the heat method also involves a Dirichlet IBC, ϕ = 0
on C, since the geodesic distance is zero for points on C. No special
treatment is required for this IBC. To improve accuracy, steps (2)
and (3) are applied iteratively as discussed by Belyaev and Fayolle
[2015]. Two extra iterations of steps (2) and (3) are applied in all
our examples of the CPM-based heat method.

We use Eigen’s SparseLU to solve (only) the linear systems aris-
ing from step (1) of the heat method. Using BiCGSTAB (either
Eigen’s or our custom solver) results in an incorrect solution de-
spite the iterative solver successfully converging, even under a
relative residual tolerance of 10−15. We observed that the small
timestep of the heat method, Δt = Δx2, causes difficulties for

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 159:19

Fig. 14. CPM vs. mesh-based methods for geodesic distances to a point on a triangulation of the Dziuk surface. Consistent results are observed.

BiCGSTAB. The reason is that values far from the heat sources
are often extremely close to zero. Tiny errors in these values are
tolerated by BiCGSTAB but lead to disastrously inaccurate gradi-
ents in step (2) and thus incorrect distances in step (3). Another
option is to calculate smoothed distances (see Section 3.3 of Crane
et al. [2013]) using larger timesteps Δt = mΔx2 with m ≥ 100;
in this scenario, BiCGSTAB encounters no problems. Our partially
matrix-free BiCGSTAB solver is nevertheless successfully used for
step (3) of the heat method.

Figure 14 shows the geodesic distance to a single source point
on the Dziuk surface, where our CPM-based approach (with Δx =
0.0125) is compared to exact polyhedral geodesics [Mitchell et al.
1987] and the mesh-based heat method. Implementations of the lat-
ter two methods are drawn from geometry-central [Sharp et al.
2019a]. All three approaches yield similar results.

For the example in Figure 14, closest points are computed from
the same triangulation used in the exact polyhedral and mesh-
based heat method. However, closest points can also be directly
computed from the level-set Dziuk surface (as in Section 6.3). To
our knowledge, the heat method has not been applied on level-set
surfaces before.

We showcase the ability of our CPM to compute geodesic dis-
tance on general manifold representations. Figure 15 visualizes
the geodesic distance to an open curve on the “DecoTetrahedron”
[Palais et al. 2023] level-set surface,

S =
{
x ∈ R3

���� 3∑
i=1

(
(xi − 2)2(xi + 2)2 − 10x2

i

)
+ 3

(
x2

1x
2
2 + x

2
1x

2
3 + x

2
2x

2
3

)
+ 6x1x2x3 = −22

}
.

S and C can also have mixed representations. For example,
Figure 1(b) shows the geodesic distance (using Δx = 0.00625) to
the trefoil knot (a.k.a. torus knot witha = 2 andb = 3; see Equation
(21)) on a torus with minor and major radii 1 and 2, respectively.
The trefoil knot uses a parametric representation, while the torus
uses an analytical closest point representation.

7.3 Vector Field Design

Designing tangent vector fields on surfaces is useful in many appli-
cations, including texture synthesis, non-photorealistic rendering,
quad mesh generation, and fluid animation [De Goes et al. 2016a;
Zhang et al. 2006]. One approach for vector field design involves
the user specifying desired directions at a sparse set of surface loca-
tions, which are then used to construct the field over the entire sur-
face. Adapting ideas from Turk [2001] and Wei and Levoy [2001],

Fig. 15. Geodesic distance to a polyline curve (black) visualized on the “De-

coTetrahedron” level-set surface computed using CPM with Δx = 0.025.

The closest points themselves are directly rendered.

we interpret the user-specified directions as Dirichlet IBCs and use
diffusion to obtain the vector field over the whole surface.

We iterate between heat flow of the vector field and projections
onto the tangent space to obtain the tangent vector field over all
of S. Specifically, each iteration involves the following steps:

(1) Perform heat flow independently for each component of u =

[u1,u2,u3]T according to

∂ui

∂t
= ΔSu

i , with

{
ui = дi , or

∇Sui · bC = 0,
on C,

starting from the vector field after the previous iteration.
(2) Project u(xj) onto the tangent space of S using nS at

cpS(xj)

u(xj) =
(
I − nSnT

S

)
u(xj).

One timestep of heat flow is performed on each iteration using
implicit Euler with Δt = 0.1Δx . A total of 10 iterations are used
for all examples. The vector field for the first iteration consists of
zero vectors unless the direction is specified by an IBC.

Dirichlet IBCs g = [д1,д2,д3]T can be specified at points or
curves. For point Dirichlet IBCs, the direction of g is any direc-
tion in the tangent space of S. Dirichlet IBCs on curves could also
specify any direction in the tangent space of S, but designing vec-
tor fields is more intuitive when g is the unit tangent direction tC
along C. Zero-Neumann IBCs are also used within our framework
to block the vector field from diffusing across C.

Figure 1(c) shows an example of a vector field designed on the
Möbius strip using Δx = 0.0064. The Möbius strip is actually a

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

159:20 • N. King et al.

Fig. 16. Vector field design on a parametric surface of revolution, with

Dirichlet IBCs on a parametric curve and points shown in white.

triangulated surface in this example, although its parametric form
could be used instead (see Macdonald et al. [2011]). Zero-Neumann
exterior BCs are imposed automatically by CPM with first-order ac-
curacy on the geometric boundary. This example shows the ability
of our approach to handle open and nonorientable surfaces. There
are four points and two curves specifying the IBCs in Figure 1(c).
A circular closed curve demonstrates that vortices can be created.
The other curve on the Möbius strip enforces a zero-Neumann IBC
that blocks direction changes in the vector field (see Figure 1(c),
zoom).

Figure 16 shows another example on a parametric surface of rev-
olution (with Δx = 0.025), which is constructed by revolving the

planar parametric curve (22) with c = 1
2 around the z-axis. All IBCs

in this example are Dirichlet IBCs. Sinks and sources in the vector
field are created with four Dirichlet point IBCs. The curve IBC is a
two-sided Dirichlet IBC that flips the direction of the vector field
across C (see Figure 16, zoom).

A final vector field design example, on the Lucy surface, is given
in Figure 17. A point cloud representation of the Lucy surface (ver-
tices of a mesh [The Stanford 3D Scanning Repository 2024] with
~1 million vertices) is used and the closest point function is defined
to return the nearest neighbor; for dense enough point clouds, this
suffices. For less dense point clouds, a smoother closest point func-
tion is required, for example, using a moving-least-squares–based
projection method [Liu et al. 2006; Yingjie and Liling 2011]. Nev-
ertheless, the variable point density (i.e., higher density on head,
wings, hands, and feet) of the Lucy point cloud in Figure 17 (left)
does not present any issue in this example.

7.4 Harmonic Maps

A map between two manifolds, S1 and S2, matches locations on
S1 with locations on S2. The map can be used to analyze differ-
ences between S1 and S2 or to transfer data from one manifold to
the other. Harmonic maps are a specific type of map that appears
in numerous domains, e.g., mathematical physics [Bartels 2005]
and medical imaging [Shi et al. 2009, 2007]. In computer graphics,
harmonic maps can be used for many applications such as texture
transfer, quad mesh transfer, and interpolating intermediate poses
from key-frames of a character [Ezuz et al. 2019].

Fig. 17. Vector field design on a point cloud surface (left), with Dirichlet

IBCs on polyline curves and points shown in white. The resulting vector

field is visualized with flow lines on a triangulation of the point cloud

(right).

King and Ruuth [2017] considered applying CPM to compute
harmonic maps u(y) : S1 → S2. Adapting their approach, we
compute the harmonic map using the gradient descent flow

∂u

∂t
= ΠTuS2

(ΔS1
u),

u(y, 0) = f(y),
u(y, t) = g(y), for y ∈ C1,

(24)

where ΠTuS2
is the projection operator at the point u onto the tan-

gent space of S2. The vector ΔS1
u is defined componentwise, i.e.,

ΔS1
u = [ΔS1

u1,ΔS1
u2,ΔS1

u3]T . The f(y) and g(y) are the initial
map (from S1 to S2) and the landmark map (from C1 ⊂ S1 to
C2 ⊂ S2), respectively. The subsets C1 and C2 can be landmark
points or curves on S1 and S2 that are enforced to match using
our new Dirichlet IBC treatment; such IBCs were not considered
by King and Ruuth [2017].

An operator splitting approach was used by King and Ruuth
[2017], which allows Equation (24) to be solved with a PDE on
S1 alone. Specifically, one timestep consists of the following:

(1) Solve Equation (24) without the ΠTuS2
term using CPM on

Ω(S1) with Ω(C1) to enforce the IBC.
(2) Project the solution from (1) onto S2.

Denote the solution from step (1) at xi ∈ Ω(S1) and timestep k by

vk
i . The projection in step (2) simply moves vk

i to its closest point

on S2 by setting uk
i = cpS2

(vk
i). One timestep of explicit Euler is

used for step (1) with Δt = 0.1Δx2 starting from uk−1.
To perform the above gradient descent flow, a valid initial map

u0 is needed to start from. Generating such initial maps in the
general case has not yet been addressed for CPM [King and Ru-
uth 2017]. Approaches based on geodesic distance to landmark
curves/points C1, C2 could potentially be adapted [Ezuz et al.
2019; Shi et al. 2007]. However, for our illustrative example of
incorporating IBCs while computing harmonic maps, we opt for

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 159:21

Fig. 18. Maps from S1 to S2 with a texture for visualizing the mapping.

Landmark curves (Dirichlet IBCs) C1 and C2 are shown in white. (a) S1

with texture. (b) S2 with texture from a noisy initial map. (c) S2 with a

CPM harmonic mapped texture without IBCs. (d) S2 with a harmonic

mapped texture using our CPM approach satisfying the IBCs. The surfaces

are displayed as point clouds. The cpS1
and cpS2

are computed from tri-

angulations, while cpC1
and cpC2

are computed from polylines.

a simple (but restrictive) initial map construction. The surface S1

is given by a triangulation and deformed to create S2 while main-
taining the same vertex connectivity. Therefore, the barycentric
coordinates of each triangle can be used to initially map any point
on S1 to a point on S2.

Figure 18 shows an example of computing harmonic maps from
the Bob [Crane 2024] surface S1 to its deformed version S2. Grid
spacing Δx = 0.00663 is used for Ω(S1). The surfaces are visualized
as point clouds. S1 is visualized with the set of closest points of
grid points in Ω(S1). Each point in the point cloud for S1 has a
corresponding point location on S2 given through the mapping
u. A texture is added to the surface of S1 and transferred to S2

through the mapping u.
To emphasize the effect of computing the harmonic map, noise

is added to the initial map (see Figure 18(b)) before performing
the gradient descent flow. The gradient descent flow is evolved to
steady state using 1,500 and 200 timesteps with and without the
IBC in Figures 18(d) and (c), respectively. The harmonic map with
a Dirichlet IBC stretches on one side of C2 and compresses on the
other side to satisfy both the PDE and IBC. Comparing the zoom of
Figures 18(c) and (d), the point cloud density in (d) is more sparse
on one side of C2 than in (c) due to the stretching of the map, leav-

Fig. 19. Reaction-diffusion texture on a fish surface with zero Dirichlet

IBCs around the eye and on the tail. A two-sided zero Dirichlet-Neumann

IBC is imposed on the dorsal fin. The surface is colored yellow for high

concentrations of reactant u and purple for low concentrations. The cpS
are computed from a triangulation, while the cpC are computed from poly-

lines.

ing visual gaps between points in the cloud. The distortion is ex-
pected unless the IBC map g is a harmonic map itself.

7.5 Reaction-diffusion Textures

Much research in geometry processing has focused on Poisson and
diffusion problems. There are, however, applications that require
solving more general PDEs, e.g., reaction-diffusion textures [Turk
1991]. Reaction-diffusion textures involve solving coupled equa-
tions on surfaces. These PDEs can form patterns from random ini-
tial conditions and have been solved on meshes [Turk 1991], level
sets [Bertalmıo et al. 2001], and closest point surfaces [Macdonald
et al. 2013]. Here, we impose IBCs to control regions of the tex-
ture, emphasizing the generality of CPM, and our novel boundary
condition treatment, with respect to PDE type.

The Gray-Scott model [Pearson 1993]{
∂u
∂t
= μu ΔSu − uv2 + F (1 − u),

∂v
∂t
= μv ΔSv + uv

2 − (F + k)v,
(25)

with {
u = д or ∇Su · bC = 0,

v = h or ∇Sv · bC = 0,
on C, (26)

is solved with CPM. Figure 19 shows u on a fish [Crane 2019] for
a set of IBCs. The constants μu = 1.11 × 10−5, μv = μu/3, F =
0.054, k = 0.063 are used with forward Euler timestepping until
t = 10, 000 with Δt = 0.9 and Δx = 0.01. The initial condition is
taken as u = 1 − p, v = p/2, where p is given by small random
perturbations around

1

2
e100(z−0.1)2 +

1

2
.

Zero Dirichlet IBCs allow stripes to be placed around the dorsal fin
and tail. The upper side of the dorsal fin IBC is a zero Neumann
IBC, which causes the pattern to intersect perpendicular to the IBC
curve. A closed (zero Dirichlet) IBC curve allows for control of
concentrations of the reactants u and v in the eye.

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

159:22 • N. King et al.

8 Limitations and Future Work

As we have discussed and demonstrated, CPM is a powerful tool for
solving manifold PDEs, since it provides a unified framework for
general manifold characteristics, general manifold representations,
and general PDEs. Our work extends CPM to solve manifold PDEs
with interior boundary conditions (Dirichlet and zero-Neumann)
while obtaining up to second-order accuracy. The ability to
enforce IBCs enables CPM to be applied to many PDE-based
geometry processing tasks and applications that were not previ-
ously possible. Additionally, we have developed a runtime and
memory-efficient implementation allowing for the treatment of
higher-detail surfaces without specialized hardware. To encourage
wider adoption of CPM, we have made the code for our framework
publicly available at https://github.com/nathandking/cpm-ibc.
Below, we outline some of CPM’s existing limitations and describe
a few exciting directions for future work.

Grid Resolution in Practice. Existing CPM theory assumes a
unique closest point function cpS in the computational tube Ω(S).
For general S, the closest point cpS(x) is rarely unique for all

x ∈ Rd . For smooth, compact manifolds, however, cpS(x) is unique

for x in a tubular neighborhood N(S) ⊆ Rd surrounding S with
sufficiently small tube radius rN(S) [Marz and Macdonald 2012].

Uniqueness of cpS is equivalent to requiringN(S) ∩med(S) =
∅, since by definition the medial axis of S, denoted med(S), is the

subset ofRd that has at least two closest points onS. The reach(S)
is the minimum distance from S to med(S). Thus, for a uniform
radius tube, to ensure uniqueness of cpS the tube radius must sat-
isfy rN(S) < reach(S). Hence, N(S) depends on the geometry of
S, since reach(S) depends on curvatures and bottlenecks (thin re-
gions) of S (see Section 3 of Aamari et al. [2019]).

In the discrete setting, the computational tube-radius rΩ(S)must
be less than reach(S). Rearranging Equation (4) means Δx must
satisfy

Δx <
reach(S)√

(d − 1)
(

p+1
2

)2
+
(
q +

p+1
2

)2

to ensure a unique cpS on Ω(S). However, in practice, CPM can
often be used successfully with larger Δx , depending on the PDE
to be solved and the accuracy requirements of the application.

In many graphics applications, the visual appearance is para-
mount. Consider a diffusion curves example on a dragon [The Stan-
ford 3D Scanning Repository 2024]. Figure 20 shows the resultant
surface coloring at different grid resolutions. Artifacts can be ob-
served for Δx = 0.0125: Unintended blending of blue and red on
the head yields purple, while the zoomed-in dragon scale incor-
rectly shows hints of blue appearing in a red region. For Δx =
0.003125 (and arguably Δx = 0.00625), the result has converged to
a visually acceptable, artifact-free result. However, the Δx required
to give a unique cpS for the dragon is Δx < 1.28 × 10−6. This as-
sumes no thin bottlenecks exist, i.e., reach(S) is computed based
on only principal curvatures (computed directly on the mesh using
geometry-central [Sharp et al. 2019a]). Therefore, Δx has always
been determined empirically for practical applications of CPM.

Fig. 20. Results for three grid resolutions used to solve a diffusion curves

problem to color the surface of a dragon. The resolution is illustrated by a

small block of grid cells (best viewed by zooming). The cpS are computed

from a triangulation, while the cpC are from polylines.

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

https://github.com/nathandking/cpm-ibc

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 159:23

The need to choose Δx experimentally is a limitation that costs
the user time. A priori determination of a “correct” grid spacing Δx
is an open challenge: It will require knowledge about the specific
PDE to be solved, the manifold it is to be solved on, and the accu-
racy requirements (perceptual, numerical, etc.) of the user. In gen-
eral, a priori error estimation has been rare in computer graphics
applications. A notable exception is the p-refinement FEM scheme
of Schneider et al. [2018], which uses an a priori error estimate
based on the geometry of the (volumetric) domain.

BC Types, Higher-order Accuracy, and Other PDEs. CPM work
to date has only addressed Dirichlet and zero-Neumann (exterior)
BCs. Macdonald et al. [2013] solved a surface-to-bulk coupled PDE
with Robin BCs on the boundary of the bulk (but S was closed, i.e.,
∂S = ∅). Extending CPM to impose inhomogeneous-Neumann,
Robin, and other types of BCs is an important area of future work.
Fortunately, the interior BC framework developed here directly
generalizes existing CPM approaches for exterior BCs; therefore,
our work likely makes any future extensions of CPM for other ex-
terior BC types immediately applicable as interior BCs as well.

Third-order and higher (exterior and interior) BCs are also im-
portant for higher-order PDE discretizations. CPM itself extends
naturally to higher order, but CPM with higher-order exterior BCs
has not yet been explored. Macdonald et al. [2011] pointed out that
a replacement for cpS is required to incorporate the curvature ofS
near ∂S. For higher-order interior BCs, an improved S⊥ crossing
test (12), involving curvatures of S near C, is likely also needed.

We primarily focused on Poisson and diffusion problems, but
CPM has been applied to numerous other PDEs (see Section 2). In
principle, our approach to IBC enforcement should also readily ex-
tend to those settings. This was confirmed for reaction-diffusion
equations in Section 7.5. Extending CPM to approximate previ-
ously unexplored operators, such as the relative Dirac operator
[Liu et al. 2017] or the connection Laplacian [Sharp et al. 2019c],
would allow other geometry processing applications to benefit
from CPM.

Efficiency. The discrete setup using a uniform grid near S was
chosen for its simplicity and use of well-studied Cartesian numer-
ical methods (i.e., Lagrange interpolation and finite differences).
However, the ideal radius of CPM’s computational tube is dictated
by the curvature and/or bottlenecks of S and C (see Section 3.1).
Higher curvatures or narrow bottlenecks force the uniform grid
spacing to be small, leading to inefficiency due to a large number
of DOFs.

One way to improve the runtime and memory efficiency of CPM
on uniform grids is to use parallelization on specialized hardware,
e.g., GPU [Auer et al. 2012] or distributed memory [May et al.
2022]. However, the number of DOFs with a uniform grid can be
higher than necessary, since the grid is allowed to be coarser in
low curvature regions and away from tight bottlenecks of S and
C. Near bottlenecks with low curvature, duplicate DOFs on either
side of the medial axis could be introduced to avoid refining while
ensuring data is extended from the correct part of S (similar to
how the current work distinguishes different sides of an IBC). This
would result in a nonmanifold grid similar to the work of Mitchell
et al. [2015] and Chuang [2013]. Conversely, near high curvature
regions, spatial adaptivity (e.g., octrees) could be used to provide

locally higher resolution. Combining duplicate DOFs and adaptiv-
ity is, therefore, a promising direction to make CPM more efficient
(both in runtime and memory) for complex surfaces, without re-
course to specialized hardware.

Exploring other approximations of the CP extension and dif-
ferential operators in the Cartesian embedding space could also
improve efficiency. For example, combining Monte Carlo methods
[Rioux-Lavoie et al. 2022; Sawhney and Crane 2020; Sawhney et al.
2022; Sugimoto et al. 2023] with CPM is one interesting avenue.
Monte Carlo methods can avoid computing the global solution, so
they may be more efficient when the solution is only desired on a
local portion of S.

Smoothness of S and C. Most CPM work and theory is based on
smooth manifolds. However, WENO interpolation has been used
to improve the grid-based CPM (i.e., the form used in this article)
for nonsmooth surfaces (e.g., surfaces with sharp features) [Auer
et al. 2012; Macdonald and Ruuth 2008]. Cheung et al. [2015] used
duplicated DOFs (similar to the current work) near the sharp fea-
ture with a radial-basis function discretization of CPM. However,
such discretizations can suffer from ill-conditioned linear systems.
Therefore, it would be interesting to instead explore altering sten-
cils (similar to our IBC approach) for the grid-based CPM near
sharp features to use data from the “best side” of the sharp fea-
ture. In this context, the BC curve C would instead be the sharp
feature and the PDE is still imposed on C instead of a BC.

The theoretical restriction of smoothness also applies to the
curve C. Therefore, our IBC approach is theoretically restricted
to curves without kinks or intersections. In practice, we are still
able to obtain the expected result when C has sharp features or in-
tersections, e.g., Figure 1(a) involves many intersecting curves (in
the band of the headdress) that also create sharp corners. Similarly
CPM gives expected results in practice for mixed-codimensional
objects, as seen in Figure 12, where sharp features are present
when differing codimensional pieces meet (one does, however, ob-
serve a decrease in the empirical convergence order). The develop-
ment of a sound theoretical understanding of CPM’s behavior near
sharp features and intersections is interesting future work.

CPM offers an exciting, unified framework for manifold PDEs
on “black box” closest point representations, which we have
extended with accurate interior BCs. Above, we have outlined a
partial roadmap of CPM’s significant untapped potential; we hope
that others in the computer graphics community will join us in
exploring it.

Appendix

A Closest Point Computation

Some manifolds allow closest points to be computed analytically,
e.g., lines, circles, planes, spheres, cylinders, and tori. We use the
analytical expressions for exact closest points in all examples for
which they exist. For parametrized manifolds, closest points can be
computed using standard numerical optimization techniques, e.g.,
Ruuth and Merriman [2008] used Newton’s method for various
manifolds, such as a helix. For examples in this article, we solve

arg min
t

1

2
‖p(t) − xi ‖2,

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

159:24 • N. King et al.

for the parameters t (e.g., t = t for a 1D curves and t = [u,v]T
for a 2D surface), where p(t) ∈ S and xi ∈ Ω(S). LBFGS++ [Qiu
2023] is used to solve the optimization problem. An initial guess
for cpS(xi) is taken as the nearest neighbor in a point cloud PS of
the parametric manifold. The point cloud PS is constructed using
N equispaced points of the parameter t.

Computing closest points to triangulated surfaces is also well-
studied [Auer et al. 2012; Mauch 2003; Strain 1999]. Notably, the
work of Auer et al. [2012] implements the closest point evaluation
on a GPU. There also exist open source libraries that support com-
puting closest points to triangle meshes, e.g., libigl [Jacobson
et al. 2018]. Here, we use the library fcpw [Sawhney 2022] to com-
pute closest points to triangulated surfaces and polyline curves.

The simplest way to compute closest points to a point cloud is
to take the nearest neighbor as the closest point. As discussed by
Macdonald et al. [2013], this choice can be inaccurate if the point
cloud is not dense enough. Wang et al. [2020] (Figure 17) showed
the inaccuracy of using nearest neighbors as closest points with
CPM on a diffusion problem. Several more accurate approaches for
closest points to point clouds have been developed [Liu et al. 2006;
Martin and Tsai 2020; Petras et al. 2022; Yingjie and Liling 2011].

Closest points can also be computed from analytical signed-
distance functions d(x) as

cpS(x) = x − d(x)∇d(x). (27)

Equation (27), however, is not valid for more general level-set func-
tions ϕ. High-order accuracy of closest points from level-set func-
tions (sampled on a grid) can be obtained using the method of Saye
[2014]. For the examples in this article, we use the ideas of Saye
[2014] but with analytical expressions for ϕ. Specifically, an initial
guess cp� of the closest point is obtained using a Newton-style
procedure, starting with cp0 = xi , and iterating

cpk+1 = cpk −
ϕ(cpk)∇ϕ(cpk)
‖∇ϕ(cpk)‖2

,

with stopping criterion ‖cpk+1 − cpk ‖ < 10−10. Then, Newton’s
method,

yk+1 = yk − (D2 f (yk))−1∇f (yk),
is used to optimize

f (cp, λ) = 1

2
‖cp − xi ‖2 + λϕ(cp),

where y = [cp, λ]T and ‖yk+1 − yk ‖ < 10−10 is used as the
stopping criterion. The initial Lagrange multiplier is λ0 = (xi −
cp�) · ∇ϕ(cp�)/‖∇ϕ(cp�)‖2. Analytical expressions for ∇f (y) and
D2 f (y) are computed using analytical expressions of ∇ϕ and D2ϕ.

Closest points for objects composed of multiple parts can be
computed by obtaining the closest point to each independent man-
ifold first. Then, the closest point to the combined object is taken
as the closest of the independent manifold closest points (e.g., the
torus and sphere joined by line segments in Figure 12).

Closest points can be computed for many other representations.
For example, closest points to neural implicit surfaces can be com-
puted using the work of Sharp and Jacobson [2022]. Further ref-
erences for closest point computation are given in Section 5.1 of
Sawhney and Crane [2020].

-

References
Eddie Aamari, Jisu Kim, Frédéric Chazal, Bertrand Michel, Alessandro Rinaldo, and

Larry Wasserman. 2019. Estimating the reach of a manifold. Electron. J. Stat. 13, 1
(2019), 1359–1399.

David Adalsteinsson and James A. Sethian. 1995. A fast level set method for propagat-
ing interfaces. J. Comput. Phys. 118, 2 (1995), 269–277.

Nora Al-Badri and Jan Nikolai Nelles. 2024. Nefertiti. Retrieved from: https://cs.cmu.
edu/~kmcrane/Projects/ModelRepository, original source https://nefertitihack.
alloversky.com/

Reynaldo J. Arteaga and Steven J. Ruuth. 2015. Laplace-Beltrami spectra for shape
comparison of surfaces in 3D using the closest point method. In IEEE International
Conference on Image Processing (ICIP’15). IEEE, 4511–4515.

Stefan Auer, Colin B. Macdonald, Marc Treib, Jens Schneider, and Rüdiger Wester-
mann. 2012. Real-time fluid effects on surfaces using the closest point method. In
Computer Graphics Forum, Vol. 31. Wiley Online Library, 1909–1923.

Stefan Auer and Rüdiger Westermann. 2013. A semi-Lagrangian closest point method
for deforming surfaces. In Computer Graphics Forum, Vol. 32. Wiley Online Li-
brary, 207–214.

Vinicius C. Azevedo, Christopher Batty, and Manuel M. Oliveira. 2016. Preserving
geometry and topology for fluid flows with thin obstacles and narrow gaps. ACM
Trans. Graph. 35, 4 (2016), 1–12.

Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. Levin, and Alec Jacobson. 2018.
Fast winding numbers for soups and clouds. ACM Trans. Graph. 37, 4 (2018), 1–12.

Sören Bartels. 2005. Stability and convergence of finite-element approximation
schemes for harmonic maps. SIAM J. Numer. Anal. 43, 1 (2005), 220–238.

Jacob Bedrossian, James H. Von Brecht, Siwei Zhu, Eftychios Sifakis, and Joseph M.
Teran. 2010. A second order virtual node method for elliptic problems with inter-
faces and irregular domains. J. Comput. Phys. 229, 18 (2010), 6405–6426.

Alexander G. Belyaev and Pierre-Alain Fayolle. 2015. On variational and PDE-based
distance function approximations. In Computer Graphics Forum, Vol. 34. Wiley
Online Library, 104–118.

Jean-Paul Berrut and Lloyd N. Trefethen. 2004. Barycentric lagrange interpolation.
SIAM Rev. 46, 3 (2004), 501–517.

Marcelo Bertalmıo, Li-Tien Cheng, Stanley Osher, and Guillermo Sapiro. 2001. Varia-
tional problems and partial differential equations on implicit surfaces. J. Comput.
Phys. 174, 2 (2001), 759–780.

Erik Burman, Susanne Claus, Peter Hansbo, Mats G. Larson, and André Massing.
2015a. CutFEM: Discretizing geometry and partial differential equations. Int. J.
Numer. Meth. Eng. 104, 7 (2015), 472–501.

Erik Burman, Peter Hansbo, and Mats G. Larson. 2015b. A stabilized cut finite ele-
ment method for partial differential equations on surfaces: The Laplace–Beltrami
operator. Comput. Meth. Appl. Mechan. Eng. 285 (2015), 188–207.

Erik Burman, Peter Hansbo, Mats G. Larson, and Sara Zahedi. 2019. Stabilized CutFEM
for the convection problem on surfaces. Numer. Math. 141 (2019), 103–139.

Chieh Chen and Richard Tsai. 2017. Implicit boundary integral methods for the
Helmholtz equation in exterior domains. Res. Math. Sci. 4, 1 (2017), 19.

Yujia Chen and Colin B. Macdonald. 2015. The closest point method and multigrid
solvers for elliptic equations on surfaces. SIAM J. Scient. Comput. 37, 1 (2015),
A134–A155.

Ka C. Cheung, Leevan Ling, and Steven J. Ruuth. 2015. A localized meshless method
for diffusion on folded surfaces. J. Comput. Phys. 297 (2015), 194–206.

Jay Chu and Richard Tsai. 2018. Volumetric variational principles for a class of partial
differential equations defined on surfaces and curves. Res. Math. Sci. 5, 2 (2018),
19.

Ming Chuang. 2013. Grid-based finite Elements System for Solving Laplace-Beltrami
Equations on 2-manifolds. Ph. D. Dissertation. Johns Hopkins University.

Ming Chuang, Linjie Luo, Benedict J. Brown, Szymon Rusinkiewicz, and Michael
Kazhdan. 2009. Estimating the Laplace-Beltrami operator by restricting 3D func-
tions. In Computer Graphics Forum, Vol. 28. Wiley Online Library, 1475–1484.

Keenan Crane. 2019. Fish. Retrieved from https://github.com/odedstein/meshes/
tree/master/objects/fish, originally from https://cs.cmu.edu/~kmcrane/Projects/
ModelRepository

Keenan Crane. 2024. Bob. Retrieved from https://cs.cmu.edu/~kmcrane/Projects/
ModelRepository

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A
new approach to computing distance based on heat flow. ACM Trans. Graph. 32,
5 (2013), 1–11.

Fernando De Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. 2016b. Subdi-
vision exterior calculus for geometry processing. ACM Trans. Graph. 35, 4 (2016),
1–11.

Fernando De Goes, Mathieu Desbrun, and Yiying Tong. 2016a. Vector field processing
on triangle meshes. In ACM SIGGRAPH 2016 Courses. 1–49.

Ismail Demir and Rüdiger Westermann. 2015. Vector-to-closest-point octree for sur-
face ray-casting. In Vision, Modeling & Visualization, David Bommes, Tobias
Ritschel, and Thomas Schultz (Eds.). The Eurographics Association. DOI:https:
//doi.org/10.2312/vmv.20151259

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://nefertitihack.alloversky.com/
https://github.com/odedstein/meshes/tree/master/objects/fish
https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://doi.org/10.2312/vmv.20151259

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 159:25

Gerhard Dziuk. 1988. Finite Elements for the Beltrami Operator on Arbitrary Surfaces.
Springer.

Gerhard Dziuk and Charles M. Elliott. 2007. Surface finite elements for parabolic equa-
tions. J. Computat. Math. 25, 4 (2007), 385–407.

Danielle Ezuz, Justin Solomon, and Mirela Ben-Chen. 2019. Reversible harmonic maps
between discrete surfaces. ACM Trans. Graph. 38, 2 (2019), 1–12.

Prerna Gera and David Salac. 2017. Cahn–Hilliard on surfaces: A numerical study.
Appl. Math. Lett. 73 (2017), 56–61.

Frederic Gibou, Ronald P. Fedkiw, Li-Tien Cheng, and Myungjoo Kang. 2002. A
second-order-accurate symmetric discretization of the Poisson equation on irreg-
ular domains. J. Comput. Phys. 176, 1 (2002), 205–227.

John B. Greer. 2006. An improvement of a recent Eulerian method for solving PDEs
on general geometries. J. Scient. Comput. 29, 3 (2006), 321–352.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. Retrieved from http://eigen.
tuxfamily.org

Jeffrey L. Hellrung Jr., Luming Wang, Eftychios Sifakis, and Joseph M. Teran. 2012.
A second order virtual node method for elliptic problems with interfaces and
irregular domains in three dimensions. J. Comput. Phys. 231, 4 (2012), 2015–2048.

Yi Hong, Dengming Zhu, Xianjie Qiu, and Zhaoqi Wang. 2010. Geometry-based con-
trol of fire simulation. Visual Comput. 26, 9 (2010), 1217–1228.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele
Panozzo. 2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018),
60:1–60:14.

Alec Jacobson, Daniele Panozzo, and others. 2018. libigl: A Simple C++ Geometry
Processing Library. Retrieved from https://libigl.github.io/

Stefan Jeschke, David Cline, and Peter Wonka. 2009. Rendering surface details with
diffusion curves. In ACM SIGGRAPH Asia. 1–8.

Peter Kaufmann, Sebastian Martin, Mario Botsch, Eitan Grinspun, and Markus Gross.
2009. Enrichment textures for detailed cutting of shells. In ACM SIGGRAPH. 1–10.

Theodore Kim, Jerry Tessendorf, and Nils Thuerey. 2013. Closest point turbulence for
liquid surfaces. ACM Trans. Graph. 32, 2 (2013), 1–13.

Nathan D. King and Steven J. Ruuth. 2017. Solving variational problems and partial
differential equations that map between manifolds via the closest point method.
J. Comput. Phys. 336 (2017), 330–346.

Catherine Kublik, Nicolay M. Tanushev, and Richard Tsai. 2013. An implicit interface
boundary integral method for Poisson’s equation on arbitrary domains. J. Com-
put. Phys. 247 (2013), 279–311.

Catherine Kublik and Richard Tsai. 2016. Integration over curves and surfaces defined
by the closest point mapping. Res. Math. Sci. 3, 1 (2016), 3.

Randall J. LeVeque. 2007. Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-state and Time-dependent Problems. SIAM.

Jian Liang and Hongkai Zhao. 2013. Solving partial differential equations on point
clouds. SIAM J. Scient. Comput. 35, 3 (2013), A1461–A1486.

Hsueh-Ti D. Liu, Alec Jacobson, and Keenan Crane. 2017. A Dirac operator for extrin-
sic shape analysis. In Computer Graphics Forum, Vol. 36. Wiley Online Library,
139–149.

Yu-Shen Liu, Jean-Claude Paul, Jun-Hai Yong, Pi-Qiang Yu, Hui Zhang, Jia-Guang
Sun, and Karthik Ramani. 2006. Automatic least-squares projection of points onto
point clouds with applications in reverse engineering. Comput.-aid. Des. 38, 12
(2006), 1251–1263.

Colin B. Macdonald, Jeremy Brandman, and Steven J. Ruuth. 2011. Solving eigenvalue
problems on curved surfaces using the closest point method. J. Comput. Phys. 230,
22 (2011), 7944–7956.

Colin B. Macdonald, Barry Merriman, and Steven J. Ruuth. 2013. Simple computa-
tion of reaction–diffusion processes on point clouds. Proc. Nat’l Acad. Sci. 110, 23
(2013), 9209–9214. pmid:23690616.

Colin B. Macdonald and Steven J. Ruuth. 2008. Level set equations on surfaces via the
closest point method. J. Scient. Comput. 35, 2-3 (2008), 219–240.

Colin B. Macdonald and Steven J. Ruuth. 2010. The implicit closest point method for
the numerical solution of partial differential equations on surfaces. SIAM J. Scient.
Comput. 31, 6 (2010), 4330–4350.

Zoë Marschner, Paul Zhang, David Palmer, and Justin Solomon. 2021. Sum-of-squares
geometry processing. ACM Trans. Graph. 40, 6 (2021), 1–13.

Lindsay Martin and Yen-Hsi R. Tsai. 2020. Equivalent extensions of Hamilton–Jacobi–
Bellman equations on hypersurfaces. J. Scient. Comput. 84, 3 (2020), 1–29.

Thomas Marz and Colin B. Macdonald. 2012. Calculus on surfaces with general closest
point functions. SIAM J. Numer. Anal. 50, 6 (2012), 3303–3328.

Sean P. Mauch. 2003. Efficient Algorithms for Solving Static Hamilton-Jacobi Equations.
Ph. D. Dissertation. California Institute of Technology. Pasadena, California.

Ian C. May, Ronald D. Haynes, and Steven J. Ruuth. 2020. Schwarz solvers and pre-
conditioners for the closest point method. SIAM J. Scient. Comput. 42, 6 (2020),
A3584–A3609.

Ian C. T. May, Ronald D. Haynes, and Steven J. Ruuth. 2022. A closest point method
library for PDEs on surfaces with parallel domain decomposition solvers and pre-
conditioners. Numer. Algor. 93, 2 (2022), 1–23.

Joseph S. B. Mitchell, David M. Mount, and Christos H. Papadimitriou. 1987. The dis-
crete geodesic problem. SIAM J. Comput. 16, 4 (1987), 647–668.

Nathan Mitchell, Mridul Aanjaneya, Rajsekhar Setaluri, and Eftychios Sifakis. 2015.
Non-manifold level sets: A multivalued implicit surface representation with ap-
plications to self-collision processing. ACM Trans. Graph. 34, 6 (2015), 1–9.

Nicolas Moës, John Dolbow, and Ted Belytschko. 1999. A finite element method for
crack growth without remeshing. Int. J. Numer. Meth. Eng. 46, 1 (1999), 131–150.

Neil Molino, Zhaosheng Bao, and Ron Fedkiw. 2004. A virtual node algorithm for
changing mesh topology during simulation. ACM Trans. Graph. 23, 3 (2004), 385–
392.

Dieter Morgenroth, Stefan Reinhardt, Daniel Weiskopf, and Bernhard Eberhardt. 2020.
Efficient 2D simulation on moving 3D surfaces. In Computer Graphics Forum,
Vol. 39. Wiley Online Library, 27–38.

Yen Ting Ng, Chohong Min, and Frédéric Gibou. 2009. An efficient fluid–solid cou-
pling algorithm for single-phase flows. J. Comput. Phys. 228, 23 (2009), 8807–8829.

Thien Nguyen, Kȩstutis Karčiauskas, and Jörg Peters. 2016. C1 finite elements on non-
tensor-product 2D and 3D manifolds. Appl. Math. Comput. 272 (2016), 148–158.

Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle Thol-
lot, and David Salesin. 2008. Diffusion curves: A vector representation for smooth-
shaded images. ACM Trans. Graph. 27, 3 (2008), 1–8.

Richard Palais, Hermann Karcher, et al. 2023. 3DXM Virtual Math Museum. Retrieved
from https://virtualmathmuseum.org

John E. Pearson. 1993. Complex patterns in a simple system. Science 261, 5118 (1993),
189–192.

Argyrios Petras, Leevan Ling, Cécile Piret, and Steven J. Ruuth. 2019. A least-squares
implicit RBF-FD closest point method and applications to PDEs on moving sur-
faces. J. Comput. Phys. 381 (2019), 146–161.

Argyrios Petras, Leevan Ling, and Steven J. Ruuth. 2018. An RBF-FD closest point
method for solving PDEs on surfaces. J. Comput. Phys. 370 (2018), 43–57.

Argyrios Petras, Leevan Ling, and Steven J. Ruuth. 2022. Meshfree semi-Lagrangian
methods for solving surface advection PDEs. J. Scient. Comput. 93, 1 (2022),
1–22.

Argyrios Petras and Steven J. Ruuth. 2016. PDEs on moving surfaces via the closest
point method and a modified grid based particle method. J. Comput. Phys. 312
(2016), 139–156.

Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and
their conjugates. Experim. Math. 2, 1 (1993), 15–36.

Cécile Piret. 2012. The orthogonal gradients method: A radial basis functions method
for solving partial differential equations on arbitrary surfaces. J. Comput. Phys.
231, 14 (2012), 4662–4675.

Yixuan Qiu. 2023. LBFGS++. Retrieved from https://lbfgspp.statr.me/
Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. 2006. Laplace–Beltrami

spectra as “Shape-DNA” of surfaces and solids. Comput.-aid. Des. 38, 4 (2006),
342–366.

Damien Rioux-Lavoie, Ryusuke Sugimoto, Tümay Özdemir, Naoharu H. Shimada,
Christopher Batty, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2022. A
Monte Carlo method for fluid simulation. ACM Trans. Graph. 41, 6 (2022),
1–16.

Steven J. Ruuth and Barry Merriman. 2008. A simple embedding method for solving
partial differential equations on surfaces. J. Comput. Phys. 227, 3 (2008), 1943–
1961.

Rohan Sawhney. 2022. FCPW: Fastest Closest Points in the West. Retrieved from https:
//github.com/rohan-sawhney/fcpw

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo geometry processing: A grid-
free approach to PDE-based methods on volumetric domains. ACM Trans. Graph.
39, 4 (2020), 123: 1–123: 18.

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-free
Monte Carlo for PDEs with spatially varying coefficients. ACM Trans. Graph. 41,
4 (2022), 1–17.

Robert Saye. 2014. High-order methods for computing distances to implicitly defined
surfaces. Commun. Appl. Math. Computat. Sci. 9, 1 (2014), 107–141.

Teseo Schneider, Yixin Hu, Jérémie Dumas, Xifeng Gao, Daniele Panozzo, and De-
nis Zorin. 2018. Decoupling simulation accuracy from mesh quality. ACM Trans.
Graph. 37, 6 (2018).

Peter Schwartz, Michael Barad, Phillip Colella, and Terry Ligocki. 2006. A Cartesian
grid embedded boundary method for the heat equation and Poisson’s equation in
three dimensions. J. Comput. Phys. 211, 2 (2006), 531–550.

Nicholas Sharp, et al. 2019b. Polyscope. https://polyscope.run/
Nicholas Sharp and Keenan Crane. 2020. You can find geodesic paths in triangle

meshes by just flipping edges. ACM Trans. Graph. 39, 6 (2020), 1–15.
Nicholas Sharp, Keenan Crane, et al. 2019a. Geometry Central. Retrieved from www.

geometry-central.net
Nicholas Sharp and Alec Jacobson. 2022. Spelunking the deep: Guaranteed queries

on general neural implicit surfaces via range analysis. ACM Trans. Graph. 41, 4,
Article 107 (July 2022), 16 pages. DOI:https://doi.org/10.1145/3528223.3530155

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019c. The vector heat method.
ACM Trans. Graph. 38, 3 (2019), 1–19.

Yonggang Shi, Jonathan H. Morra, Paul M. Thompson, and Arthur W. Toga. 2009.
Inverse-consistent surface mapping with Laplace-Beltrami eigen-features. In

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

http://eigen.tuxfamily.org
https://libigl.github.io/
https://virtualmathmuseum.org
https://lbfgspp.statr.me/
https://github.com/rohan-sawhney/fcpw
https://polyscope.run/
www.geometry-central.net
https://doi.org/10.1145/3528223.3530155

159:26 • N. King et al.

International Conference on Information Processing in Medical Imaging. Springer,
467–478.

Yonggang Shi, Paul M. Thompson, Ivo Dinov, Stanley Osher, and Arthur W. Toga.
2007. Direct cortical mapping via solving partial differential equations on implicit
surfaces. Med. Image Anal. 11, 3 (2007), 207–223.

John Strain. 1999. Fast tree-based redistancing for level set computations. J. Comput.
Phys. 152, 2 (1999), 664–686.

Ryusuke Sugimoto, Terry Chen, Yiti Jiang, Christopher Batty, and Toshiya Hachisuka.
2023. A practical walk-on-boundary method for boundary value problems. ACM
Trans. Graph. 42, 4 (July 2023). DOI:https://doi.org/10.1145/3592109

The Stanford 3D Scanning Repository. 2024. Lucy and XYZ RGB Dragon. Retrieved
from https://animium.com/2013/11/lucy-angel-3d-model

Li Tian, Colin B. Macdonald, and Steven J. Ruuth. 2009. Segmentation on surfaces
with the closest point method. In 16th IEEE International Conference on Image
Processing (ICIP’09). IEEE, 3009–3012.

Greg Turk. 1991. Generating textures on arbitrary surfaces using reaction-diffusion.
ACM SIGGRAPH Comput. Graph. 25, 4 (1991), 289–298.

Greg Turk. 2001. Texture synthesis on surfaces. In 28th Annual Conference on Com-
puter Graphics and Interactive Techniques. 347–354.

Hui Wang, Yongxu Jin, Anqi Luo, Xubo Yang, and Bo Zhu. 2020. Codimensional sur-
face tension flow using moving-least-squares particles. ACM Trans. Graph. 39, 4
(2020), 42–1.

Li-Yi Wei and Marc Levoy. 2001. Texture synthesis over arbitrary manifold surfaces.
In 28th Annual Conference on Computer Graphics and Interactive Techniques. 355–
360.

Junxiang Yang, Yibao Li, and Junseok Kim. 2020. A practical finite difference scheme

for the Navier–Stokes equation on curved surfaces in R3. J. Comput. Phys. 411
(2020), 109403.

Zhang Yingjie and Ge Liling. 2011. Improved moving least squares algorithm for di-
rected projecting onto point clouds. Measurement 44, 10 (2011), 2008–2019.

Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2006. Vector field design on
surfaces. ACM Trans. Graph. 25, 4 (2006), 1294–1326.

Received 4 May 2023; revised 31 May 2024; accepted 3 June 2024

ACM Trans. Graph., Vol. 43, No. 5, Article 159. Publication date: August 2024.

https://doi.org/10.1145/3592109
https://animium.com/2013/11/lucy-angel-3d-model

