
Supplemental: A Multi-Scale Model for Coupling Strands with
Shear-Dependent Liquid

YUN (RAYMOND) FEI, Columbia University, USA

CHRISTOPHER BATTY, University of Waterloo, Canada

EITAN GRINSPUN and CHANGXI ZHENG, Columbia University, USA

This document presents supplemental material including an intro-
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second-order Coulomb cone, the analytic form of Herschel-Bulkley
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in discrete elastic rods, and the derivation of the Jacobian of shear
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S1 SHEAR-DEPENDENT LIQUID

In this section, we introduce background knowledge on shear-
dependent liquid, which forms the basis of the simulation of the
bulk liquid, the surface flow, their coupling, and the cohesion be-
tween strands. Below we summarize the theory behind our shear-
dependent liquid, namely, the J2 liquid theory developed by Simo
et al. [Simo 1988a]. Due to its simplicity and accuracy, this model is
extensively used in prior work on simulating foams [Yue et al. 2015]
and grains [Yue et al. 2018], and is employed as the constitutive
model in this work.

The deformation gradient of a shear-dependent liquid is a second-
order tensor defined over the liquid domain Ω, denoted as F =
∂Ψ
∂x : Ω → Rd×d , where Ψ is the deformation and d is the number

Authors’ addresses: Yun (Raymond) Fei, Columbia University, Computer Science, New
York, NY, 10027, USA; Christopher Batty, University of Waterloo, Computer Science,
Waterloo, ON, N2L 3G1, Canada; Eitan Grinspun; Changxi Zheng, Columbia University,
Computer Science, New York, NY, 10027, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/11-ART1 $15.00
https://doi.org/10.1145/3355089.3356532

of dimensions, i.e., d = 2 for 2D and d = 3 for 3D. Some shear-
dependent liquids are compressible, and thus we need to consider
their volume change, denoted as J ≡ detF, and we have [Bonet and
Wood 1997]

ρf = J−1ρf,0 (S1)
where ρf is the liquid’s (dynamic) mass density and ρf,0 is the mass
density at rest.
It is convenient to decompose the deformation gradient F into

parts associated to the elastic FE and plastic FP deformation via the
decomposition [Bargteil et al. 2007; Irving et al. 2004; Jones et al.
2014; Simo and Hughes 2006; Wicke et al. 2010]

F = FEFP . (S2)

According to experimental observations [Bridgman 1949a,b], vol-
ume change is often reversible even when the liquid is under pres-
sure up to 3 × 1010dyne/cm2. In other words, the plastic deforma-
tion is usually volume preserving (or isochoric), i.e., JP = detFP = 1
and JE = detFE = J . Below we ignore the difference between J and
JE , and only deal with the volume change due to elastic deformation.
The elastic energy depends on the rotation-free left Cauchy-Green

tensor b ≡ FFT and, especially, its elastic part bE ≡ FEFET . The
total energy density is then decomposed into

W =Wv(J ) +Ws(bE ) (S3)

whereWv is the energy density resisting any volumetric change, and
Ws is the shear-dependent energy density. Similar to prior work [Yue
et al. 2015], we adopt a modified neo-Hookean model [Simo 1988a]
and Rivlin’s shear-dependent energy density [Rivlin 1948] forWv
andWs, respectively. We have the following constitutive formulas

Wv(J ) =
1
2
κ

(
1
2
(J2 − 1) − lnJ

)
, (S4)

and

Ws(bE ) =
1
2
µ

(
JE
− 2
d trbE − d

)
. (S5)

where κ and µ are the bulk modulus and the shear modulus.

The Kirchhoff Stress. After the energy densities are defined, the
Kirchhoff stress tensor τ ∈ Rd×d can be derived, as

τ ≡
∂W

∂FE
FE

T
=

κ

2
(J2 − 1)Id + µJE

− 2
d dev[bE ], (S6)

where Id ∈ Rd×d is the d-dimension identity matrix, dev[x] ≡
x − tr [x ]

d Id is the deviatoric operator. In (S6), the first part is known
as the dilational Kirchhoff stress, while the second part is the shear
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Kirchhoff stress. The Cauchy stress tensor is then computed with
σ ≡ τ/J , which exactly matches (14) in the 3D case.

Pressure. We first compute the dilational Cauchy stress (which
equals to the dilational Kirchhoff stress divided by J ), following [Bonet
and Wood 1997]:

σv =
1
J

∂Wv
∂FE

FE
T
=

1
J

∂Wv
∂JE
∂JE

∂FE
FE

T

=
1
J

∂Wv
∂JE

JEFE
−T

FE
T
=

1
J

∂Wv
∂JE

JE Id

=
∂Wv
∂JE

Id .

(S7)

The negative value of this scalar applied on the d-dimensional iden-
tity matrix Id is then defined as the pressure [Stomakhin et al. 2014],
i.e.,

p ≡ −
∂Wv
∂JE
. (S8)

Shear Kirchhoff Stress. The shear Kirchhoff stress is defined as the
deviatoric part of τ . Since (S6) only contains diagonal terms in its
first part, the shear Kirchhoff stress is equivalent to the second part
of (S6), where

s ≡ dev[τ ] = µJE
−2/ddev[bE ]. (S9)

Its scalar magnitude is
s = ∥s∥ (S10)

where ∥ · ∥ is the Frobenius norm. We will also make use of the
normalized deviatoric stress tensor defined as ŝ ≡ s/s .

Plasticity. Once the shear stress is larger than some threshold,
the liquid will yield to the shear stress and its elastic deformation
will irreversibly convert into plastic deformation, i.e., there will be
a plastic flow. In this work, we adopt the simple and efficient von
Mises yield condition [Mises 1913] as the threshold for the onset of a
plastic flow. This condition is written in the terms of the material-
dependent yield stress τY , as

Φ(s) = s −

√
2
3
τY ≤ 0. (S11)

For simplicity, we neglect any hardening or softening effects since
they are not observable for the materials used in this work [Coussot
2017; Weaire and Hutzler 2001].

When the yield condition is violated, we compute the plastic flow
according to the yield excess Φ(s) to estimate the excessive elastic
strain that becomes the plastic strain. The temporal derivative of
bE is given as [Simo 1988a,b]

dbE

dt
= ∇ufb

E + bE∇uTf −
2
d
tr[bE ]γ (s)ŝ (S12)

where uf ∈ Rd×1 is the liquid velocity. The first two terms capture
the change due to the flow field itself, while the last term captures
the change due to plastic flow with flow rate denoted as γ (with
physical unit s−1).

In this work, we adopt the Herschel-Bulkley model [Herschel
and Bulkley 1926] since it has been validated for a wide range of
materials. The flow rate formula for γ is therefore

γ (s) = max
(
0,
Φ(s)

η

)1/n
, (S13)

where η is the flow consistency index with physical unit Ba · sn (or
Pa · sn in SI units), and n is the unitless flow behavior index. The
liquid is pseudoplastic (shear-thinning) when n < 1, Newtonian
when n = 1, and dilatant (shear-thickening) when n > 1.

The flow consistency index η indicates how slow the liquid would
“forget” its elastic deformation. Liquid with a smaller η would be-
come free from the elastic deformation more quickly. In the limit of
η → 0, any elastic deformation would immediately become plastic
(Bingham plastics). If the yield stress is also zero, the liquid then
becomes inviscid.

Remark: connection with a Newtonian liquid. By definition, a New-
tonian liquid has a negligible elastic strain. We then rewrite the
elastic Cauchy-Green strain as bE = Id + ϵ dbE

dt where ϵ ≪ 1 is a
tiny positive perturbation variable. We also have τY = 0 and n = 1.
(S12) then becomes

ϵ
d2bE

dt2 = ∇uf

(
Id + ϵ

dbE

dt

)
+

(
Id + ϵ

dbE

dt

)
∇uTf

− 2
(
1 +

ϵ

d
tr

[
dbE

dt

] )
sη−1

(S14)

After some algebraic manipulation, we have a shear stress s equiv-
alent to the viscous tensor for the Newtonian fluid, which proves
that the flow consistency index plays the same role as the viscosity
coefficient in a Newtonian liquid

s =
η

2

(
∇uf + ∇u

T
f

)
+ O(ϵ). (S15)

Hence, as τY = 0 and n = 1, the model presented in this section
degenerates to the viscous Newtonian fluid model.

S2 DERIVATION OF THE 1D SURFACE FLOW

In §3.1 of the main paper, we have taken the plane-strain conditions,
where we can safely ignore the velocity in the angular direction
around the strand. Thus we can derive a 1D surface flow model
from the 2D theory of shear-dependent liquid introduced in §S1.
For legibility in the following discussion we use the label of the axis
to represent the corresponding row or column in the subscript of a
strain or stress tensor, i.e., x for the first row or column, y for the
second row or column.

Parameter Scaling. We denote the height of the flow as h, and we
have the velocity in the y-axis, i.e., radial axis, denoted as v = ∂h

∂y .
The velocity of the 2D flow is then denoted as uf ≡ (uτ ,v). From
our assumptions (see §3.1), the surface flow is thin in height, where
we can define a scaling parameter 0 < ϵ ≡ r

L ≪ 1, and we define

h ≡ ϵH ,y ≡ ϵY ,v ≡ ϵV ,bExy ≡ ϵB
E
xy . (S16)

Additionally, we deduce that ∂/∂y = ϵ−1∂/∂Y .
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To expand a scalar to a matrix, we adopt the notation below:

[∗]e ≡ [∗, 0; 0, 0] ∈ R2×2, [∗]s ≡ [0, ∗; ∗, 0] ∈ R2×2. (S17)

Reduced Cauchy-Green Strain. The 2D left Cauchy-Green elastic
strain tensor bE can then be written as

bE = [cEτ ]e + b
E
yy I2 + ϵ[B

E
xy ]s (S18)

where cEτ ≡ bExx − bEyy is called the reduced left Cauchy-Green strain.
In the following derivation, we will discover its temporal derivative,
which is used to evolve the liquid’s elastic and plastic deformation,
and the momentum equation, which uses cτ to compute shear stress.
By applying the deviatoric operator to both sides of (S18), we

have
dev[bE ] = dev[[cEτ ]e] + ϵ[B

E
xy ]s (S19)

and according to the definition of shear stress (refer to §S1), we can
rewrite the norm of shear stress as

sτ = µJE
−1
∥dev[bE ]∥ = µJE

−1
√

1
2

(
cEτ

)2
+ 2ϵ2BExy

2
. (S20)

The derivative of cEτ is then computed as

ÛcEτ = Ûb
E
xx −

ÛbEyy (S21)

= 2
©«
∂uτ
∂x
−

√
2cEτ γ (sτ )√

cEτ
2
+ 4ϵ2BExy

2

ª®®¬
(
cEτ + b

E
yy

)
(S22)

+ 2
(
∂uτ
∂y
−
∂v

∂x

)
ϵBExy − 2

∂v

∂y
bEyy . (S23)

From assumption (1) in §3.1, we only consider the average longitu-
dinal velocity uτ across its depth, i.e., ∂uτ /∂y = 0. With the scaling
proposed in (S16), we can approximate ÛcEτ by neglecting the terms
multiplied with ϵ2, as follows:

ÛcEτ = 2
(
∂uτ
∂x
−
√

2γ (s)sgn(cEτ )
) (

cEτ + b
E
yy

)
− 2
∂v

∂y
bEyy + O(ϵ

2)

(S24)
We then use the incompressibility condition proposed in assumption
(2) in §3.1,

∂uτ
∂x
+
∂v

∂y
= 0, det[bE ] = 1, (S25)

to eliminate v and bEyy . For the latter we have

det[bE ] = bEyy
2
+ cEτ b

E
yy + O(ϵ

2) = 1. (S26)

Since bEyy ≥ 0, we then have

bEyy =

√
cEτ

2
+ 4 − O(ϵ2) − cEτ

2
(S27)

By substitution of (S25), (S27) into (S24), and with the ϵ2 terms
neglected, we have the temporal derivative of cEτ in the same form
as (3).

Similar to the case in the 3D model (§S1), as τY = 0 and n = 1, the
magnitude of shear stress sτ is proportional to the viscosity η and
the reduced elastic strain cEτ , i.e., sτ =

√
2ηcEτ , which indicates that

the reduced model degenerates to a (reduced) viscous Newtonian
fluid model.

Shear Stress. After performing a decomposition to the 2D devia-
toric Kirchhoff stress dev[τ ], we have

dev[τ ] = dev[[τxx − τyy ]e] + [τxy ]s. (S28)

From (S6) we then have

dev[τ ] = µdev[[cEτ ]e] + µϵ[B
E
xy ]s ≈ µdev[[cEτ ]e]. (S29)

The 2D Cauchy stress tensor is therefore computed as (using the
incompressibility assumption J = 1)

σ2D = µdev[[cEτ ]e] − pI2. (S30)

Since our flow is symmetric around the strand centerline, with the
plane strain conditions the 3D stress tensor σ can be specified with
this 2D stress tensor, where we have

σ = [σ2D ,xx ,σ2D ,xy , 0;σ2D ,xy ,σ2D ,yy , 0; 0, 0, (σ2D ,xx+σ2D ,yy )/2r ].
(S31)

which will be used in the following derivation for a 1D reduced
momentum equation.

x

y

θ

Γα

fextVariational form of the Momentum Equa-
tion. In the following we derive the 1D
reduced momentum equation from the
3D Navier-Stokes momentum equation,
which reads

ρf
Duf
Dt
− ∇ · σ = fext + fΛ (S32)

where fΛ is the frictional force on the bottom of the flow; fext
is the external body force such as gravity and inertial force; and
σ is the Cauchy stress tensor. We denote the interface between
the reduced surface flow and the strand as Γ, and define a trial
function Φ ≡ (Φx ,Φy ,Φθ ) that is a vector defined in the cylindrical
coordinate whose x-axis is aligned with the longitudinal direction
of the strand. The weak formulation of (S32) can be written as∫ 2π

0

∫ r+hτ

r

∫
Γ

[
ρf

(
∂uf
∂t
+uf · ∇uf

)
· Φ + σ : D(Φ)

]
ydxdydθ

+

∫ 2π

0

∫
Γ
σyyΦyrdxdydθ =

∫ 2π

0

∫ r+hτ

r

∫
Γ
(fΛ + fext) · Φydxdydθ

(S33)

where σyy is the pressure applied to the flow by the strand surface Γ,
D is the rate of deformation tensor, i.e., D(Φ) ≡ (1/2)

(
∇Φ + ∇TΦ

)
.

In the following derivation we will use two deductions based on the
assumptions made in §3.1: 1) due to the symmetry of the flow, we
have uf = (uτ ,v, 0); and 2) due to the incompressibility of the flow,
we have

∂uτ
∂x
+
∂v

∂y
= 0. (S34)

Integrating the above equation over the y-axis from Γ to the free
surface, and using the fact thatv |Γ = 0, i.e., the flow cannot penetrate
the strand surface, we have

v = −y
∂uτ
∂x
. (S35)
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Pressure of the Reduced Surface Flow. To derive the pressure σyy ,
we first choose a trial function by setting Φx = 0 and Φθ = 0, i.e.,
only allowing Φy , 0. With (S29), (S30), and (S31) substituted into
(S33), and with the variables replaced with our scaled ones proposed
in (S16), we have

ϵ3
∫ 2π

0

∫ r+ϵH

r

∫
Γ

[
−H3Y 3ρf

(
∂2uτ
∂t∂x

+uτ
∂2uτ
∂x2 −

(
∂uτ
∂x

)2
)
Φy

+µH2Y 2BExy
∂Φy

∂x

]
dxdYdθ + ϵ

∫ 2π

0

∫
Γ
σyyΦyrHdxdYdθ

= ϵ2
∫ 2π

0

∫ r+hτ

r

∫
Γ
∥ fext∥sinαcosθH2YdxdYdθ

(S36)

where α is the angle between the direction (in Euclidian space) of
x-axis of the cylindrical coordinate and the direction of external
force projected onto the xy-plane.
The right-hand side of (S36) is zero since the external force per-

pendicular to the strand cancels after being integrated over dθ . By
dividing both sides by ϵ and discarding the remaining high-order
terms multiplied with ϵ2, we have∫ 2π

0

∫
Γ
σyyΦyrHdxdYdθ = 0, (S37)

for arbitrary Φy , which simply indicates

σyy = 0. (S38)

Momentum Equation of Reduced Surface Flow. To derive the re-
duced momentum equation about uτ , we choose another trial func-
tion by setting Φ = (Φx ,−y ∂Φx

∂x , 0) — the middle term is set accord-
ing to (S35). After the variables in (S33) are replaced with our scaled
ones, and (S38) is used, we have

ϵ2
∫ 2π

0

∫ r+ϵH

r

∫
Γ
H2Y

[
ρf

(
∂uτ
∂t
+ uτ

∂uτ
∂x

)
Φx + µc

E
τ
∂Φx
∂x

]
+

ϵ4
∫ 2π

0

∫ r+ϵH

r

∫
Γ

[
H4Y 4ρf

(
∂2uτ
∂t∂x

+uτ
∂2uτ
∂x2 −

(
∂uτ
∂x

)2
)
∂Φx
∂x

+µH3Y 3BExy
∂2Φx
∂x2

]
dxdYdθ = ϵ2

∫ 2π

0

∫ r+ϵH

r

∫
Γ
H2Y[

(∥ fext∥cosα + fΛ)Φx − ϵ ∥ fext∥sinαcosθHY
∂Φx
∂x

]
dxdYdθ

(S39)

where fΛ is the magnitude of frictional force. The last term on the
right hand side of (S39) is again an external force perpendicular
to the strand, which will be canceled after being integrated over
dθ . We then divide both sides with ϵ2 and discard the remaining
high-order terms containing ϵ2, which gives us∫ 2π

0

∫ r+ϵH

r

∫
Γ

[
ρf

(
∂uτ
∂t
+ uτ

∂uτ
∂x

)
Φx + µc

E
τ
∂Φx
∂x

]
H2YdxdYdθ

=

∫ 2π

0

∫ r+ϵH

r

∫
Γ
(∥ fext∥cosα + fΛ)ΦxH

2YdxdYdθ .

(S40)

Furthermore, the term
∫ 2π
0

∫ r+ϵH
r H2YdYdθ = πhτ (hτ + 2r ) is

the cross-sectional area of the flow, and can be integrated individually
since the other terms are independent of Y and θ . After reordering
the multiple integrations in (S40), we have∫
Γ

[
ρf

(
∂uτ
∂t
+ uτ

∂uτ
∂x

)
Φx + µc

E
τ
∂Φx
∂x

] ∫ 2π

0

∫ r+ϵH

r
H2YdYdθdx

=

∫
Γ
(∥ fext∥cosα + fΛ)Φx

∫ 2π

0

∫ r+ϵH

r
H2YdYdθdx .

(S41)

For brevity, we denote the cross section as Aτ below. We then
replace the variables in (S41) with the non-scaled version, which
reads ∫

Γ
ρfAτ

(
∂uτ
∂t
+ uτ

∂uτ
∂x

)
Φx + µAτ c

E
τ
∂Φx
∂x

=

∫
Γ
Aτ (∥ fext∥cosα + fΛ)Φxdx,

(S42)

for arbitrary Φx . The corresponding momentum equation is then

ρfAτ

(
∂uτ
∂t
+ uτ

∂uτ
∂x

)
− µ
∂Aτ c

E
τ

∂x
= Aτ

(
fext,x + fΛ

)
, (S43)

where fext,x ≡ ∥ fext∥cosα . Substituting fΛ with the friction model
proposed in section 3.1, we have exactly the form of (2).

S3 DERIVATIVES OF VOLUME FRACTION

We begin our derivation from (10). By taking its spatial derivative,
we have (with the location parameter x dropped for brevity)

∇ϵs =
∂ϵs
∂x
=

∑
i Vi∇wR,i

V ∗
. (S44)

Similarly we take the divergence of (11), where we have

∇ · (ϵsūs) =

∑
i Vi∇ · (us,iwR,i )

V ∗
. (S45)

Since we have assumed that each rod element is incompressible, we
have ∇ · us,i = 0, and thus the equation above can be rewritten as

∇ · (ϵsūs) =

∑
i Vius,i · ∇wR,i

V ∗
. (S46)

In mixture theory [Anderson and Jackson 1967], the continuity
equation for a solid with constant mass density reads

∂ϵs
∂t
+ ∇ · (ϵsūs) = 0. (S47)

Using (S47), the material derivative of the solid volume fraction ϵs
advected along with liquid velocity uf is then derived as follows:

Dufϵs
Dt

≡
∂ϵs
∂t
+uf · ∇ϵs (S48)

= uf · ∇ϵs − ∇ · (ϵsūs). (S49)

By replacing the terms defined in (S44) and (S46), we have
Dufϵs
Dt

= uf ·

∑
i Vi∇wR,i

V ∗
−

∑
i Vius,i · ∇wR,i

V ∗
(S50)

=

∑
i Vi (uf −us,i ) · ∇wR,i

V ∗
. (S51)

which matches (12).
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S4 RELATIONSHIP WITH INCOMPRESSIBLE MIXTURES

The derivation in this section is not limited to a specific constitu-
tive model. For an arbitrary non-zero dilational potential energy
whose second-order derivative is denoted as κд(JE ) below, we may
rewrite (18a) into the following form:

Dufp

Dt
= −κд(JE )

(
ϵ−1
f

Dufϵf
Dt
+ ∇ · uf −

1
JP

Duf J
P

Dt

)
. (S52)

For an incompressible mixture we have the liquid material stiffness
κ → ∞ and JP = 1. By dividing both sides by κ and taking the
infinite limit of κ, we have

limκ→∞

(
κ−1 Dufp

Dt

)
= 0 = −д(JE )

(
ϵ−1
f

Dufϵf
Dt
+ ∇ · uf

)
(S53)

or simply (since д is non-zero)

Dufϵf
Dt
+ ϵf∇ · uf = 0, (S54)

which can be rewritten by expanding thematerial derivativeDufϵf/Dt ,
as

∂ϵf
∂t
+ ∇ · (ϵfuf) = 0. (S55)

This is exactly the continuity equation for liquid in a mixture with
constant mass density (see e.g., [Anderson and Jackson 1967]). After
(S47) is added with (S55), we obtain the equation for incompressible
mixtures that is used in prior work [Fei et al. 2018; Gao et al. 2018]:

∇ · (ϵfuf + ϵsus) = 0. (S56)

S5 EQUIVALENCE OF THE ADDITIONAL INERTIA TO
THE PRIOR WORK

In this section we prove that the momentum transfer proposed
by Fei et al. [2017] is equivalent to the (rightmost) additional inertia
term in (9), when both are integrated explicitly. We begin from the
momentum transfer equation. With our notations, it reads

∂

∂t
(usAτ ) +

∂

∂x
(usAτuτ ) = 0, (S57)

which can be re-written through the product rule, as

Aτ

(
∂us
∂t
+ uτ

∂us
∂x

)
+us

(
∂Aτ
∂t
+
∂

∂x
(Aτuτ )

)
= 0. (S58)

According to the mass conservation (7) of the surface flow, the
second term multiplied on us is zero, i.e.,

∂Aτ
∂t
+
∂

∂x
(Aτuτ ) = 0 (S59)

Therefore, as long as the strand is wet, i.e., Aτ > 0, we have

∂us
∂t
= −uτ∇us. (S60)

Fei et al. [2017] firstly solve the momentum transfer (S57), which,
according to the derivation above, is equivalent to solving (S60).
With an explicit integration of (S60), we have

ũs ← ûs − huτ∇us, (S61)

where ûs and ũs denote the strands’ velocities before and after the
momentum transfer is done. Fei et al. [2017] thenmodify the strands’
velocity, as

us ← (ms +mτ )
−1(msûs +mτ ũs), (S62)

wherems andmτ are the rod and surface flow mass, respectively.
By substituting (S61) into (S62) and rearranging the terms, we have

(ms +mτ )us = (ms +mτ )ûs − hmτuτ∇us, (S63)

which is exactly the explicit discretization of the strands’ momentum
equation (9) with all the other forces on its right hand side integrated
into ûs.

S6 DRAG COEFFICIENT

The drag coefficient for rod element i has the following form [Rajitha
et al. 2006]:

Cd,i = Cd0,i +
Ac,i
A⊥,i

Cd∞(Cd0,i )
2βk

[
6Xb

6Xb +Cd0,i

]β
+Cd∞

[
6Xb

6Xb + 128Cd0,i

]
,

(S64)

where Ac,i is the surface area of the i-th element, A⊥,i is the area
of the i-th discrete element projected in the direction of relative
velocity, and

Cd0,i ≡
24X
Rep,i

, (S65a)

Cd∞ ≡ 0.44, (S65b)

α ≡
3

n2 + n + 1
, (S65c)

X ≡ 6(n−1)/2αn+1, (S65d)
b ≡ exp [3(α − ln6)] , (S65e)

k ≡
3 − α

6α
exp

(
3 − α

2α
ln3

)
, (S65f)

β ≡
11
48
√

6

[
1 − exp

[(
3 − α

2α

)2
ln

(√
6 − 1
√

6

)] ]
. (S65g)

where Rep,i is the particle Reynolds number (see below) of the i-th
element, and n is the flow behavior index.

The particle Reynolds number for Herschel-Bulkley liquid. The drag
coefficient proposed in (S64) was originally developed for power-
law fluids. Nevertheless, Atapattu et al. [1995] showed that a drag
coefficient for a power-law fluid can also be generalized to Herschel-
Bulkley liquid by adopting a modified particle Reynolds number.
Using the von Mises yield condition (S11), the particle Reynolds
number for the i-th rod element reads [Atapattu et al. 1995; Di Felice
1994]:

Rep,i ≡
ϵfρfd

n
p,i ∥uf −us,i ∥

2

η∥uf −us,i ∥n +
√

2
3τYd

n
p,i

(S66)

where dp,i is the diameter of a circle that has area equivalent to
A⊥,i , i.e., dp,i = 2

√
A⊥,i/π .

We plot the drag coefficient over its different parameters in Fig. S1,
where we can observe that the drag coefficient increases over the
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Fig. S1. Drag coefficient over its different parameters.Data is acquired
through varying one parameter and fixing the others with the parameters
of shaving cream.

flow consistency index (or viscosity) η, the yield stress τY , the flow
behavior index n, and decreases over the relative velocity between
liquid and strand element.

Degeneration to a Drag Coefficient in Newtonian liquid. In a New-
tonian liquid, the flow behavior index n = 1. Then in the equations
above, X = 1, α = 1, and k = 1, where (S64) is precisely consis-
tent with the drag coefficient for irregular particles in Newtonian
liquid [Mauret and Renaud 1997].

Sanity Check through Dimensional Analysis. Dimensional analysis
provides a useful sanity check. As mentioned in §S1, the flow con-
sistency index has physical units of Ba · sn , and the yield condition
τY has physical units of pressure (Ba). The divisor in (S66) then has
physical units Ba ·cmn , or g ·cmn−1 ·s−2, which exactly cancels with
the physical units of the dividend. Hence Rep is indeed a unitless
number. Obviously all the parameters in (S65) are unitless, thence
Cd is unitless. Furthermore, χ defined in (20) is unitless. Therefore
fdrag,s has physical units of g · cm · s−2, or a dyne, which is precisely
the units of a force. In (21), the weighted sum also has units of a
force. With the divisor V ∗ applied, fdrag,f has the units of a force
density, which matches exactly the units of both sides of (13).

S7 COMPLEMENTARITY FORMULATION OF THE
SOCCP

After adopting the change of variables proposed by De Saxcé and
Feng [1998] and Daviet et al. [2011], we have the following comple-
mentarity formulation of a self-dual cone K ≡ Kµ=1:

K ∋ v̂ ⊥ r̂ ∈ K (S67)

where
r̂ ≡ [µrs,N;rs,T], v̂ ≡ms[ṽN; µṽT], (S68)

and
ṽ ≡ v + µ∥vT∥n. (S69)

In (S68), the massms = (ms ,1 +ms ,2)/2 is the averaged mass of the
elements in contact, which scales the velocity so thatmsv̂ has the
same physical units as r̂ .
Then solving for r̂ in (S67) can be converted into a root-finding

problem [Daviet et al. 2011; Fukushima et al. 2002]

K ∋ x ⊥ y ∈ K⇔ fMFB(x,y) = 0 (S70)

where
fMFB(x,y) ≡ x ◦y − (x ◦ x +y ◦y)

1
2 (S71)

is known as the modified Fischer-Burmeister (MFB) function, and
the operator ◦ is the Jordan product defined as

x ◦y ≡ [x · y;xNyT + yNxT]. (S72)

S8 THE COHESIVE FORCE

In this work, the capillary part of the cohesive force follows Fei
et al. [2017], which gives it as the negative gradient of the capillary
potential. With our notations, it reads

fN(д) =

∫
Ψ

d
dд

dEs(s), (S73)

where Ψ is the domain (in length) over which the surface flows
on two rod elements are in contact. The cross-sectional surface
potential is expressed as

dEs(s) = σ [lA(s) + cosθ1lS1(s) + cosθ2lS2(s)] ds (S74)

where lA is the length of the liquid-air interface given by

lA(s) = R(s)[π − (θ1 + θ2 + α1(s) + α2(s))]. (S75)

Here, lS1 and lS2 are the arc lengths of the two rod-air boundaries
with θ1 and θ2 as their contact angles, which are given as

lSi(s) = 2ri (π − αi (s)), i = 1, 2. (S76)

In the equations above, R(s) is the radius of the circle corresponding
to the liquid surface arcs, and α1(s), α2(s) are the angles between
the normal direction and the liquid-rod contact point. They are
governed by these two implicit functions:

д =R
∑
i=1,2

cos(θi + αi ) +
∑
i=1,2

ri cosαi , (S77a)

AL = − πR
2 +

∑
i=1,2

[
1
2
r2
i sin2αi + 2riRsinαi cos(θi + αi )

]
,

+
∑
i=1,2

[
R2(θi + αi +

1
2
sin(2θi + 2αi )) − αir2

i

]
.

(S77b)

S9 DERIVATION OF THE ANALYTIC FORM OF PLASTIC
FLOW

The formulation of the temporal derivative of the left Cauchy-Green
strain is given in (S12), whichwe use to evolve the left Cauchy-Green
strain. This temporal derivative contains both the change through an
elastic deformation and a plastic flow. Before solving the plastic flow,
we have integrated the elastic deformation through b̄E ,∗ = f̄ b̄E f̄T ,
where a bar is used to denote volume-preserving variables, e.g., b̄E is
the volume-preserving left Cauchy-Green strain, and f̄ is the volume-
preserving increment of the deformation gradient. Here, we only
need to consider the change through a plastic flow in db̄E/dt , which
is denoted db̄E ,∗/dt and is formulated as

db̄E ,∗

dt
= −

2
3
tr(b̄E ,∗)γ (s∗)ŝ∗. (S78)

where s∗ ≡ ∥s∗∥ and s∗ ≡ µdevb̄E ,∗ is the shear stress after the
elastic deformation has been integrated. We further define the nor-
malized shear stress ŝ∗ ≡ s∗/s∗.
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With some algebraic manipulations, we can rewrite b̄E ,∗ from
the definition of ŝ∗, as

b̄E ,∗ =
s∗

µ
ŝ∗ +

1
3
tr(b̄E ,∗)I3 (S79)

Taking the temperal derivative of both sides, we have

db̄E ,∗

dt
= µ−1

(
ds∗

dt
ŝ∗ + s∗

dŝ∗

dt

)
+

1
3
tr

(
db̄E ,∗

dt

)
I3 (S80)

Since ŝ∗ is deviatoric, tr(ŝ∗) = 0, we then have

tr
(
db̄E ,∗

dt

)
= 0. (S81)

Furthermore, during plastic flow the shear stress s∗ can change
in magnitude but not in direction due to the principle of maximum
plastic dissipation [Simo 1988a], i.e.,

dŝ∗

dt
= 0. (S82)

Therefore, we have

db̄E ,∗

dt
= µ−1 ds

dt
ŝ∗. (S83)

In other words, the temporal derivative of bE ,∗ can be computed
directly from the temporal derivative of the magnitude of the shear
stress s during plastic flow.
Comparing (S83) with (S78), we discover that

ds∗

dt
= −2µ̂γ (s∗), (S84)

where µ̂ ≡ µ
3 trb̄

E ,∗. Assuming Φ(s) in (S13) will not change its sign
during one time step, we then integrate s∗ from time step t to t + 1
through (S84) analytically, which gives us the form of (37).

S10 GRADIENT AND HESSIANS OF THE DISCRETE
CURVATURES IN DISCRETE ELASTIC RODS

In this section, we derive the gradient and Hessians of the discrete
curvature used in discrete elastic rod (DER). Although very lengthy,
the Hessian is necessary when one implicitly integrates the bending
force of DERs.

Motivation. In the literature, there are multiple models for DERs.
The discrete curvatures (§S10.3) is initially defined in the original
work of Bergou et al. [2008]. In a following work, Bergou et al. [2010]
replaced these definition by projecting the curvature vector κb
to the neighbor material vectorsmi−1 andmi and combining the
results. Although this latter form is simpler than their previous form
proposed in 2008, i.e., the four terms used in their prior formulation
of curvature [Bergou et al. 2008] are reduced to two terms, it is
problematic — mathematically, it is meaningless to combine the
κb projected into different frames. Hence, in this paper, we still
follow the original definition of discrete curvatures [Bergou et al.
2008], but replaced its space-parallel transport with a time-parallel
transport when computing the reference vector. This formulation
of DER is the same as the one taken by Kaldor et al. [2010]. Jawed
et al. [2018] has presented a detailed derivation of the gradient and
Hessian using the formulation in Bergou’s later work [2010]. To

help the potential readers to understand our implementation, we
present a detailed derivation of the gradient and the Hessians of the
discrete curvatures based on the correct formulation used by Kaldor
et al. [2010], which has not been published anywhere else yet.

xi −1

xi

xi +1

t i −1

m i −1
2

m i −1
1

t i

m i
2

m i
1

bi

2atan(κ/2)

Fig. S2. Discrete elastic rods, adapted from the book by Jawed et al. [2018].

S10.1 Integrated Curvature Vector

We adopt the notations used in the book by Jawed et al. [2018]. The
derivation begins with the definition of the integrated curvature
vector κb at a vertex i . Same as prior works [Bergou et al. 2008;
Kaldor et al. 2010], we take the tangent of the half angle at vertex i
as the discrete curvature.

(κb)i =
2t i−1 × t i

1 + t i−1 · t i
=

2ei−1 × ei

∥ei−1∥∥ei ∥ + ei−1 · ei
(S85)

where t i is the normalized tangent vector at edge i , and ei is the
edge vector itself (so that t i = ei/∥ei ∥).

We then derive the variation of this curvature vector, which has
the following form

δ (κb)i =
2δei−1 × ei

∥ei−1∥∥ei ∥ + ei−1 · ei
+

2ei−1 × δei

∥ei−1∥∥ei ∥ + ei−1 · ei

−
(ei + ∥ei ∥t i−1) · δei−1

∥ei−1∥∥ei ∥ + ei−1 · ei
(κb)i −

(ei−1 + ∥ei−1∥t i ) · δei

∥ei−1∥∥ei ∥ + ei−1 · ei
(κb)i

(S86)

By dividing by the magnitude of the edge vectors, we have

δ (κb)i =
2 δe i−1

∥e i−1 ∥
× t i

1 + t i−1 · t i
+

2t i−1 × δe i
∥e i ∥

1 + t i−1 · t i

−
t i−1 + t i

1 + t i−1 · t i
(κb)i ·

(
δei−1

∥ei−1∥
+

δei

∥ei ∥

) (S87)

S10.2 Material Vectors

We compute the variation of the material vectorsmi
1 andmi

2 for de-
fined at edge i . Following Jawed et al. [2018], the temporal derivative
of the material vectors are

Ûmi
1(t) = Ûγ

i (t)mi
2(t) −

(
mi

1(t) · Ût
i (t)

)
t i (t), (S88a)

Ûmi
2(t) = −Ûγ

i (t)mi
1(t) −

(
mi

2(t) · Ût
i (t)

)
t i (t). (S88b)

where γ is the angle between reference vector and material vector,
and only depends on the twist of rods. So the first term refects
the change of twist along the complement material vector, and the
second term reflects the change of direction of the edges. When
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the position of vertices are disturbed, the change of twist Ûγ is zero.
Actually, we have

δmi
1 = δγ imi

2 −
(
mi

1 · δt
i
)
t i , (S89a)

δmi
2 = −δγ

imi
1 −

(
mi

2 · δt
i
)
t i . (S89b)

S10.3 Discrete Curvatures

Our definition of discrete curvatures follows Kaldor et al. [2010],
where one vertex at i generates four terms regards to its previous
and next edges

κi−1
i ,1 =m

i−1
2 · (κb)i , (S90)

κii ,1 =m
i
2 · (κb)i , (S91)

κi−1
i ,2 = −m

i−1
1 · (κb)i , (S92)

κii ,2 = −m
i
1 · (κb)i . (S93)

We compute the variation of these curvatures, where we have

δκi−1
i ,1 =m

i−1
2 · δ (κb)i + δm

i−1
2 · (κb)i , (S94a)

δκii ,1 =m
i
2 · δ (κb)i + δm

i
2 · (κb)i , (S94b)

δκi−1
i ,2 = −m

i−1
1 · δ (κb)i − δm

i−1
1 · (κb)i , (S94c)

δκii ,2 = −m
i
1 · δ (κb)i − δm

i
1 · (κb)i . (S94d)

When only the positions of vertices are changing, we know from
equation S89a that δγ i = 0 and δmi is parallel with the tangential
direction t i . Hence δmi is orthogonal with (κb)i . Therefore, we
have the terms δmi

1 · (κb)i = 0 and δmi
2 · (κb)i = 0. For similar

reason, δmi−1
1 · (κb)i and δmi−1

2 · (κb)i are also zero. We then have
the following variations of curvatures

δκi−1
i ,1 =m

i−1
2 · δ (κb)i − δγ

i−1mi−1
1 (κb)i , (S95a)

δκii ,1 =m
i
2 · δ (κb)i − δγ

imi
1(κb)i , (S95b)

δκi−1
i ,2 = −m

i−1
1 · δ (κb)i − δγ

i−1mi−1
2 (κb)i , (S95c)

δκii ,2 = −m
i
1 · δ (κb)i − δγ

imi
2(κb)i . (S95d)

To compute the derivatives, we apply equation S87 to the variation
of curvatures and set δei−1, δei , δγ i−1 and δγ i to zero, respectively.
We then have the following terms while the other terms are all zero

∂κi−1
i ,1

∂ei−1 · δe
i−1 =mi−1

2 ·


2 δe i−1

∥e i−1 ∥
× t i

1 + t i−1 · t i
−

t i−1 + t i

1 + t i−1 · t i
(κb)i ·

δei−1

∥ei−1∥

 ,
(S96a)

∂κi−1
i ,1
∂ei

· δei =mi−1
2 ·


2t i−1 × δe i

∥e i ∥

1 + t i−1 · t i
−

t i−1 + t i

1 + t i−1 · t i
(κb)i ·

δei

∥ei ∥

 ,
(S96b)

∂κi−1
i ,1

∂γ i−1 · δγ
i−1 = −δγ i−1mi−1

1 (κb)i , (S96c)

∂κii ,1
∂ei−1 · δe

i−1 =mi
2 ·


2 δe i−1

∥e i−1 ∥
× t i

1 + t i−1 · t i
−

t i−1 + t i

1 + t i−1 · t i
(κb)i ·

δei−1

∥ei−1∥

 ,
(S96d)

∂κii ,1
∂ei

· δei =mi
2 ·


2t i−1 × δe i

∥e i ∥

1 + t i−1 · t i
−

t i−1 + t i

1 + t i−1 · t i
(κb)i ·

δei

∥ei ∥

 ,
(S96e)

∂κii ,1
∂γ i

· δγ i = −δγ imi
1(κb)i , (S96f)

∂κi−1
i ,2

∂ei−1 · δe
i−1 = −mi−1

1 ·


2 δe i−1

∥e i−1 ∥
× t i

1 + t i−1 · t i
−

t i−1 + t i

1 + t i−1 · t i
(κb)i ·

δei−1

∥ei−1∥

 ,
(S96g)

∂κi−1
i ,2
∂ei

· δei = −mi−1
1 ·


2t i−1 × δe i

∥e i ∥

1 + t i−1 · t i
−

t i−1 + t i

1 + t i−1 · t i
(κb)i ·

δei

∥ei ∥

 ,
(S96h)

∂κi−1
i ,2

∂γ i−1 · δγ
i−1 = −δγ i−1mi−1

2 (κb)i , (S96i)

∂κii ,2
∂ei−1 · δe

i−1 = −mi
1 ·


2 δe i−1

∥e i−1 ∥
× t i

1 + t i−1 · t i
−

t i−1 + t i

1 + t i−1 · t i
(κb)i ·

δei−1

∥ei−1∥

 ,
(S96j)

∂κii ,2
∂ei

· δei = −mi
1 ·


2t i−1 × δe i

∥e i ∥

1 + t i−1 · t i
−

t i−1 + t i

1 + t i−1 · t i
(κb)i ·

δei

∥ei ∥

 ,
(S96k)

∂κii ,2
∂γ i

· δγ i = −δγ imi
2(κb)i . (S96l)

By using the rule of triple product and other algebraic manipula-
tions, we achieve the following equations:

∂κi−1
i ,1

∂ei−1 =
1

∥ei−1∥

(
−κi−1

i ,1 t̃ +
2t i ×mi−1

2
1 + t i−1 · t i

)
, (S97a)

∂κi−1
i ,1
∂ei

=
1
∥ei ∥

(
−κi−1

i ,1 t̃ −
2t i−1 ×mi−1

2
1 + t i−1 · t i

)
, (S97b)

∂κi−1
i ,1

∂γ i−1 = −m
i−1
1 (κb)i , (S97c)

∂κii ,1
∂ei−1 =

1
∥ei−1∥

(
−κii ,1t̃ +

2t i ×mi
2

1 + t i−1 · t i

)
, (S97d)

∂κii ,1
∂ei

=
1
∥ei ∥

(
−κii ,1t̃ −

2t i−1 ×mi
2

1 + t i−1 · t i

)
, (S97e)

∂κii ,1
∂γ i

= −mi
1(κb)i , (S97f)
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∂κi−1
i ,2

∂ei−1 =
1

∥ei−1∥

(
−κi−1

i ,2 t̃ −
2t i ×mi−1

1
1 + t i−1 · t i

)
, (S97g)

∂κi−1
i ,2
∂ei

=
1
∥ei ∥

(
−κi−1

i ,2 t̃ +
2t i−1 ×mi−1

1
1 + t i−1 · t i

)
, (S97h)

∂κi−1
i ,2

∂γ i−1 = −m
i−1
2 (κb)i , (S97i)

∂κii ,2
∂ei−1 =

1
∥ei−1∥

(
−κii ,2t̃ −

2t i ×mi
1

1 + t i−1 · t i

)
, (S97j)

∂κii ,2
∂ei

=
1
∥ei ∥

(
−κii ,2t̃ +

2t i−1 ×mi
1

1 + t i−1 · t i

)
. (S97k)

∂κii ,2
∂γ i

= −mi
2(κb)i . (S97l)

where t̃ ≡ t i−1+t i

1+t i−1 ·t i
.

S10.4 Hessian of the Discrete Curvatures

Before deriving the Hessian of the curvatures, it is convenient to
define several variables and compute their derivatives, as following
(⊗ denotes the outer product, e.g., a ⊗ b ≡ abT.)

∂t i

∂ei
=

1
∥ei ∥

(
I3 − t

i ⊗ t i
)

(S98a)

χ ≡ 1 + t i−1 · t i (S98b)
∂χ

∂ei−1 =
1

∥ei−1∥

(
I3 − t

k−1 ⊗ tk−1
)
tk (S98c)

∂χ

∂ei
=

1
∥ei ∥

(
I3 − t

k ⊗ tk
)
tk−1 (S98d)

∂t̃

∂ei−1 =
1

χ ∥ei−1∥

((
I3 − t

i−1 ⊗ t i−1
)
− t̃ ⊗

((
I3 − t

i−1 ⊗ t i−1
)
t i

))
(S98e)

∂t̃

∂ei
=

1
χ ∥ei ∥

((
I3 − t

i ⊗ t i
)
− t̃ ⊗

((
I3 − t

i ⊗ t i
)
t i−1

))
(S98f)

Besides, we have
∂

∂ei
(a × b) = [a]× ·

∂b

∂ei
− [b]× ·

∂a

∂ei
(S99)

for arbitrary vector a and b, where the notation [·]× denotes the
cross product matrix such that a × b = [a]× · b).

We then compute the Hessian of curvatures, where we have the
following second derivative for the first line of (S97a),

∂2κi−1
i ,1

∂ei−1∂ei−1 = −

(
−κi−1

i ,1 t̃ +
2t i ×mi−1

2
χ

)
⊗

t i−1

∥ei−1∥2

+
1

∥ei−1∥

(
−
∂κi−1

i ,1
∂ei−1 ⊗ t̃ − κ

i−1
i ,1

∂t̃

∂ei−1

−
2[mi−1

2 ]× ·
∂t i

∂e i−1

χ
−

2t i ×mi−1
2

χ2 ⊗
∂χ

∂ei−1
ª®¬ ,

(S100)

Noticing that the first term of the above equation contains
∂κ i−1

i ,1
∂e i−1 ,

and ∂t i

∂e i−1 = 0, after combining the terms, we have

∂2κi−1
i ,1

∂ei−1∂ei−1 = −
1

∥ei−1∥

(
∂κi−1

i ,1
∂ei−1 ⊗ t

i−1 + t̃ ⊗
∂κi−1

i ,1
∂ei−1

+κi−1
i ,1

∂t̃

∂ei−1 +
2t i ×mi−1

2
χ2 ⊗

∂χ

∂ei−1

)
.

(S101)

The Hessian matrix for this part is symmetric. We simplify it by
combining the first and second terms. Also, we define

m̃i−1
2 ≡

2mi−1
2
χ
, (S102a)

m̃i
2 ≡

2mi
2

χ
, (S102b)

m̃i−1
1 ≡

2mi−1
1
χ
, (S102c)

m̃i
1 ≡

2mi
1

χ
. (S102d)

Before going on, remember that we also need the Hessians over
the twisting angle γ . To compute these terms we note

δ

(
∂κi−1

i ,1
∂γ i−1

)
= −δmi−1

1 (κb)i −m
i−1
1 δ (κb)i

= −δγ i−1mi−1
2 (κb)i −m

i−1
1 δ (κb)i

(S103)

We then derive other Hessians following a similar strategy for
deriving (S101), and we use (S103) for the Hessians over γ . We have

∂2κi−1
i ,1

∂ei−1∂ei−1 = −
1

∥ei−1∥
sym

(
∂κi−1

i ,1
∂ei−1 ⊗ (t

i−1 + t̃)

+κi−1
i ,1

∂t̃

∂ei−1 +
1
χ

(
t i × m̃i−1

2

)
⊗
∂χ

∂ei−1

)
,

(S104a)

∂2κi−1
i ,1

∂ei∂ei
= −

1
∥ei ∥

sym

(
∂κi−1

i ,1
∂ei

⊗ (t i + t̃)

+κi−1
i ,1
∂t̃

∂ei
+

1
χ

(
t i−1 × m̃i−1

2

)
⊗
∂χ

∂ei

)
,

(S104b)

∂2κi−1
i ,1

∂ei∂ei−1 =

(
∂2κi−1

i ,1
∂ei−1∂ei

)T
= −

1
∥ei−1∥

(
t̃ ⊗
∂κi−1

i ,1
∂ei

+ κi−1
i ,1
∂t̃

∂ei

+
1
χ

(
t i × m̃i−1

2

)
⊗
∂χ

∂ei
+ [m̃i−1

2 ]× ·
∂t i

∂ei

)
,

(S104c)
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∂2κi−1
i ,1

∂ei−1∂γ i−1 =
1

∥ei−1∥

(
−κi−1

i ,2 t̃ − t
i × m̃i−1

1

)
, (S104d)

∂2κi−1
i ,1

∂ei∂γ i−1 =
1
∥ei ∥

(
−κi−1

i ,2 t̃ + t
i−1 × m̃i−1

1

)
, (S104e)

∂2κi−1
i ,1

∂γ i−1∂γ i−1 = −(κb)i ·m
i−1
2 , (S104f)

∂2κi−1
i ,2

∂ei−1∂ei−1 = −
1

∥ei−1∥
sym

(
∂κi−1

i ,2
∂ei−1 ⊗ (t

i−1 + t̃)

+κi−1
i ,2

∂t̃

∂ei−1 +
1
χ

(
t i × m̃i−1

1

)
⊗
∂χ

∂ei−1

)
,

(S104g)

∂2κi−1
i ,2

∂ei∂ei
= −

1
∥ei ∥

sym

(
∂κi−1

i ,2
∂ei

⊗ (t i + t̃)

+κi−1
i ,2
∂t̃

∂ei
+

1
χ

(
t i−1 × m̃i−1

1

)
⊗
∂χ

∂ei

)
,

(S104h)

∂2κi−1
i ,2

∂ei∂ei−1 =

(
∂2κi−1

i ,2
∂ei−1∂ei

)T
= −

1
∥ei−1∥

(
t̃ ⊗
∂κi−1

i ,2
∂ei

+ κi−1
i ,2
∂t̃

∂ei

−
1
χ

(
t i × m̃i−1

1

)
⊗
∂χ

∂ei
− [m̃i−1

1 ]× ·
∂t i

∂ei

)
,

(S104i)

∂2κi−1
i ,2

∂ei−1∂γ i−1 =
1

∥ei−1∥

(
κi−1
i ,1 t̃ − t

i × m̃i−1
2

)
, (S104j)

∂2κi−1
i ,2

∂ei∂γ i−1 =
1
∥ei ∥

(
κi−1
i ,1 t̃ + t

i−1 × m̃i−1
2

)
, (S104k)

∂2κi−1
i ,2

∂γ i−1∂γ i−1 = (κb)i ·m
i−1
1 , (S104l)

∂2κii ,1
∂ei−1∂ei−1 = −

1
∥ei−1∥

sym

(
∂κii ,1
∂ei−1 ⊗ (t

i−1 + t̃)

+κii ,1
∂t̃

∂ei−1 +
1
χ

(
t i × m̃i

2

)
⊗
∂χ

∂ei−1

)
,

(S104m)

∂2κii ,1
∂ei∂ei

= −
1
∥ei ∥

sym

(
∂κii ,1
∂ei

⊗ (t i + t̃)

+κii ,1
∂t̃

∂ei
+

1
χ

(
t i−1 × m̃i

2

)
⊗
∂χ

∂ei

)
,

(S104n)

∂2κii ,1
∂ei∂ei−1 =

(
∂2κii ,1
∂ei−1∂ei

)T
= −

1
∥ei−1∥

(
t̃ ⊗
∂κii ,1
∂ei

+ κii ,1
∂t̃

∂ei

+
1
χ

(
t i × m̃i

2

)
⊗
∂χ

∂ei
+ [m̃i

2]× ·
∂t i

∂ei

)
,

(S104o)

∂2κii ,1
∂ei−1∂γ i

=
1

∥ei−1∥

(
−κii ,2t̃ − t

i × m̃i
1

)
, (S104p)

∂2κii ,1
∂ei∂γ i

=
1
∥ei ∥

(
−κii ,2t̃ + t

i−1 × m̃i
1

)
, (S104q)

∂2κii ,1
∂γ i∂γ i

= −(κb)i ·m
i
2, (S104r)

∂2κii ,2
∂ei−1∂ei−1 = −

1
∥ei−1∥

sym

(
∂κii ,2
∂ei−1 ⊗ (t

i−1 + t̃)

+κii ,2
∂t̃

∂ei−1 +
1
χ

(
t i × m̃i

1

)
⊗
∂χ

∂ei−1

)
,

(S104s)

∂2κii ,2
∂ei∂ei

= −
1
∥ei ∥

sym

(
∂κii ,2
∂ei

⊗ (t i + t̃)

+κii ,2
∂t̃

∂ei
+

1
χ

(
t i−1 × m̃i

1

)
⊗
∂χ

∂ei

)
,

(S104t)

∂2κii ,2
∂ei∂ei−1 =

(
∂2κii ,2
∂ei−1∂ei

)T
= −

1
∥ei−1∥

(
t̃ ⊗
∂κii ,2
∂ei

+ κii ,2
∂t̃

∂ei

−
1
χ

(
t i × m̃i

1

)
⊗
∂χ

∂ei
− [m̃i

1]× ·
∂t i

∂ei

)
.

(S104u)

∂2κii ,2
∂ei−1∂γ i

=
1

∥ei−1∥

(
κii ,1t̃ − t

i × m̃i
2

)
, (S104v)

∂2κii ,2
∂ei∂γ i

=
1
∥ei ∥

(
κii ,1t̃ + t

i−1 × m̃i
2

)
, (S104w)

∂2κii ,2
∂γ i∂γ i

= (κb)i ·m
i
1, (S104x)

where we use the notation sym(A) ≡ (A+AT )/2. The Hessian terms
other than the ones above are all zero filled.

The total bending energy for a strand is then defined over curva-
tures

Eb =
1
4

∑
i

∑
j=0,1
[κ
i−j
i ,1 −κ̄

i−j
i ,1 ,κ

i−j
i ,2 −κ̄

i−j
i ,2 ]Bi [κ

i−j
i ,1 −κ̄

i−j
i ,1 ,κ

i−j
i ,2 −κ̄

i−j
i ,2 ]

T .

(S105)
where Bi ∈ R

2×2 is the bending stiffness tensor at vertex i , and
the variables with a bar denote the rest states. With the gradient
and Hessians of curvatures given above, the bending force and its
Jacobian can be trivially computed, following Kaldor et al. [2010].

S11 JACOBIAN OF LIQUID’S SHEAR FORCE

In the augmented MLS-MPM method, the i-th row and j-th column
of the Jacobian matrix of the shear force Hf is computed as [Hu et al.
2018; Stomakhin et al. 2014]

Hf,ij =
∑
p

V 0
p e

T
i Lp, j (F

E
p )

TD−1
p Ni (xp )(xf ,i − xp ) (S106)
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where

Lp, j ≡
∂2Ws
∂F∂F

: D−1
p Nj (xp )ej (xf , j − xp )

TFEp . (S107)

In the equations above, Ni (xp ) is the B-spline kernel evaluated at
the position xp of particle p; xf ,i is the central position of grid face
i; ei is the normal direction of grid face i; Dp is the inertia tensor
of the kernel function; dev(bE ,tp ) is the deviatoric part of the left
Cauchy-Green strain tensor bE ,tp (see §S1); and the operator A : B
denotes the tensor product between a fourth-order tensor A and a
second-order tensor B. We then need to insert our Herschel-Bulkley
model into these equations. Below we derive a general Jacobian
matrix for 2D and 3D, with the number of dimensions denoted as d ,
i.e., d = 2 for 2D and d = 3 for 3D.

We begin our derivation from (S6), where we have the derivative
of shear energy over FE :

∂Ws

∂FEi j
= µdev(b̄E )FE−T. (S108)

where a bar indicates normalized variables, and b̄E = J−2/dFEFET is
the normalized left Cauchy-Green strain tensor.We define a function
λ to represent the plastic flow, i.e., rewriting (37) as st+1 = λ(s∗, µ̂).

Below we drop the star and E superscripts for brevity. We have
b̄ = λ(s , µ̂)

s dev(b̄) + µ̂I3 and thence dev(b̄) = λ(s , µ̂)
s dev(b̄), and

∂Ws
∂Fi j

= µλ̃J−2/d
[
Fi j −

1
d
tr

(
FFT

) (
F−T

)
i j

]
. (S109)

where λ̃ ≡ λ(s , µ̂)
s . Applying matrix calculus [Petersen et al. 2008],

we have the following derivatives:

∂J−2/d

∂Fuv
= −

2
d
J−2/d (F−T)uv , (S110a)

∂Fi j
∂Fuv

= δuiδjv , (S110b)

∂

∂Fuv
tr

(
FFT

)
= Fuv , (S110c)

∂

∂Fuv

(
F−T

)
i j
=
∂

∂Fuv

(
F−1

)
ji
= −

(
F−1

)
ju

(
F−1

)
vi
. (S110d)

where δi j is the Kronecker delta, i.e., δi j = 1 if and only if i = j.
By the chain rule, we can compute

∂s

∂s
=

s
s
, (S111a)

∂si j
∂Fuv

= µJ−2/d
[
−

2
d
(F−T )uv [devb]i j + δiuFjv −

1
d
Fuvδi j

]
,

(S111b)

∂s

∂Fuv
= −

2s
d
(F−T )uv + µ

(devb̄ · F)uv − 1
d tr(devb̄)

∥devb̄∥
, (S111c)

∂µ̂

∂Fuv
=

1
d
µJ−2/d

[
−

2
d
(F−T )uv trb + Fuv

]
. (S111d)

The Hessian of the shear energy then becomes

∂

∂Fuv

(
∂Ws
∂Fi j

)
= −

2
d
J−2/d (F−T)uv

[
Fi j −

1
d
tr

(
FFT

) (
F−T

)
i j

]
+ µJ−2/d

[
δuiδjv −

1
d

(
FuvF−Ti j − tr

(
FFT

) (
F−1

)
ju

(
F−1

)
vi

)]
+

[
µJ−2/d

[
Fi j −

1
d
tr

(
FFT

) (
F−T

)
i j

] ]
[
∂λ̃

∂s

(
−

2s
d
(F−T )uv + µ

(devb̄ · F)uv
∥devb̄∥

)
+
∂λ̃

∂µ

µ

d
J−2/d

(
−

2
d
(F−T )uv trb + Fuv

)]
.

(S112)

In addition, for an arbitrary matrix B ∈ Rd×d , under the Einstein
notation we have [Petersen et al. 2008]

δuiδjvBuv = Bi j , (S113a)

FuvBuv = tr(FTB), (S113b)(
F−1

)
ju

(
F−1

)
vi

Buv =
(
F−TBTF−T

)
i j
, (S113c)(

∂2Ws
∂F∂F

: B
)
i j
≡
∂

∂Fuv

(
∂Ws
∂Fi j

)
Buv . (S113d)

Using these equations and some algebra operations, we have the
following formulation for multiplying the Hessian of shear energy
with an arbitrary matrix B:

∂2Ws
∂F∂F

: B = µ

[
J−2/dB −

2
d
tr

(
F−1B

)
dev

(
b̄
)
F−T

−
1
d
F−T

(
J−2/d tr

(
FTB

)
Id − tr

(
b̄
)
BTF−T

)]
+ µdevb̄ · F−T

[
∂λ̃

∂s

(
−

2s
d
tr(F−1B) + µ

tr(FT devb̄ · B)
∥devb̄∥

)
+
∂λ̃

∂µ

µ

d
J−2/d

(
−

2
d
tr(F−1B)trb + tr(FT B)

)]
(S114)

Explicitly computing (S114) and constructing a Jacobian matrix
is not economically efficient. Instead, only computing the result of
multiplying the Jacobian with a vector is more effective, similar to
prior works [Hu et al. 2018; Stomakhin et al. 2014] (e.g., in (34) that
implicitly integrates the shear stress, the vector to be multiplied
with is the velocity u∗f or some intermediate states in a conjugate
gradient solver). Noticing that the deformation gradient F can be
canceled or combined into b̄ when substituting (S114) into (S107)
and (S106), then the multiplication between the Jacobian matrix Hf
and an arbitrary vector q (whose dimension matches the number of
columns of Hf) can be computed below.

Defining
vjα ,p ≡ Njα (xp )(xf, jα − xp ) (S115)

ACM Trans. Graph., Vol. 38, No. 6, Article 1. Publication date: November 2019.



1:12 • Yun (Raymond) Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng

for direction α ∈ [0,d − 1], in 2D we define

Bp ≡
∑
j
[vj0,pqj0,vj1,pqj1]. (S116)

and in 3D

Bp ≡
∑
j
[vj0,pqj0,vj1,pqj1,vj2,pqj2]. (S117)

With all the variables defined above substituted into (S106), and
using Bp to replace the arbitrary matrix B in (S114), the Jacobian
matrix multiplied with an arbitrary vector q is computed as

(Hfq)iα =
∑
p

L̃p,α∗viα ,p (S118)

where L̃p,α∗ ∈ R1×d is the α-row of L̃p , and

L̃p ≡ µV 0
pD
−2
p

[
st+1

(
BTp b̄ −

2
d
tr(Bp )dev(b̄)

−
1
d

( (
Bp ⊙ b̄

)
Id − tr(b̄)Bp

) )
+dev(b̄)

(
∂λ̃

∂s

(
µtr(dev(b̄)BTp b̄)

∥devb̄∥
−

2st+1

d

)
+
∂λ̃

∂µ

µ

d

(
tr(BTp b̄) −

2
d
tr(Bp )tr(b̄)

))]
,

(S119)

where ⊙ denotes the Frobenius inner product, i.e.,A⊙B =
∑
i
∑
j Ai jBi j .

S12 A SINGLE STEP OF OUR ALGORITHM

A single step of our complete algorithm consists of the following
sequence of operations:

(1) Transfer between surface and bulk liquid. Bulk liquid
is captured as surface flow for those strands crossing the
interface; excess liquid from surface flow is converted into
particles.

(2) Merge, split, and relax particles. Following Winchenbach
et al. [2017], particles that are too small are merged with
neighbor particles, while ones that are too large are split. In
addition, we apply a pass of relaxation [Ando et al. 2012] to
maintain the uniformity of the particle distribution.

(3) Map liquid particles to grid. At the start of every time step
we transfer the particles’ mass, velocity, and volume change
to the MAC grid, through the APIC method [Jiang et al. 2015].

(4) Compute weighting and gradient matrices. The weight-
ing and gradient matrices in Table 1 are computed, for both
liquid and strands.

(5) Detect tearing regions. Each particle’s accumulated plas-
ticity is examined to detect tearing [Yue et al. 2015].

(6) Solve for Mixture. The velocities of the grid, surface flow,
and strands are updated, following Algorithm 1. The shear
equation (34) is solved with a Jacobi preconditioned conjugate
gradient solver [Saad 2003], and the pressure equation (38) is
solved with an algebraic multigrid preconditioned conjugate
gradient (AMGPCG) solver [Zhang 2015].

(7) Update liquid particles from grid.We update each parti-
cle’s velocity from the MAC grid via APIC [Jiang et al. 2015].

(8) Update particle deformation info. The deformation gradi-
ent, left Cauchy-Green strain, and volume change are updated
through MLS-MPM [Hu et al. 2018].

(9) Update positions for particles and strands. Positions are
updated according to the velocities for liquid particles and
strand vertices.

(10) Compute plasticity for bulk liquid. The plastic flow of
bulk liquid is computed from the deformation gradient, where
excess elastic strain is converted to plastic strain.

(11) Compute plasticity for surface flow. The strain in the
surface flow is updated by (3), where excess elastic strain is
converted to plastic strain.

(12) Compute plastic recovery. The plasticity history is relaxed
to account for the strengthening of bonds between bulk ma-
terials [Yue et al. 2015].

S13 SURFACE RECONSTRUCTION

When generating the liquid particles, we sample 64 particles in each
cell occupied by the liquid, where we precompute a level set to cull
the particles sampled outside the generator. This amount of particles
provides a smoother liquid surface during the reconstruction.We use
the VDB [Museth 2013] surface operators (SOPs) in Houdini [SideFX
2019] to perform the reconstruction. For each frame, we use a VDB
from particle liquid SOP to convert the particles into a level set. To
avoid incorrect holes or instability, we turn off the rebuild option
and use a Primitive SOP to categorize the resulting VDB as a level
set, which is followed by a VDB renormalize SOP to make sure the
gradient of the level set is normalized. In the VDB from particle
liquid SOP, we set the particle separation to be 0.5∆x where ∆x is
the cell size for simulation, and the voxel size (for reconstruction) is
set to be 0.25, which means the resolution of the reconstruction grid
is 8× higher than the simulation grid. We then perform a dilation-
smooth-erosion operation [Museth 2014] to smooth the level set
and use a Convert VDB node to generate a polygonal surface mesh,
where the smoothing method is set to Mean Curvature Flow so that
the volume is better preserved during smoothing. To better match
the volume of the region enclosed by the reconstructed surface to
the volume recorded on the particles, we enlarge the distance of
erosion by 1.5∆x .

For the surface flow on the strands, we first use a PolyCut SOP to
remove the strand vertices that have zero flow height on a vertex
itself and its neighborhood. Then we use a Polywire SOP to convert
the height field on the remaining polylines into polygonal meshes.

Wemerge these two sets of polygons, and use aVDB from polygons
SOP to convert the merged polygons back into a VDB with much
higher resolution, with the voxel size set to 0.03 (cm). Then, we again
perform a series of dilation-smooth-erosion operation [Museth 2014]
to smooth out the kinks around the connections between the bulk
liquid and the surface flow, which in addition, also creates the liquid
bridge between the flow on strands. Finally, we convert the level set
back into polygons for rendering with a convert VDB SOP.
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S14 PARAMETERS

The physical parameters used in this paper are taken from vari-
ous sources in the literature [Ardakani et al. 2014; Bochkarev et al.
2009; Kelessidis et al. 2006; Nagasawa et al. 2019; Yue et al. 2015].
These parameters are given in the following table, where the water
and tetrachloroethylene are incompressible, Newtonian liquids, the
drilling mud, acrylic paint and oyster sauce are incompressible, shear-
thinning liquids, the milk cream and shaving cream are compressible,
shear-thinning liquids, and the milk chocolate is a compressible, (al-
most) Bingham liquid.
Materials ρf κ µ τY η n

(g/cm3) (dyne/cm2) (dyne/cm2) (dyne/cm2) (Ba · sn ) (unitless)
water 1.0 2.0e10 0 0 8.9e-3 1.0
tetrachloroethylene 1.622 3.1e10 0 0 8.9e-3 1.0
drilling mud 1.22 2.0e10 1.0e3 16.813 6.496 0.5173
acrylic paint 0.95 1.35e9 4.0e3 9.6 173.56 0.3162
milk cream 0.275 1.09e6 1.6e4 1.2e3 50.0 0.27
shaving cream 0.2 1.09e6 2.9e3 3.19e2 2.72e2 0.22
oyster sauce 1.207 2e10 4.0e3 26.5 16.1 0.62
milk chocolate 0.95 4.28e6 4.0e3 3.0e2 28.0 0.98

S15 IMPORTANCE OF COMPONENTS

While we simulated all the examples in this paper, we have gained
some empirical knowledge about the importance of components
to visual looks, whereby we color the components accordingly. We
hope that this empirical knowledge will help potential readers to
reproduce our framework more easily. In Table S1 we list all the
components that need to be implemented and color them according
to their importance.
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