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We present Differentiable Curl-Noise, a𝐶1
procedural method to animate strictly incompressible fluid flows in

two dimensions.While both the original Curl-Noise method of Bridson et al. [2007] and a recent modification by

Chang et al. [2022] have been used to design incompressible flow fields, they often suffer from non-smoothness

in their handling of obstacles, owing in part to properties of the underlying Euclidean distance function or

closest point function. We therefore propose a differentiable scheme that modulates the background potential

in a manner that respects arbitrary solid simple polygonal objects placed at any location, without introducing

discontinuities. We demonstrate that our new method yields improved flow fields in a set of two dimensional

examples, including when obstacles are in close proximity or possess concavities.

CCS Concepts: • Computing methodologies→ Procedural animation; Physical simulation.

Additional Key Words and Phrases: procedural animation, incompressible flow, fluids, differentiability, vector

field design

ACM Reference Format:
Xinwen Ding and Christopher Batty. 2023. Differentiable Curl-Noise: Boundary-Respecting Procedural Incom-

pressible Flows Without Discontinuities. Proc. ACM Comput. Graph. Interact. Tech. 6, 1 (May 2023), 16 pages.

https://doi.org/10.1145/3585511

1 INTRODUCTION
The use of physics-based simulation of fluid dynamics has been an active research topic in computer

animation for many years now, with a wide range of industrial applications in visual effects,

computer games, and animated movies. However, despite progress towards developing effective

simulation control techniques, directability remains a challenge; moreover, the resulting discretized

flows are not necessarily strictly (pointwise) incompressible and may not precisely respect obstacles.

A longstanding alternative to simulation in computer animation is the use of procedural techniques,

which sidestep the need for solving partial differential equations and instead place the onus on the

user to express their desired result more directly. A popular example for fluids is the Curl-Noise
approach of Bridson et al. [2007] which offers a fast and simple technique for generating a range of

pointwise incompressible velocity fields that exhibit laminar flow or noisy turbulence, while also

respecting obstacles. Thus, rather than setting up boundary conditions and hoping for a desirable

fluid simulation result, users can sculpt their flows explicitly and analytically, leading to an entirely

different workflow. Moreover, Curl-Noise ideas have recently been combined with simulation to

achieve the best of both worlds; improvements to Curl-Noise may therefore also benefit traditional

fluid simulation workflows.
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Curl-Noise is based on the observation that a vector field constructed as the curl of some other

vector field is divergence-free by construction. Therefore, if we define our velocity field using

v = ∇ ×𝜓 , then ∇ · v = 0, since basic vector calculus ensures that the divergence of curl is always

zero: ∇ · (∇ ×𝜓 ) = 0. The vector field𝜓 is called a vector potential. For the present paper, our focus
is on the two-dimensional case in which the vector potential𝜓 reduces to a scalar stream function,
by setting the 𝑥 and 𝑦 components of the vector𝜓 to zero; the curl operation then simplifies such

that the velocity field v is just a 90 degree rotation of ∇𝜓 , that is, u = (∇𝜓 )⊥. (For simplicity we will

assume𝜓 is a scalar henceforth.) Curl-Noise begins with a user-defined𝜓 that dictates the ambient

flow field, with streamlines (i.e., particle trajectories) lying on isocontours of𝜓 . One subsequently

modulates 𝜓 in regions near obstacles to enforce that the fluid should not flow into or out of

obstacles. For static obstacles, this amounts to requiring that 𝜓 be constant along each disjoint

boundary since the tangential derivative of𝜓 dictates the normal component of velocity; to put it

another way, the boundary must be an isocontour. Curl-Noise therefore introduces a multiplicative

ramping procedure that forces𝜓 to a constant as the point being evaluated approaches the boundary.

More recently, Chang et al. [2022] observed that the multiplicative ramping strategy of the original

Curl-Noise method can lead to undesired no-slip behavior and proposed an additive alternative

that better preserves free-slip effects. However, in both methods the construction of the fluid

velocity field v fundamentally relies on taking partial derivatives of a modulated𝜓 field, yet neither

boundary treatment ensures that𝜓 is everywhere continuous and differentiable. The unfortunate

result is that the computed fluid velocity field can often exhibit kinks or outright discontinuities,

thereby destroying the illusion of a natural fluid flow.

In this paper, we propose a differentiable approach to generate 𝜓 fields for procedural fluid

animation in two dimensions. We do so by carefully investigating the sources of discontinuities in

both the original Curl-Noise and the variation of Chang et al. and introducing solutions that avoid

these pitfalls. Differentiability then ensures that we can generate mathematically and physically

plausible procedural animations of fluids flowing past arbitrary static simple polygonal obstacles,

with velocity fields v that are at least continuous.

2 RELATEDWORK
Two related methods have dominated the procedural generation of analytically incompressible

flow fields in computer animation. The first approach constructs the velocity as the cross product

of the gradients of two scalar fields, as proposed by DeWolf [2006]. The same basic approach was

also used for incompressible shape modeling by von Funck et al. [2006]. The second approach

constructs the velocity as the curl of a vector potential leading to the Curl-Noise approach of

Bridson et al. [2007]. The two approaches lead to distinct constructions of noise fields, laminar flows,

obstacle enforcement, and other features. Curl-Noise was subsequently used as a sub-component of

techniques that model the evolution of fine-scale turbulence within simulated flows [Kim et al. 2008;

Narain et al. 2008; Schechter and Bridson 2008]. The same concept has also been used for simulation

editing [Pan et al. 2013] and to improve boundary-handling in simulated flow fields [Chang et al.

2022].

3 LIMITATIONS OF PREVIOUS WORK
Assuming that the initial background potential𝜓 given by the user is smooth, then all sources of

non-differentiability lie in how the field is modulated near obstacles. To clearly demonstrate the

drawbacks of existing methods, let us first outline consistent notations and definitions. Let D be

a bounded domain of interest and let 𝑥𝑥𝑥 ∈ D be a query point in the domain. Assume there are 𝑛

static obstacles defined in D, denoted as 𝑂1,𝑂2, · · · ,𝑂𝑛 . Furthermore, we define 𝑑 (𝑥𝑥𝑥) : D → R to

be the minimum signed Euclidean distance from the query point 𝑥𝑥𝑥 to any obstacle in D and let
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𝑑𝑖 (𝑥𝑥𝑥) : D → R be the minimal signed Euclidean distance from the query point 𝑥𝑥𝑥 to the 𝑖𝑡ℎ obstacle,

𝑂𝑖 (where we have adopted the convention that negative distance values lie on the interiors of

obstacles). Therefore, we can write 𝑑 (𝑥𝑥𝑥) as:
𝑑 (𝑥𝑥𝑥) = min{𝑑1 (𝑥𝑥𝑥), 𝑑2 (𝑥𝑥𝑥), · · · , 𝑑𝑛 (𝑥𝑥𝑥)}, (1)

and we can write 𝑑𝑖 (𝑥𝑥𝑥) as:
𝑑𝑖 (𝑥𝑥𝑥) = min{𝑑∗

1
(𝑥𝑥𝑥), 𝑑∗

2
(𝑥𝑥𝑥), · · · , 𝑑∗𝑛 (𝑥𝑥𝑥)}, (2)

where 𝑑∗𝑛 (𝑥𝑥𝑥) is the Euclidean distance from 𝑥𝑥𝑥 to the 𝑛𝑡ℎ edge in 𝑂𝑖 .

Now, we are ready to write down the existing modulation methods and state their defects. Bridson

et al. [2007] modulated𝜓 by multiplying against a smooth ramp function 𝑟𝑎𝑚𝑝 (·) to zero:

𝜓 ′ = 𝛼 (𝑥𝑥𝑥)𝜓, 𝛼 (𝑥𝑥𝑥) = 𝑟𝑎𝑚𝑝

(
𝑑 (𝑥𝑥𝑥)
𝑑0

)
, 𝑟𝑎𝑚𝑝 (𝑟 ) =


1 if 𝑟 ≥ 1

15

8
𝑟 − 10

8
𝑟 3 + 3

8
𝑟 5 if −1 < 𝑟 < 1

−1 if 𝑟 ≤ −1
, (3)

where the constant 𝑑0 > 0 is the maximum influence radius of modulation. However, this con-

struction has two limitations. First, the min{·} function, appearing in 𝑑 (𝑥𝑥𝑥), 𝑖 ∈ [𝑛] and 𝑑𝑖 (𝑥𝑥𝑥), is 𝐶0
.

Second, as pointed out by Chang et al. [2022], the modulation in (3) can lead to spurious flow near

the boundary of the obstacle and thus visual artifacts. Figure 1(a)(b) show two examples exhibiting

the two aforementioned problems. Chang et al. [2022] suggested a slightly different modulation

function to partially resolve the issue by setting each boundary’s potential to be a given constant

𝜓𝑔,

𝜓 ′ (𝑥𝑥𝑥) = 𝛼 (𝑥𝑥𝑥)𝜓 (𝑥𝑥𝑥) + (1 − 𝛼 (𝑥𝑥𝑥))𝜓𝑔 (𝑥𝑥𝑥), (4)

where the target boundary value𝜓𝑔 ≠ 0 in general. In practice, a natural choice for the value of𝜓𝑔

is the unmodified background potential𝜓 evaluated at the geometric center of the obstacle closest

to 𝑥𝑥𝑥 . Figure 1(c) shows that Eq.4 removed the spurious tangential flow near objects, but introduced

another source of discontinuity.

(a) (b) (c)

Fig. 1. (a) and (b) show the isocontour plot of𝜓 ′ under the modulation function by Bridson et al. [2007]: The
𝐶0 property of the min{·} function in 𝑑 (𝑥𝑥𝑥) is apparent at the equidistant curves between objects. Moreover,
all obstacles in the plots are surrounded by spurious tangential flows, regardless of the smoothness of their
boundaries, since all boundaries are ramped to the same constant zero value. (c). Ramping to distinct values
per obstacle improves the situation, but unfortunately it also escalates the previously 𝐶0 points on the
equidistant curves to become fully discontinuous. This discontinuity exists between objects with both smooth
and 𝐶0 boundaries.
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In the same paper , Chang et al. [2022] further pointed out that either multiplicative strategy

(Eq. 3 or Eq. 4) undesirably impacts the normal derivatives of𝜓 , and correspondingly damages the

tangential (free-slip) velocities. They proposed instead an additive modulation approach,

𝜓 ′ (𝑥𝑥𝑥) = 𝜓 (𝑥𝑥𝑥) + (𝜓𝑔 (𝑥𝑥𝑥) −𝜓 (𝑐𝑝 (𝑥𝑥𝑥))) (1 − 𝛼 (𝑥𝑥𝑥)), (5)

where 𝑐𝑝 (𝑥𝑥𝑥) is the closest boundary point to 𝑥𝑥𝑥 .

Unfortunately, the 𝐶0
property of 𝑑 (𝑥𝑥𝑥) and 𝑑𝑖 (𝑥𝑥𝑥), 𝑖 ∈ [𝑛] is inherited by Eq. 5. Furthermore, the

constant𝜓𝑔 , together with a constant maximum influence radius,𝑑0, can exacerbate the first problem

in Eq. 3 by making 𝜓 ′
discontinuous on the equidistant curve as follows. Let 𝑂𝑖 and 𝑂 𝑗 be the

two closest obstacles to the query point 𝑥𝑥𝑥 ∈ D. Consider the case where the minimum distance

between 𝑂𝑖 and 𝑂 𝑗 is less than the constant 2𝑑0. A discontinuity occurs on the equidistant curve

of the two obstacles. If 𝑑 (𝑥𝑥𝑥) < 𝑑0, the second terms in Eq. 4, and Eq. 5, namely (1 − 𝛼 (𝑥𝑥𝑥))𝜓𝑔 (𝑥𝑥𝑥)
and (𝜓𝑔 (𝑥𝑥𝑥) −𝜓 (𝑐𝑝 (𝑥𝑥𝑥))) (1 − 𝛼 (𝑥𝑥𝑥)), respectively, are nonzero. Approaching the equidistant curve
in different directions (𝑂𝑖 side and 𝑂 𝑗 side), discontinuity arises since the obstacle that decides

𝜓𝑔 (𝑥𝑥𝑥) switches instantaneously from 𝑂𝑖 to 𝑂 𝑗 or from 𝑂 𝑗 to 𝑂𝑖 . Obviously, the locations of distinct

obstacles are not continuous. Figure 2(a)(b) give some concrete examples of the drawbacks of a

constant 𝑑0. To make things worse, even for a single obstacle, the closest point function itself, 𝑐𝑝 (𝑥𝑥𝑥),

(a) (b) (c)

Fig. 2. Potential isocontours under the additive modulation function by Chang et al. [2022]: (a) shows that
the discontinuity caused by𝜓𝑔 (𝑥𝑥𝑥) and a constant 𝑑0 happens on the equidistant curve between two circles
below with smooth boundary. Also, the spurious tangential flow is eliminated. (b) For polygonal objects,
discontinuity also appears on the equidistant curve between objects that are close to each other. (c) Given a
𝐿-shaped object and a query point 𝑥𝑥𝑥 , 𝑐𝑝1 and 𝑐𝑝2 are both valid closest point on the boundary of the object
to 𝑥𝑥𝑥 .

also contributes to the discontinuity of 𝜓 ′
, especially if the closest obstacle to 𝑥𝑥𝑥 is non-convex.

By the nature of a non-convex obstacle, any point on the exterior medial axis has more than one

closest point on the boundary of the obstacle. It follows that 𝑐𝑝 (𝑥𝑥𝑥) is not unique. Figure 2(c) shows
𝑐𝑝 (𝑥𝑥𝑥) can have more than one reasonable output for a nonconvex object.

4 THE METHOD
4.1 LogSumExp Minimal Distance
Fortunately, there exists a solution for the issue of the hard-minimum-based Euclidean distance

function 𝑑𝑖 (𝑥𝑥𝑥) being only 𝐶0
. In their discussion of possible future work, Chang et al. [2022]

suggested the possibility of replacing Curl-Noise’s Euclidean distance measure with the smoothed

distance function proposed by Madan and Levin [2022], which builds on the LogSumExp (LSE)
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approximation of the maximum function. We adopt their terminologies but slightly modify the

notations in their Equation (3), by letting
ˆ𝑑𝑖 (𝑥𝑥𝑥) be their LSE distance function defined as

ˆ𝑑𝑖 (𝑥𝑥𝑥) = −1

𝑎
log

( ∑︁
𝑓𝑛∈𝐹𝑖

𝑤𝑛 (𝑥𝑥𝑥) exp(−𝑎𝑑∗𝑛 (𝑥𝑥𝑥))
)
, (6)

where 𝐹𝑖 is the set of primitives composing the 𝑖𝑡ℎ object 𝑂𝑖 , 𝑤𝑛 (𝑥𝑥𝑥) is a polynomial, 𝑑∗𝑛 is the

Euclidean distance from 𝑥𝑥𝑥 to the simplex 𝑓𝑛 in 𝑂𝑖 , and 𝑎 is a large positive constant that simply

controls how tightly this "smoothmin" mimics the true minimum function; see [Madan and Levin

2022] for an illustration (we used 𝑎 = 200 for all our results). This construction is at least 𝐶1
. With

this replacement, the "distance" to the closest object is now 𝑑 (𝑥𝑥𝑥) = min{ ˆ𝑑1 (𝑥𝑥𝑥), ˆ𝑑2 (𝑥𝑥𝑥), · · · , ˆ𝑑𝑛 (𝑥𝑥𝑥)}.
The LSE distance is designed to be conservative [Madan and Levin 2022], so for an object 𝑂 , the

zero isocontour of the LSE distance strictly encloses the object and induces a slightly modified

boundary. Later, we will refer to it as the LSE boundary and denote it as 𝜕 LSE𝑂 .
To completely eliminate non-differentiability in 𝑑 (𝑥𝑥𝑥), it remains to employ a differentiable

approximation to min{·} as follows:

𝑑 (𝑥𝑥𝑥) = min{ ˆ𝑑1 (𝑥𝑥𝑥), ˆ𝑑2 (𝑥𝑥𝑥), · · · , ˆ𝑑𝑛 (𝑥𝑥𝑥)} ≈ 𝑑
1 (𝑥𝑥𝑥) B

∑𝑛
𝑖=1

ˆ𝑑𝑖 (𝑥𝑥𝑥) exp(−𝑏 ˆ𝑑𝑖 (𝑥𝑥𝑥))∑𝑛
𝑖=1 exp(−𝑏 ˆ𝑑𝑖 (𝑥𝑥𝑥))

, (7)

where 𝑏 is another large positive constant controlling the smooth maximum’s accuracy (we used

𝑏 = 200 for all our results) and
ˆ𝑑𝑘 (𝑥𝑥𝑥) is defined by Eq. 6, ∀𝑘 ∈ [𝑛]. Since ˆ𝑑𝑘 (𝑥𝑥𝑥), ∀𝑘 ∈ [𝑛] and 𝑑1 (𝑥𝑥𝑥)

are both at least 𝐶1
, then 𝑑 (𝑥𝑥𝑥) in Eq. 7 is also at least 𝐶1

. We will use this new notation of 𝑑
1 (𝑥𝑥𝑥)

throughout the rest of this paper. Figures 5(a) and 5(d) make a comparison between a 𝐶0
distance

field and its 𝐶1
alternative using our method.

4.2 Self-Adaptive Influence Radius
After adopting the smoothed distance measure, we next tackle the discontinuity caused by the

constant maximum influence radius 𝑑0 around obstacles. One obvious option would be to simply

set the influence radius to a very small value, such that the influence region of one object never

interferes with that of another. However, the default region of influence should be a user-chosen

parameter, dependent on the scene they are attempting to model, and setting a tiny influence radius

would largely destroy the visual benefits of smooth ramping. Instead, we present a differentiable,

self-adaptive function to modify the influence radius in difficult scenarios. In this function, the

influence radius is co-determined by the query point position and the objects’ locations. As the

influence radius is now a function rather than a constant, we change our notation to denote the

influence radius as 𝑑0 (𝑥𝑥𝑥).
All of the proofs we provide in this section either use Eq. 4 to modulate 𝜓 or, alternatively,

use Eq. 5 with the added assumption that 𝑐𝑝 (𝑥𝑥𝑥) is at least 𝐶1
. (We will present our differentiable

construction of 𝑐𝑝 (·) later in Section 4.3.) Furthermore, we assume the user-defined potential𝜓 is

also at least 𝐶1
differentiable.

Given a query point 𝑥𝑥𝑥 , we first define the sorted list of LSE distances from 𝑥𝑥𝑥 to the set of objects

as
ˆ𝑑𝑠1 (𝑥𝑥𝑥), ˆ𝑑𝑠2 (𝑥𝑥𝑥), · · · , ˆ𝑑𝑠𝑛 (𝑥𝑥𝑥), such that

ˆ𝑑𝑠1 (𝑥𝑥𝑥) ≤ ˆ𝑑𝑠2 (𝑥𝑥𝑥) ≤ · · · ≤ ˆ𝑑𝑠𝑛 (𝑥𝑥𝑥) and 𝑠𝑖 ∈ [𝑛]. That is, we sort
the LSE distances in increasing order and reindex them using 𝑠𝑖 . In Section 1 of our supplementary

material, we prove that setting the influence radius to be 𝑑0 (𝑥𝑥𝑥) = min{ ˆ𝑑𝑠2 (𝑥𝑥𝑥), 𝑑0}, where 𝑑0 is the
previous constant maximum influence radius and

ˆ𝑑𝑠2 (𝑥𝑥𝑥) is the LSE of the second closest object,
suffices to smooth out 𝜓 ′ (𝑥𝑥𝑥) from being discontinuous to 𝐶0

(but not 𝐶1
). The intuition for this

construction is that if the second closest object is more than 𝑑0 away from the query point, we can

5
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ignore that object; if it is closer, then we use the distance to that object as the maximum influence

radius for the closest object (Figure 3). Since the identity of the closest object changes when the

query point is equidistant from the two closest objects, we have 𝑑0 (𝑥𝑥𝑥) = ˆ𝑑𝑠2 (𝑥𝑥𝑥) = ˆ𝑑𝑠1 (𝑥𝑥𝑥) (when
both objects are nearby); thus the function will be continuous through this transition.

Fig. 3. An illustration of the motivation for the self-adaptive 𝑑0 (𝑥𝑥𝑥) with the hard-min function. For query
point 𝑥1𝑥1𝑥1, since ˆ𝑑𝑠1 (𝑥1𝑥1𝑥1), ˆ𝑑𝑠2 (𝑥1𝑥1𝑥1) < 𝑑0, then we have 𝑑0 (𝑥𝑥𝑥) = ˆ𝑑𝑠2 (𝑥1𝑥1𝑥1). For query point 𝑥2𝑥2𝑥2, since ˆ𝑑𝑠1 (𝑥2𝑥2𝑥2) < 𝑑0,
but , ˆ𝑑𝑠2 (𝑥2𝑥2𝑥2) > 𝑑0, then we have 𝑑0 (𝑥𝑥𝑥) = 𝑑0.

If one looks closely at the proof (Section 1 of the supplementary material), it becomes clear

that the min{·} function in 𝑑0 (𝑥𝑥𝑥) and the 𝐶0
function

ˆ𝑑𝑠2 (𝑥𝑥𝑥) are two possible causes preventing

𝜓 ′ (𝑥𝑥𝑥) from being 𝐶1
. Motivated by this fact, the guiding principle in designing our ultimate 𝑑0 (𝑥𝑥𝑥)

is that this function should be a differentiable approximation of
ˆ𝑑𝑠2 (𝑥𝑥𝑥). We therefore write the

problem as follows: given a query point 𝑥𝑥𝑥 and 𝑛 LSE distances,
ˆ𝑑1 (𝑥𝑥𝑥), ˆ𝑑2 (𝑥𝑥𝑥), · · · , ˆ𝑑𝑛 (𝑥𝑥𝑥), we want to

approximate
ˆ𝑑𝑠2 (𝑥𝑥𝑥) by some function that is at least 𝐶1

.

Now, we present our differentiable approximator. First, we use an LSE-based function to approx-

imate the min-2-sum from below, which is defined as the minimum element in the set 𝑆 given

by

𝑆 = { ˆ𝑑 𝑗 (𝑥𝑥𝑥) + ˆ𝑑𝑘 (𝑥𝑥𝑥) : 𝑗 ≠ 𝑘, 𝑗, 𝑘 ∈ [𝑛]}, where |𝑆 | =
(
𝑛

2

)
. (8)

Adapting a known max-2-sum formula [Todd 2018] to a min-2-sum, the approximation formula is

min 𝑆 = ˆ𝑑𝑠1 (𝑥𝑥𝑥) + ˆ𝑑𝑠2 (𝑥𝑥𝑥)

≈ 𝑑
2

=
𝑛 − 2

𝑐
log

(
𝑛∑︁
𝑖=1

exp(−𝑐 ˆ𝑑𝑖 (𝑥𝑥𝑥))
)
− 1

𝑐

𝑛∑︁
𝑖=1

log

(
𝑛∑︁

𝑗=1, 𝑗≠𝑖

exp(−𝑐 ˆ𝑑 𝑗 (𝑥𝑥𝑥))
)

(9)

where 𝑐 is another large positive constant (we used 𝑐 = 200 for all our results). We use the notation

𝑑
2

for the min-2-sum with the constant 𝑐 for all results in the paper. Next, we approximate
ˆ𝑑𝑠2 (𝑥𝑥𝑥)

by subtracting the result of Eq. 7 from Eq. 9, which gives
ˆ𝑑𝑠2 (𝑥𝑥𝑥) ≈ ˜𝑑2 (𝑥𝑥𝑥) B 𝑑

2 (𝑥𝑥𝑥) − 𝑑
1 (𝑥𝑥𝑥). In

other words, we smoothly approximate the second smallest value as the difference of smooth

approximations of the min-2-sum and the minimum.

Finally, to complete the whole process of smoothing 𝑑0 (𝑥𝑥𝑥) = min{ ˆ𝑑𝑠2 (𝑥𝑥𝑥), 𝑑0}, we use the LSE
function as an underestimation of min{·}, since we want 𝑑0 to be the maximum influence radius.

6
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We summarize the whole process in Algorithm 1 and reveal the benefit of this design by comparing

Figures 5(b) and 5(e).

Algorithm 1 Continuously Differentiable 𝑑0 (𝑥𝑥𝑥)

Input: Query point 𝑥𝑥𝑥 , LSE distances from 𝑥𝑥𝑥 to all 𝑛 objects
ˆ𝑑1 (𝑥𝑥𝑥), ˆ𝑑2 (𝑥𝑥𝑥), · · · , ˆ𝑑𝑛 (𝑥𝑥𝑥), large positive

constants 𝑎, 𝑏, 𝑐 , and the maximum influence radius 𝑑0.

Output: 𝑑0 (𝑥𝑥𝑥).

1: min_dist =

∑𝑛
𝑖=1

ˆ𝑑𝑖 (𝑥𝑥𝑥) exp(−𝑏 ˆ𝑑𝑖 (𝑥𝑥𝑥))∑𝑛
𝑖=1 exp(−𝑏 ˆ𝑑𝑖 (𝑥𝑥𝑥))

⊲ Eq. 7.

2: min_two_sum =
𝑛 − 2

𝑐
log

(
𝑛∑︁
𝑖=1

exp(−𝑐 ˆ𝑑𝑖 (𝑥𝑥𝑥))
)
− 1

𝑐

𝑛∑︁
𝑖=1

log

(
𝑛∑︁

𝑗=1, 𝑗≠𝑖

exp(−𝑐 ˆ𝑑 𝑗 (𝑥𝑥𝑥))
)

⊲ Eq. 9.

3:
˜𝑑2 (𝑥𝑥𝑥) = min_two_sum - min_dist

4: 𝑑0 (𝑥𝑥𝑥) = − 1

𝑎
log(exp(−𝑎 ˜𝑑2 (𝑥𝑥𝑥)) + exp(−𝑎𝑑0)) ⊲ 𝑑0 (𝑥𝑥𝑥) ≈ min{ ˆ𝑑𝑠2 (𝑥𝑥𝑥), 𝑑0}

4.2.1 Discussion.
Our resulting construction of the adaptive influence radius 𝑑0 (𝑥𝑥𝑥) is at least 𝐶1

, essentially because

all its constituent components are differentiable. However, we must further explain why this

deliberately constructed combination of overestimation and underestimation in turn guarantees

that the final potential𝜓 ′ (𝑥𝑥𝑥) is differentiable, whether𝜓 ′ (𝑥𝑥𝑥) is defined by Eq. 4 or Eq. 5. In section

1 of the supplementary material, Observation 5 notes that𝜓𝑔 (𝑥𝑥𝑥) (the targeted constant surface𝜓

value on the closest object) is a Heaviside step function that is discontinuous on the equidistant

curve between the closest and the second closest object to 𝑥𝑥𝑥 . Therefore,𝜓𝑔 (𝑥𝑥𝑥) is not differentiable
whenever

ˆ𝑑𝑠1 (𝑥𝑥𝑥) = ˆ𝑑𝑠2 (𝑥𝑥𝑥). In particular, the first order partial derivatives of 𝜓𝑔 (𝑥𝑥𝑥) are linear

combinations of Dirac delta functions, whose values are almost everywhere zero except query

points precisely on the equidistant curves. Considering the differentiability of the general form of

potential modulation given by Eq. 3 in Section 1 of our supplementary material, the only hope to

hide the discontinuity of

𝜕𝜓𝑔 (𝑥𝑥𝑥 )
𝜕 𝑥

and

𝜕𝜓𝑔 (𝑥𝑥𝑥 )
𝜕 𝑦

is to let 1 − 𝛼 (𝑥𝑥𝑥) be zero when ˆ𝑑𝑠1 (𝑥𝑥𝑥) = ˆ𝑑𝑠2 (𝑥𝑥𝑥), since
0 · 𝛿 (𝑥𝑥𝑥) = 0. This means we need

𝑑 (𝑥𝑥𝑥 )
𝑑0 (𝑥𝑥𝑥 ) ≥ 1 when

ˆ𝑑𝑠1 (𝑥𝑥𝑥) = ˆ𝑑𝑠2 (𝑥𝑥𝑥).
In our case, since 𝑑

1

is an overestimation of
ˆ𝑑𝑠1 and 𝑑

2

is an underestimation of
ˆ𝑑𝑠1 + ˆ𝑑𝑠2 , then no

matter which of
ˆ𝑑𝑠2 or 𝑑0 is smaller,

𝑑 (𝑥𝑥𝑥 )
𝑑0 (𝑥𝑥𝑥 ) will always be an overestimation. In particular, when

ˆ𝑑𝑠1 (𝑥𝑥𝑥) = ˆ𝑑𝑠2 (𝑥𝑥𝑥), we will always have
𝑑 (𝑥𝑥𝑥 )
𝑑0 (𝑥𝑥𝑥 ) ≥ 1 and thus

𝛼 (𝑥𝑥𝑥) = 𝑟𝑎𝑚𝑝

(
𝑑 (𝑥𝑥𝑥)
𝑑0 (𝑥𝑥𝑥)︸︷︷︸
≥ 1

)
= 1,

which ultimately gives 1 − 𝛼 (𝑥𝑥𝑥) = 0 and ∇𝛼 (𝑥𝑥𝑥) = 0. Hence, this construction conceals the

discontinuity in𝜓 ′ (𝑥𝑥𝑥) and ∇𝜓 ′ (𝑥𝑥𝑥) caused by𝜓𝑔 (𝑥𝑥𝑥). We leave the detailed proof of𝜓 ′ (𝑥𝑥𝑥) being a𝐶1

function to the supplementary material (Section 2). At this point, Eq. 4 has become differentiable.

However, Eq. 5 is still not differentiable due to the closest point function.

4.3 Replacing the Closest Point Function
Let us complete our task by removing the discontinuities caused by the closest boundary point

function, 𝑐𝑝 (·). Instead of mapping the query point 𝑥𝑥𝑥 to the closest boundary point on its closest

7
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object, we generalize this idea by replacing 𝑐𝑝 (·) with a continuously differentiable function

mapping 𝑥𝑥𝑥 to some point on the boundary of its closest object. In addition to at least first-order

differentiability, an ideal replacement would map query points to the boundary in a manner that

yields relatively uniformly distributed points on the boundary. In other words, given a set of query

points evenly scattered on some isocontour of the LSE distance function, the perfect alternative

should have their images evenly spaced along the boundary.

However, even if we find such a map, the image itself is generally a 𝐶0
function, since polygonal

boundary geometry is not differentiable at its vertices. To circumvent this issue, we use the zero

isocontour of the LSE distance function as a proxy for the polygonal boundary of the closest object

to 𝑥𝑥𝑥 . The implementation details of discretizing the LSE boundary are described in Appendix B.

Therefore, Eq. 5 can be rewritten as:

𝜓 ′ (𝑥𝑥𝑥) = 𝜓 (𝑥𝑥𝑥) + (𝜓𝑔 (𝑥𝑥𝑥) −𝜓 (𝑚𝑚𝑚(𝑥𝑥𝑥))) (1 − 𝛼 (𝑥𝑥𝑥)), (10)

where𝑚𝑚𝑚(𝑥𝑥𝑥) : R𝑛 → 𝜕 LSE𝑂𝑖
∈ R2 is the 𝐶1

function that we will use to replace 𝑐𝑝 (·), given that 𝑂𝑖

is the closest object to 𝑥𝑥𝑥 . Below, we propose a possible 𝐶1
mapping for the 2D setting we consider.

To tackle this problem, we will interpret the Euclidean coordinates of our query point 𝑥𝑥𝑥 = (𝑥,𝑦)
as a complex number 𝑧 = 𝑥 + 𝑖𝑦 ∈ C and incorporate the idea of the Schwarz-Christoffel (SC)

exterior mapping to construct𝑚𝑚𝑚(𝑥𝑥𝑥) =𝑚𝑚𝑚(𝑧). Being almost everywhere biholomorphic (Appendix A)

in our finite and bounded domain of interestD, the SC exterior mapping, defined by 𝑓 : D→ V ⊆C,
maps the interior of the complex unit disk, D = {Z ∈ C : |Z | < 1}, to the exterior of the polygon,

V. Then, we can write the inverse of the SC exterior mapping as 𝑓 −1 : V → D. Following the

conventional definition, we name D as the canonical domain and V as the physical domain.

Now, we propose the construction of a three-step mapping𝑚𝑚𝑚(𝑧). With the complex coordinate

𝑧, we first compute 𝑤 = 𝑓 −1 (𝑧), such that |𝑤 | < 1 is a point in D. Next, we scale 𝑤 and thereby

project𝑤 to a point𝑤 ′
on a complex circle within an epsilon distance of the boundary of the unit

disk, defined as𝑤 ′ = (1−𝜖) 𝑤
|𝑤 | ∈ C. Finally, we calculate the SC exterior mapping, 𝑓 (𝑤 ′), mapping

𝑤 ′
in the canonical domain back to a point on the boundary of the polygon in the physical domain.

In our implementation, given a query point 𝑥𝑥𝑥 ∈ R2 with object 𝑂𝑖 being its closest object, we

first discretize the LSE boundary of 𝑂𝑖 in order to create a polygonal input for the inverse of the

SC exterior map. We name the new polygon 𝑃𝑖 with all vertices on the LSE boundary of 𝑂𝑖 as the

proxy polygon of 𝑂𝑖 . For the SC exterior mapping, we use the extermap function provided by the

MATLAB SC Toolbox ([Driscoll 1996]). To reduce time spent on computing the extermap and its

inverse, the proxy polygon should contain as few vertices as possible. We achieve this by a simple

curvature-dependent remeshing procedure.

We illustrate our overall mapping procedure in Figure 4 and summarize the process in Algorithm

2. Finally we make a remark on the differentiability of this construction of𝑚𝑚𝑚(𝑥𝑥𝑥). As we only care

Algorithm 2 Schwarz-Christoffel Mapping for𝑚𝑚𝑚(𝑥𝑥𝑥)
Input: A query point 𝑥𝑥𝑥 = (𝑥,𝑦), an object 𝑂 , a constant 𝜖 > 0.

Output:𝑚𝑚𝑚(𝑥𝑥𝑥).
1: 𝑧 = 𝑥 + 𝑖𝑦 ⊲ Convert a 2D coordinate to a complex number

2: 𝑃 = Discretize_LSE_boundary(𝑂)
3: 𝑤 = Inverse_SC_exterior_map(𝑃, 𝑧) ⊲ 𝑤 is in the Canonical Domain (unit disk).

4: 𝑤 ′ = (1 − 𝜖) 𝑤
|𝑤 | ⊲ Scaling𝑤 ′

to be 𝜖 close to the boundary of the unit disk.

5: 𝑚𝑚𝑚(𝑥𝑥𝑥) = SC_exterior_map(𝑃,𝑤 ′) ⊲ Back to the Physical Domain

about the differentiability of𝑚𝑚𝑚(𝑥𝑥𝑥) in R2, we do not expect𝑚𝑚𝑚(𝑥𝑥𝑥) to be analytic in C, while we do
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Fig. 4. An illustration for Algorithm 2.

require the real and complex components of𝑚𝑚𝑚(𝑥𝑥𝑥), corresponding to the x- and y-coordinates in

R2, respectively, to both be differentiable in R2. This suffices to prove𝑚𝑚𝑚(𝑥𝑥𝑥) is differentiable in R2,
as all components of𝑚𝑚𝑚(𝑥𝑥𝑥) are differentiable in R2. In particular, although scaling𝑤 in the second

step of𝑚𝑚𝑚(𝑥𝑥𝑥) is not analytic in C, both of its real and complex components are differentiable. A

detailed proof of the componentwise differentiability of𝑚𝑚𝑚(𝑥𝑥𝑥) is provided in Appendix C.

5 RESULTS
We combined the LogSumExpMinimal Distance (Section 4.1), self-adaptive influence radius (Section

4.2), and our alternative to 𝑐𝑝 (𝑥𝑥𝑥) (Section 4.3) all together to construct our proposed potential

modulation function𝜓 ′
that is almost everywhere 𝐶1

. We compare the three different modulated

potentials𝜓 ′
designed by Bridson et al. [2007], Chang et al. [2022], and ourselves to show that our

𝜓 ′
is indeed 𝐶1

, and demonstrate the benefits of such a 𝐶1
potential field. Figure 6 shows tests on a

collection of complex obstacles, where the advantages of our approach are apparent.

Flowing Particles. While the isocontour visualizations indicate the flow field structure and direc-

tion, they do not indicate the speeds. To do so, we flow passive particles through various example

fields v, as shown in our supplementary video. In our implementation, we applied a simple Euler’s

method to update the positions of particles. The results show that the discontinuities present in the

previous constructions prevent particles from flowing naturally and smoothly through the flow

field, while ours offers more attractive results.

With small time steps (e.g., 𝑑𝑡 = 2 × 10
−4
) most particles will adhere to the same isocontour as

the one they started on, throughout the animation. For larger time steps some isocontour drift

becomes apparent, but in a typical application scenario this drift causes no visual artifacts. However,

if desired, we can force every particle to strictly follow its initial isocontour line with larger time

steps (e.g., 𝑑𝑡 = 2 × 10
−3
) via an isocontour error correction procedure after each step. Since our

𝜓 ′
is now 𝐶1

, such a correction can be achieved by adapting a variant of Newton’s method by

Chopp [2001], which requires only ∇𝜓 ′
: we store the potential value of each particle once it is

seeded and project the updated location of the particles to the closest isocontour that shares the

same initial potential. This technique conveniently compensates for drift that can arise during

particle time integration, especially for large time steps, albeit at the cost of the extra evaluations

of𝜓 ′
and ∇𝜓 ′

required for the Newton’s method. Our video also includes a comparison with and

without isocontour error correction. Later (in Section 6), we provide more details about the extra

9
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(a) (b) (c)

(d) (e) (f)

Fig. 5. (Scenario 1) The zero isocontours for several polygonal objects in an LSE distance field are shown in
red. (a) The contour plot of a𝐶0 distance field using themin{·} function. (b) The contour plot of multiplicative
𝜓 ′ with 𝑑0 (𝑥𝑥𝑥) ≡ 0.1. There are discontinuities between the objects. (c) The contour plot of additive 𝜓 ′ with
self-adaptive 𝑑0 (𝑥𝑥𝑥). Discontinuities are caused by 𝑐𝑝 (𝑥𝑥𝑥) at the nonconvex corners of the plus-shape. (d) The
contour plot of a 𝐶1 distance field using Eq. 6 and Eq. 7. (e) The contour plot of multiplicative𝜓 ′ with our
self-adaptive influence radius, where discontinuities are avoided. (f) The contour plot of additive 𝜓 ′ with
self-adaptive 𝑑0 (𝑥𝑥𝑥) and SC exterior map. Discontinuities at the nonconvex corners are removed.

computation time caused by isocontour error correction (referred to briefly as correction). The

decision of whether or not to use the isocontour error correction will be application-dependent.

6 PERFORMANCE
While our focus was on achieving smoothness of the resulting vector fields, performance is neverthe-

less important to consider. Here we discuss the time performance of our prototype implementation.

Cost scales in proportion to the number of particles and we consider only the particles remaining

inside our domain of interest, D, at any point in time. Therefore, in general, the time consumption

for one frame of our animations will decrease as particles gradually exit the domain. We coded our

method in MATLAB and recorded time information using MATLAB’s built-in functions tic and
toc. All of the following time data are collected on a machine with an Intel(R) Xeon(R) Silver 4316

CPU @ 2.30GHz CPU processor.

We evaluate the performance of our method from two different aspects. First, we compare the

amount of time spent to generate each frame (of animation) between the original Curl-Noise

by Bridson et al. [2007], the multiplicative and additive designs by Chang et al. [2022], and our

10
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(a) (b) (c) (d)

Fig. 6. (Scenario 2) Comparison of potential𝜓 ′, modulated by Bridson et al. [2007], Chang et al. [2022] and
our differentiable approach. (a) 𝜓 ′ modulated by the basic multiplicative ramping strategy (Eq. 3). (b) 𝜓 ′

modulated by the corrected multiplicative ramping strategy (Eq. 4). (c)𝜓 ′ modulated by the additive ramping
strategy (Eq. 5). (d) 𝜓 ′ modulated according to our method. The LSE (proxy) boundaries of the polygonal
objects are shown in red.

Table 1. Comparison of Time per Frame Under Different Methods.
Time format: mean ± std ∈ [min, max]. Time Unit: seconds

Methods Scenario 1 (Figure 5) Scenario 2 (Figure 6)

Bridson et al. [2007] 0.66 ± 0.39 ∈ [0.12, 1.87] 1.05 ± 0.60 ∈ [0.26, 2.77]

Chang et al. [2022] (Multiplicative) 0.72 ± 0.36 ∈ [0.12, 1.98] 1.07 ± 0.60 ∈ [0.17, 2.88]

Chang et al. [2022] (Additive) 0.72 ± 0.37 ∈ [0.12, 1.87] 1.06 ± 0.62 ∈ [0.13, 2.89]

Ours (without correction) 0.86 ± 0.30 ∈ [0.28, 1.43] 1.07 ± 0.48 ∈ [0.38, 2.20]

Ours (with correction) 3.38 ± 1.69 ∈ [0.65, 8.45] 3.91 ± 2.43 ∈ [0.83, 10.96]

method. The comparison is made in the context of Figure 5 (Scenario 1) and Figure 6 (Scenario 2);

the animations can be viewed in our supplementary material. Based on an animation with 1000

frames, we report the numerical time results in Table 1 in the form mean ± standard deviation
∈ [min, max] with seconds as the unit of time. The decreasing trend of time per frame can be

clearly visualized in Figure 7. It can be seen that our method is slightly more expensive than its

predecessors when error correction is disabled; this is the typical setting we use. If error correction

is desired, the computational cost jumps significantly, so it should only be used if one strictly

requires that particles stay on their initial streamlines.

Next, we consider how time per frame changes as the size of our problems increases. As the

computational cost for the Schwarz-Christoffel (SC) exterior mapping is the dominating component,

we focus on the factors that affect the SC exterior mapping. Two facets that vary the problem size

are the number of polygons and the number of vertices. We consider scenarios with 1, 2, 4, 8, or

16 objects defined in the domain D, chosen to be regular polygons with 4, 6, 8, 12, or 16 vertices.

Figure 8 demonstrates the exact locations of the objects and Table 2 records the time per frame for

each case. Roughly, cost increases proportionally to the number of objects and to the number of

vertices.
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(a) (b)

Fig. 7. A visualization of the overall decreasing trend of time per frame in the context of Figure 5 (Scenario 1)
and Figure 6 (Scenario 2). Our method is typically more expensive, but not by a large margin.

(a) (b) (c)

(d) (e)

Fig. 8. Locations of the regular polygons used for our scaling evaluation. The five plots above use dodecagons
for illustration; our benchmark process also tests squares, hexagons, octagons, decagons, and hexadecagons.
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Table 2. Run Time Performance as Problem Scales Up.
Time format: mean ± std range in [min, max]. Time Unit: seconds.

# of

objects

# of

vertices

4 6 8 12 16

1

0.28 ± 0.09 0.34 ± 0.14 0.80 ± 0.33 0.76 ± 0.28 1.71 ± 0.67

range in [0.13, 0.60] range in [0.12, 0.75] range in [0.27, 1.76] range in [0.31, 1.53] range in [0.58, 3.09]

2

0.33 ± 0.11 0.42 ± 0.14 1.13 ± 0.42 1.87 ± 0.65 1.99 ± 0.76

range in [0.16, 0.68] range in [0.17, 0.90] range in [0.40, 2.39] range in [0.69, 3.14] range in [0.74, 3.63].

4

0.37 ± 0.12 0.49 ± 0.17 1.26 ± 0.52 2.11 ± 0.91 2.37 ± 1.10

range in [0.18, 0.79] range in [0.23, 1.05] range in [0.48, 2.85] range in [0.73, 4.62] range in [0.69, 4.90].

8

0.63 ± 0.18 1.06 ± 0.41 1.76 ± 0.67 2.01 ± 0.73 2.91 ± 1.12

range in [0.32, 1.01] range in [0.38, 1.86] range in [0.58, 3.24] range in [0.75, 4.09] range in [1.00, 5.37].

16

1.09 ± 0.28 1.88 ± 0.65 2.60 ± 0.86 3.46 ± 1.14 3.96 ± 1.30

range in [0.61, 2.08] range in [0.76, 3.66] range in [1.19, 4.80] range in [1.66, 6.17] range in [1.95, 7.16].

7 CONCLUSIONS AND FUTUREWORK
We have presented an extension of the Curl-Noise method for procedural flow design in two

dimensions to avoid obvious artifacts due to non-differentiability in the presence of obstacles. Our

results demonstrate that the method is effective in producing smooth flows for a range of scenes

with polygonal obstacles in mutual proximity. Although we have only explored static obstacles, we

believe our approach could be naturally extended to moving obstacles.

One drawback of our method is its additional complexity. While the smoothed distance function

and modified influence radius are relatively inexpensive, the existing Schwarz-Christoffel mapping

procedure (extermap) is somewhat expensive to evaluate for polygons with many vertices. We

noticed that the SC Toolbox we are currently using is unable to accurately calculate the SC exterior

map for a polygon with hundreds of vertices in a reasonable amount of time. Further research

into an accurate, robust, scalable, and optimized numerical algorithm (and its implementation) to

construct and evaluate the Schwarz-Christoffel exterior map would therefore be valuable.

Another important challenge is extending to three dimensions. While the smooth approximations

to themin{·} function and the self-adaptive 𝑑0 can naturally be generalized to design 3D fluid flows,

we do not yet have a satisfying 𝐶1
alternative to 𝑐𝑝 (𝑥𝑥𝑥) in 3D. It is nontrivial to extend the idea of

the Schwarz-Christoffel exterior mapping from 2D to 3D since there is no complex counterpart for

3D Euclidean coordinate systems. One possibility we have preliminarily explored is to approach the

boundary of the objects from a query point using a Ray Marching algorithm, obeying the following

update rule:

𝑥𝑥𝑥 B 𝑥𝑥𝑥 − 𝑑 (𝑥𝑥𝑥)∇𝑑 (𝑥𝑥𝑥). (11)

To maintain the differentiability of our method, this expression requires ∇𝑑 (𝑥𝑥𝑥) to be a 𝐶1
function.

It follows that 𝑑 (𝑥𝑥𝑥), as well as ˆ𝑑𝑖 (𝑥𝑥𝑥), 𝑖 ∈ [𝑛], should be at least 𝐶2
. Currently, the LSE-based

distance constructed by Madan and Levin [2022] only guarantees the continuity of the first order

derivative of
ˆ𝑑𝑖 (𝑥𝑥𝑥), 𝑖 ∈ [𝑛]. Although one can achieve second order differentiability by slightly

modifying the weight function of Madan and Levin [2022] such that
𝜕2 𝑤ℓ

𝜕 𝜙2

ℓ

= 0,∀ℓ ∈ 𝐹𝑖 ,∀𝑖 ∈ [𝑛],
where 𝐹𝑖 is set of primitives composing the object 𝑂𝑖 (more details are provided in Section 3 of our

supplementary material), ∇𝑑 (𝑥𝑥𝑥) usually experiences sudden changes near non-convex corners of

objects. Unfortunately, we have found that this sudden change in the gradient results in strong

visual artifacts, even in 2D scenarios, rendering this approach impractical.

13
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Finally, we would like to pursue further optimizations for our method and its implementation.

Since each particle’s calculation is independent, a parallelized implementation would naturally

provide a convenient speedup, e.g., on GPU.
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A SC EXTERIOR MAP IS BIHOLOMORPHIC ALMOST EVERYWHERE
Here we argue that the SC exterior mapping is almost everywhere biholomorphic in a finite

domain of interest, D. The standard SC mapping, which maps the upper-half plane onto the

interior of a polygon, is the biholomorphic function whose existence is assured [Nehari 1952] by

the Riemann Mapping Theorem. As mentioned by [Driscoll 1996], the standard SC mapping is

analytic in C+ \{𝑧1, 𝑧2, · · · , 𝑧𝑛}, where the 𝑧𝑖 are pre-vertices, and it can be continuously extend to

C+. Composing the standard SC mapping with a Möbius transformation, we can map the interior of

a unit disk to the interior of a polygon, which is called the SC disk mapping. Notice that a Möbius

transformation is invertible and its inverse is another Möbius transformation. Therefore, except for

the non-differentiability on the polygon vertices, only two other points on the boundary of the

polygon will be non-differentiable due to the Möbius transformation and its inverse. Therefore, the

SC disk mapping is still almost everywhere (in the mathematical sense) biholomorphic.

In our case, as the query points are located in the exterior of the polygon, we wish to map the

interior of a unit disk to the exterior of a polygon, known as the SC exterior map. This can be done

by simply reversing the order of the polygonal vertices when we construct the SC disk map. The
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explicit formula of this map is [Henrici 1974]:

𝑓 (𝑧) = 𝐴 + 𝐵

∫ 𝑧

0

𝑠−2
𝑛∏

𝑘=1

(𝑠 − 𝑧𝑘 )𝛽𝑘𝑑𝑠, (12)

where 𝑧𝑘 are the pre-vertices on the complex unit circle and −𝛽𝑘𝜋 defines the exterior angles of

the polygon. Apart from the sources of non-differentiability mentioned above on the boundary

of the polygon, the SC exterior mapping introduces another singular point in the interior of the

unit disk, which is the pre-image of ∞. In the SC Toolbox, the singular point is selected to be

the origin of the unit disk. Therefore, as our work considers a finite and bounded domain D, we

will never encounter the singular point in the process. Because there are only a finite number

of non-differentiable points on the boundary of the polygon, we conclude that the SC exterior

mapping is almost everywhere biholomorphic.

B DISCRETIZING THE LOGSUMEXP (LSE) BOUNDARY
We describe the implementation details of how we explicitly discretize the smoother LSE boundaries

for polygonal objects; this new mesh is necessary for constructing the SC exterior map. Given an

object 𝑂 given as a polygon, we first finely subsample all edges of the object in counterclockwise

order and denote the sample points as 𝑝1, 𝑝2, · · · 𝑝𝑀 . Then, we use the variant of Newton’s method

proposed by Chopp [2001] to move these points onto the LSE boundary of𝑂 , creating a new explicit

sampling of it; notably, this Newton search method requires only gradients. As pointed out by

Madan and Levin [2022], their LSE distance is everywhere 𝐶1
except for points on the original

polygonal boundaries of objects. Therefore, in order to obtain meaningful gradient information

within the LSE distance field to kick off the Newton’s method, we shift the sampled points to be 𝜖

away from the polygonal boundary along the outward tangential direction of the edges where the

sample points are initially created. The black dots in Figure 9(a) are one such set of initial guesses

for Newton’s method. Hence, applying Newton’s method, we obtained our first discretization of

the LSE boundary of the given object, such as the example provided in Figure 9(b).

This initial discretization yields an LSE boundary polygon with thousands of vertices, where each

vertex corresponds to a sample point 𝑝𝑘 , 𝑘 ∈ [𝑀]. However, it is computationally expensive to find

the SC exterior map and its inverse with respect to polygons with so many vertices, even if both

the SC exterior map and its inverse can be precomputed. Therefore, we adopt an extremely simple

scheme to reduce the total number of vertices. Let 𝑝1, 𝑝2, · · · , 𝑝𝑀 be the points on the LSE boundary

and let 𝑃 be the polygon defined by 𝑝1, 𝑝2, · · · , 𝑝𝑀 . We consider all consecutive pairs of edges of

𝑃 , and if their three points are within a small angle threshold of being collinear, then we remove

the middle vertex of the three, resulting in the final polygon 𝑃 . In Figure 9(c), we demonstrate an

example of this procedure for a star-shaped object. In general, alternative curvature-dependent

remeshing strategies could naturally be substituted provided they still effectively sample the LSE

boundary.

In our implementation, we then precompute the SC exterior map (and its inverse) with respect

to the final (static) polygon 𝑃 , reusing it across frames.

C DIFFERENTIABILITY OF ALGORITHM 2 IN R2

Claim: Our construction of𝑚𝑚𝑚(𝑥𝑥𝑥) : R2 → 𝜕 LSE𝑂𝑖
in Section 4.3 is differentiable in both its real and

imaginary components.

Proof. As described in Section 4.3,𝑚𝑚𝑚(𝑥𝑥𝑥) with respect to the proxy polygon consists of three steps.

We will prove the statement by showing the real and imaginary components are differentiable in

each step.
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(a) (b) (c)

Fig. 9. An example of discretizing the LSE boundary of a given object following the process described above.
Isocontours represent the LSE distance field of the star. (a) Black dots are the initial guesses for the Newton’s
method, equally spaced on the edges of the star, before being pushed away to be 𝜖-close to the boundary of the
object. (b) Blue dots are points on the zero isocontour found by the Newton’s method. The red line segments
connecting the blue dots represents the new polygon 𝑃 . (c) Most of the blue dots in (b) are removed, while
the remaining ones characterize the LSE boundary of the star. The red segments connecting the remaining
blue dots define the final proxy polygon 𝑃 .

Step 1: The inverse of SC exterior map. In Appendix A, we showed that the SC exterior map is a

biholomorphism almost everywhere, except at a finite number of points on the boundary of the

polygon in the physical domain and the unit disk in the canonical domain. Then the inverse of the

SC exterior map is also almost everywhere complex differentiable. Therefore, both of its real and

imaginary components must be differentiable in R2, since they must satisfy the Cauchy-Riemann

Equation.

Step 2: Scaling. After obtaining𝑤 = 𝑓 −1 (𝑧) after Step 1, we scale𝑤 to be 𝜖-close to the boundary of

the unit disk by setting𝑤 ′ = (1 − 𝜖) 𝑤
|𝑤 | . Let𝑤 = 𝑎 + 𝑏𝑖; we want to show the scaling operation is

componentwise differentiable by first writing𝑤 ′
in its component form:

𝑤 ′ = (1 − 𝜖) 𝑤|𝑤 | =
(1 − 𝜖)𝑎
√
𝑎2 + 𝑏2

+ 𝑖 (1 − 𝜖)𝑏
√
𝑎2 + 𝑏2

(13)

It follows that ℜ𝔢(𝑤 ′) = (1−𝜖 )𝑎√
𝑎2+𝑏2

and ℑ𝔪(𝑤 ′) = (1−𝜖 )𝑏√
𝑎2+𝑏2

are both differentiable everywhere except

the origin. However, as discussed in Appendix A, our finite and bounded domain of interest

never touches the origin in the canonical domain. Therefore, under our construction, the real and

imaginary parts of the second step are differentiable.

Step 3: SC exterior map. The reason is almost the same as that of Step 1, since the SC exterior map is

almost everywhere holomorphic.
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