Supplemental: Curl-Flow: Boundary-Respecting Pointwise Incompressible Velocity Interpolation for Grid-Based Fluids

1 Bilinear velocity interpolation is divergent

To see the problem with standard interpolants, define a linear interpolation function lerp(a, b, t) = (1 - t)a + tb and construct the bilinearly interpolated velocity at a point P = (x, y) (see Figure 1) as

$$u(x,y) = lerp(lerp(u_0, u_1, \alpha_u(x)), lerp(u_2, u_3, \alpha_u(x)), \beta_u(y))$$

$$v(x,y) = lerp(lerp(v_0, v_1, \alpha_v(x)), lerp(v_2, v_3, \alpha_v(x)), \beta_v(y))$$

where the α and β functions return edge fractions $(0 \le \alpha, \beta \le 1)$ for the data indicated by their subscripts. This interpolated velocity is not analytically divergence-free in general:

$$\nabla \cdot \mathbf{u} = \frac{lerp(u_1 - u_0, u_3 - u_2, \beta_u(y)) + lerp(v_2 - v_0, v_3 - v_1, \alpha_v(x))}{h}$$

\$\neq 0\$

The grid cell width h appears due to the derivatives of α and β .

Figure 1: **Direct Velocity Interpolation:** To compute a pointwise velocity at point P = (x, y) in a staggered velocity grid, one (bilinearly) interpolates the nearby velocity samples component by component.

2 Convergence table of Figure 25.

Table 1: Data for convergence test of Figure 25: error and the order of convergence (within parentheses) are measured using a L_{∞} norm under grid refinement. Both direct (bilinear) velocity interpolation and Curl-Flow interpolation yield similar convergence.

Grid Resolution	16^{2}	32^{2}	64^{2}	128^{2}	256^{2}	512^{2}
Direct Velocity Interpolation (L_{∞})	3.733e-02 (-)	9.554e-03 (1.966)	$\begin{array}{c} 2.396\text{e-}03 \\ (1.996) \end{array}$	5.927e-04 (2.015)	$\begin{array}{c} 1.412 \text{e-} 04 \\ (2.070) \end{array}$	2.824e-05 (2.322)
Curl-Flow (L_{∞})	3.787e-02 (-)	1.073e-02 (1.819)	$\begin{array}{c} 4.789 \text{e-} 03 \\ (1.165) \end{array}$	$\begin{array}{c} 1.845 \text{e-} 03 \\ (1.376) \end{array}$	5.050e-04 (1.870)	4.183e-05 (3.594)