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Abstract
We present the first spatially adaptive Eulerian fluid animation method to support challenging viscous liquid
effects such as folding, coiling, and variable viscosity. We propose a tetrahedral node-based embedded finite
volume method for fluid viscosity, adapted from popular techniques for Lagrangian deformable objects. Applied
in an Eulerian fashion with implicit integration, this scheme stably and efficiently supports high viscosity fluids
while yielding symmetric positive definite linear systems. To integrate this scheme into standard tetrahedral mesh-
based fluid simulators, which store normal velocities on faces rather than velocity vectors at nodes, we offer
two methods to reconcile these representations. The first incorporates a mapping between different degrees of
freedom into the viscosity solve itself. The second uses a FLIP-like approach to transfer velocity data between
nodes and faces before and after the linear solve. The former offers tighter coupling by enabling the linear solver
to act directly on the face velocities of the staggered mesh, while the latter provides a sparser linear system and
a simpler implementation. We demonstrate the effectiveness of our approach with animations of spatially varying
viscosity, realistic rotational motion, and viscous liquid buckling and coiling.

1. Introduction

Viscosity in fluids acts to damp out relative or shearing mo-
tions, resulting in highly damped motion and the character-
istic coiling and folding of "thick" liquids such as honey
and syrup. Despite the ubiquity of such liquids, challenges
remain in our ability to animate them accurately and ef-
ficiently. For example, viscous forces are commonly pre-
sented in terms of Laplacian smoothing operations applied
independently to each component of the velocity field, a
simplification that fails near liquid surfaces [BB08] or when
viscosity varies spatially [REN∗04]. In practice, this breaks
even rigid rotation, and prevents more complex coiling and
buckling effects. These shortcomings were addressed only
recently for the uniform grid case [BB08]. However, this
leaves unresolved the important case of spatially adaptive
liquid animation methods which provide enhanced scalabil-
ity and flexibility using mesh elements of differing sizes
and configurations. Every adaptive Eulerian method for
fluid animation presented to date, whether based on oc-
trees or tetrahedra, has either neglected viscosity entirely
[LGF04, CFL∗07, SBH09, BXH10, BBB10] or applied the
simplified Laplacian model [HK05, ETK∗07, MCP∗09].

The goal of this paper is to introduce an adaptive Eulerian
liquid simulation technique based on tetrahedral meshes that

supports the full set of purely Newtonian viscous behaviours,
including rotation, buckling, coiling, and variable viscosity.
This enables the creation of scenes featuring both large bod-
ies of viscous liquid as well as important smaller details. To
achieve this, we make two contributions:

• Nodal Finite Volume Method for Eulerian Viscosity:
We develop a simple, node-based Eulerian discretization
of variable-coefficient viscosity on tetrahedral meshes
by adapting concepts from the animation of deformable
solids.

• Mapping between Node- and Face-based Velocities: To
incorporate this nodal scheme into standard staggered ve-
locity fluid simulators, we present two approaches to map
between these distinct sets of degrees of freedom.

2. Related Work

Methods to animate viscous materials can be grouped into
Eulerian and Lagrangian approaches. The earliest Eulerian
treatment of viscosity in graphics was by Foster and Metaxas
[FM96], who used an explicit finite difference approach
based on the classic marker-and-cell scheme [HW65]. How-
ever, the stability restriction ∆t < O(ρ∆x2/µ) for explicit
integration of viscosity necessitates extremely small time
steps, making this method inefficient for even moderate vis-
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Figure 1: A buckling viscous sheet, alongside a cutaway vi-
sualization of the adaptive tetrahedral simulation mesh.

cosities. Stam addressed this by adopting an unconditionally
stable fully implicit scheme for viscosity which (along with
semi-Lagrangian advection) proved crucial in making the
method practical for graphics applications [Sta99]. Carlson
et al. extended Stam’s implicit viscosity method to free sur-
face liquids [CMVT02], and Falt et al. improved the bound-
ary conditions to support rigid translation [FR03]. Ras-
mussen et al. noted that the preceding approaches applied
a simplified Laplacian form of viscosity which is inaccurate
when viscosity varies spatially [REN∗04]. They presented
a semi-implicit discretization of the variable-coefficient vis-
cosity equations that nonetheless avoids coupling the differ-
ent components of velocity. Batty et al. showed that the fully
coupled equations can instead be discretized with an un-
conditionally stable fully implicit scheme that yields a sym-
metric positive-definite linear system, and demonstrated that
proper treatment of the free surface is vital to handling ro-
tational motions such as buckling [BB08]. It is worth noting
that elastic forces can also give rise to buckling in solids and
non-Newtonian fluids (eg. [GBO04]), however we will focus
on the purely viscous effects of common Newtonian fluids.

While the preceding methods use uniform grids, unstruc-
tured mesh methods for Eulerian viscous fluids have also
been proposed, often using the simplified Laplacian form
of viscosity noted above. Wendt et al. [WBOL07] applied
a finite volume discretization storing both normal and tan-
gential components of velocity on faces of tetrahedra, in
contrast to the more common staggered approach that stores
only the normal components. Elcott et al. [ETK∗07] treated
the vorticity form of the Navier-Stokes equations on a stag-
gered mesh using discrete exterior calculus, again using the
Laplacian form of viscosity. Mullen et al. used the same
discretization on top of an energy-preserving fluid integra-
tor [MCP∗09].

In computational physics there are a vast variety of low
and high order finite element and finite volume discretiza-
tions of the Stokes problem (i.e., tightly coupled viscos-
ity and pressure) on unstructured meshes; however, to our
knowledge Bonito et al. [BPL06] are the only group to ap-

ply them to three-dimensional, high viscosity, free surface
flows. They simulated coiling viscoelastic liquids with a
node-based stabilized tetrahedral finite element method for
the Stokes problem. While their tetrahedral Stokes solver is
potentially adaptive, the use of regular grid advection lim-
ited them to uniformly sized elements. Our approach is also
distinguished by a focus on simplicity and efficiency moti-
vated by the needs of animation. For example, we treat vis-
cosity and pressure separately for efficiency, and use only
basic (non-stabilized) linear elements. Our method avoids
pressure instabilities and locking by integrating conveniently
with the common staggered velocity representation for Eu-
lerian fluids.

Lagrangian treatments of viscoelastic deformable objects
are also highly relevant to our work. O’Brien et al. applied
the finite element method (FEM) to deforming and fractur-
ing viscoelastic and viscoplastic materials [OH99, OBH02]
using explicit time integration. This included a proper model
for viscosity, often referred to as damping in the context of
solids. Teran et al. presented an equivalent and geometrically
intuitive finite volume method (FVM) for viscoelastic solids,
and noted that since damping forces are typically linear in
velocity they can be treated implicitly to allow larger time
steps [TBFH03]. Irving et al. extended this method to han-
dle inverted elements [ITF04] and incompressible materi-
als [ISF07]. Bargteil et al. added remeshing to support large
plastic flows [BHWT07], and Wojtan and Turk showed that
using an embedded approach can enable faster remeshing by
avoiding the need to generate surface-conforming elements
[WT08]. As a result, this last method is able to handle highly
viscoplastic deformations that approach the behaviour of
mildly compressible fluids. Despite its Lagrangian perspec-
tive, this is the closest relative of our method.

Recently, Bergou et al. derived a viscous thread model
by applying the Rayleigh analogy to elastic rods [BAV∗10].
This one-dimensional model efficiently captures extremely
slender materials that are impossible to achieve with full
volumetric models. On the other hand, it cannot realistically
handle the bulk viscous flows supported by grid-based meth-
ods [BB08]. We therefore pursue adaptive tetrahedral meth-
ods in hopes of better bridging the gap between the extremes
of small details and large volumes.

3. Newtonian Viscous Liquids

Our simulation framework builds on the method of Batty
et al. [BXH10], which uses an adaptive BCC lattice tetra-
hedral mesh to solve the incompressible Euler equations.
This scheme uses an embedded boundary approach to han-
dle non-conforming geometry within the pressure solve, a
semi-Lagrangian method for advection, and a marker level
set method for surface tracking [MMS07]. (Note that while
we use this framework for the underlying simulator, our dis-
cretization is directly extensible to any unstructured mesh-
based method and choice of surface tracker.) We extend this
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Figure 2: A viscous liquid armadillo is dropped on its head.
Adaptivity enables efficient simulation of both the volume of
the body and details such as the tail and claws.

framework with a viscosity model to arrive at the Navier-
Stokes equations. To do so, the viscous step described below
is added immediately prior to the pressure projection step,
with an optional additional pressure projection applied be-
forehand [LSSF06, BB08].

The partial differential equations describing the evolution
of velocity due to viscous forces are:

ρ
∂~u
∂t

= ∇· τ (1)

τ = µ(∇~u+(∇~u)T ) (2)

where~u is velocity, ρ is density, µ is viscosity, τ is deviatoric
stress, and t is time. Viscosity and density are allowed to
vary spatially. The free surface condition is zero traction~t
on the surface:

~t = τ~n = µ(∇~u+(∇~u)T )~n = 0 (3)

where ~n is the surface normal. The no-slip solid condition
requires that the relative velocity be zero along solid bound-
aries:

~u =~usolid (4)

4. Finite Volume Discretization

In approaching this problem, our first thought was to extend
the finite difference method of Batty et al. [BB08] from regu-
lar grids to unstructured meshes. However, on a grid the stag-
gered face velocity components are neatly aligned so that ve-
locity gradients (which define the components of strain rate)
can be easily computed with centered finite differences. This

is not generally true for a staggered tetrahedral mesh: nearby
face normals often point in unrelated directions making ba-
sic finite differences impossible.

Instead, we begin by discretizing the viscosity equations
in a node-based finite volume manner, adhering to the ge-
ometric approach of Teran et al. [TBFH03] for deformable
elastic objects. A full velocity vector is stored at each mesh
node and a linear velocity profile is assumed within each el-
ement, leading to a constant strain rate per element.

We first outline how to compute the velocity gradient, fo-
cusing on a triangular element in 2D for simplicity. We com-
pute the relative edge velocities ~dv1 = ~v1 −~v0 and ~dv2 =
~v2 −~v0, where vi refer to node velocities of the simplex
in question, and construct a 2× 2 matrix Dv with columns
~dv1 and ~dv2 . Similarly we construct a 2× 2 matrix Dx from
columns ~dx1 = ~X1−~X0 and ~dx2 = ~X2−~X0, where ~Xi refer to
node positions. From this we can compute the velocity gra-
dient: Ḟ = DvD−1

x . This extends straightforwardly to three
dimensions, yielding 3×3 matrices instead.

The element’s discrete strain rate tensor ε̇ can then be
computed as the symmetric part of the velocity gradient:

ε̇ =
1
2
(Ḟ + ḞT ) =

1
2
(DvD−1

x +D−T
x DT

v ) (5)

In Newtonian fluids, deviatoric stress τ is linearly related to
strain rate ε̇ through the viscosity coefficient µ:

τ = 2µε̇ (6)

This gives a discrete approximation of (2). To approximate
(1) and thereby compute viscous forces on the mesh nodes,
it remains only to discretize the divergence operator applied
to the per-element stresses. In three dimensions, Teran et al.
describe how this leads to force contributions to each node
of a tetrahedron with the form:

~fi+=
τ

3
(A1N1 +A2N2 +A3N3) (7)

where A jN j are the area weighted normals of the faces of
the tetrahedron bordering node i. A large sparse viscosity
matrix D can then be assembled in the standard way from
the contributions of all the elements.

An implicit (backward Euler) formulation of this problem
has the form:

Mvnew = Mvold +∆tDvnew (8)

where M is a diagonal matrix of lumped nodal masses, ~v
are the nodal velocities, and ∆t is the timestep. This time
integration scheme is unconditionally stable, allowing arbi-
trarily large time steps in the presence of high viscosities.
Our liquid surface does not necessarily align with the tetra-
hedral mesh, so we take an embedded approach [WT08].
Level set values at nodes are used to determine the liquid
fraction for an element (eg. as in marching tetrahedra), and
the resulting mass is divided evenly amongst the incident
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nodes. (We did not pursue the more careful mass distribu-
tion approach used by Wojtan and Turk.) Similar embed-
ded ideas are common amongst Eulerian fluid schemes as
well [ENGF03, BBB07, BB08, BXH10].

Boundary conditions: As with most Eulerian approaches,
our simulation mesh extends beyond the liquid surface. We
use our liquid surface tracker to determine which mesh tetra-
hedra lie outside the surface, and simply ignore them when
constructing the viscosity matrix. This results in no forces
being applied from outside the liquid, which is precisely the
free surface condition of zero traction. Solid boundary no-
slip conditions are applied as Dirichlet conditions that set
vertices on or inside objects to match the object velocity.
These simple first order solid and free surface conditions
were effective for the scenarios we tested; if desired, en-
hanced boundary enforcement could likely be achieved us-
ing more elaborate cut cell or XFEM approaches.

Relation to Lagrangian Methods: In general, this is equiv-
alent to a standard damping model for isotropic linear elastic
deformable objects [OH99, TBFH03], with several conve-
nient simplifications. First, since our Eulerian mesh is fixed
in space there is no distinction between deformed and unde-
formed (or reference) coordinates; the deformation gradient
(which Teran denotes as F) reduces to an identity matrix,
so the Cauchy and Piola-Kirchhoff stresses are equivalent.
Secondly, since we enforce incompressibility as a constraint
via pressure projection, the damping coefficient associated
with the first Lamé parameter λ in the linear elastic consti-
tutive model (i.e., the second coefficient of viscosity) can be
dropped, giving a stress of σ = τ = 2µε̇ as in equation 6. Fi-
nally, the Eulerian perspective implies that elements never
deform, so we avoid the machinery needed to robustly han-
dle ill-conditioning and inversion [ITF04, BHWT07]. This
connection to Lagrangian schemes also illustrates another
potential advantage: an existing unstructured mesh Eulerian
liquid simulator can be readily retrofitted with an appropri-
ately modified damping routine from a deformable object
simulator to support realistic viscous flows.

Solving the System: By analogy to the damping matrix for
solids, our viscosity matrix D will be symmetric negative
definite, as noted by Teran et al. [TBFH03] and outlined in
detail by Robinson-Mosher et al. [RMSF10]. We solve the
resulting symmetric positive definite system using conjugate
gradients, although designing a multigrid method for viscos-
ity would be a useful enhancement.

5. Mapping Between Face and Node Velocities

The above model could be readily inserted into the recent
Lagrangian nodal FEM liquid simulator of Misztal et al.
[MBE∗10]. However, our framework and many related ap-
proaches ( [FOK05, KFCO06, ETK∗07, CFL∗07, MCP∗09,
SBH09, BBB10]) use staggered meshes in which only the
normal component of velocity is stored on each face, as in

Figure 3: Different Degrees of Freedom: Left: In the nodal
finite volume method, full velocity vectors are stored at mesh
nodes indicated by green squares. Right: In a staggered
mesh velocity representation, velocity normal components
are stored on faces indicated by blue dashes.

figure 3, right. This arrangement avoids pressure instabilities
and the need to explicitly treat locking [ISF07, MBE∗10].

Unfortunately, a single element’s face normal components
turn out to be insufficient to estimate strain rate. Three nor-
mal components allow reconstruction of a single 3D ve-
locity vector, and since a tetrahedron has four faces, the
fourth normal component would ordinarily enable construc-
tion of a simple linear profile within the tetrahedron (e.g.,
construct one velocity vector per node from its three incident
face components, and interpolate barycentrically). However,
the discrete incompressibility constraint discards a degree of
freedom [PVW06, KFCO06, Vid09]; any three of the four
face components of a tetrahedron actually give the same ve-
locity vector. This yields a constant velocity over the tetra-
hedron, with a zero gradient and thus a zero discrete strain
rate.

Clearly a method based on face normal velocities will re-
quire a larger stencil to support viscosity, but choosing an
appropriate stencil and discretizing the velocity gradients
initially appears non-trivial. We will present two solutions
based on exploiting the node-based discretization above.

5.1. An Implicit Coupling Approach

The first approach we propose is to apply the node-based
discretization in combination with a translation from face
degrees of freedom to nodal degrees of freedom. That is,
given a method to interpolate from face velocities to node
velocities, we can incorporate this translation into the linear
system itself. We describe below how this can be done, ex-
tending the framework of Schroeder et al. [SZF11] to tetra-
hedra. (As they note, this idea is closely related to the notion
of "hard bound particles" in the context of Lagrangian de-
formable objects [SSIF07].)

The following small linear system performs a least-
squares reconstruction of a nodal vector velocity from in-
cident faces:

v = (NT N)−1NT u (9)

The rows of matrix N are the normals of the faces surround-
ing a node, u is a vector containing the velocity normal com-
ponents of those faces, and v is the resulting full velocity
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Figure 4: Reconstruction Stencil: Left: The face velocity
components (blue) surrounding a node (green) are used in
the least squares reconstruction of its velocity. Right: At the
surface only faces bordering liquid cells (cyan) are used.

vector for the node. Figure 4, left, illustrates the face com-
ponents used for a given node. Up to relabelling the vectors,
this is the same problem Nu = z described by Klingner et
al. [KFCO06], except that we use faces incident on a node
rather than the faces of a tetrahedron. Since there may be
many more than three faces incident on a node, the system
is over-determined; equation 9 applies the pseudo-inverse to
solve it in a least-squares sense. Note that only faces border-
ing liquid tetrahedra are used in this reconstruction (figure
4, right). We are nevertheless guaranteed that each relevant
node will have sufficiently many face components for a valid
reconstruction (two in 2D, three in 3D).

After computing a matrix (NT N)−1NT for each node, we
can construct a large sparse matrix H that takes the vector of
all face normal velocities, and yields a vector of full veloc-
ities for all nodes. Its transpose, HT , will be a conservative
force distribution operator [SZF11], which transfers nodal
forces onto face normal components of tetrahedra.

This lets us construct a new viscosity matrix D̂ that acts
on face components as:

D̂ = HT DH (10)

In effect, velocities are reconstructed from faces to nodes by
H, the node-based viscous forces are computed by D, and
these forces are mapped back to mesh faces by HT . This
gives a linear system where the unknowns are the face nor-
mal components u:

Munew = Muold +∆tHT DHunew (11)

where the M mass matrices refer to lumped masses for each
face, rather than for each node. Clearly this system will also
be symmetric positive-definite.

An advantage of this method is that it acts directly on the
face components, and can therefore enable tight coupling
to other face-based components of the fluid solver, such as
the pressure projection [RMSF10]. Similarly, this mapping
approach could be used to handle surface tension or solid-
fluid coupling, as described for regular grids by Schroeder et
al. [SZF11].

5.2. A FLIP-like Approach

While the above method has some advantages, the introduc-
tion of the H matrix leads to fairly large stencils, particularly

Figure 5: Sparsity: Face-based solve, left: A single face
(blue segment) affects stress computations for each shaded
triangle (cyan) which links it to every incident face (i.e.,
41 components). Node-based solve, right: A central vertex
(green) is coupled to vertices in its one-ring, (i.e., 2 compo-
nents x 7 nodes = 14 components).

in three dimensions, since the reconstruction of a nodal ve-
locity depends on the potentially large number of incident
faces (see figure 5 for a 2D example.)

Since many animation scenarios do not rely heavily on
tight coupling of viscosity, we now outline a simpler strat-
egy inspired by the popular PIC/FLIP methods. Originally
presented for fluid advection [ZB05], and recently applied
to collisions in hair [MSW∗09], these methods use particles
to represent velocity degrees of freedom, but efficiently com-
pute the pressure forces for incompressibility on an auxiliary
grid. The PIC approach simply interpolates velocities back
and forth between the grid and the particles, adding signif-
icant numerical dissipation. The FLIP approach instead in-
crements the particle velocities with just the change in veloc-
ities that occurred on the grid. This avoids entirely overwrit-
ing particle velocities with smoothed out grid velocities, and
dramatically reduces dissipation. Interestingly, this idea of
reconciling distinct velocity representations by incrementing
rather than overwriting was also suggested by Guendelman
et al. to avoid dissipation when switching between node- and
face-based velocities on octrees [GSLF05]. (In the subse-
quent discussion we use the terms "FLIP" and "PIC" to de-
scribe how data is transferred between degrees of freedom;
we do not use FLIP/PIC for advection, and emphasize that
this choice is orthogonal to our method.)

To apply this idea to our problem, we effectively segre-
gate the FVM linear solve from the two interpolation steps
as follows. First reconstruct nodal velocities from face com-
ponents using either the direct least-squares approach de-
scribed above, or the two-step method of Klingner et al.
[KFCO06]. Next, solve the original FVM formulation of
Section 4 on the nodes alone. Finally, increment the tetrahe-
dral face velocities with the normal component of the inter-
polated change in nodal velocities, in the spirit of FLIP. For
highly viscous liquids the additional smoothing suffered by
a PIC variant is qualitatively small, but for scenes with low
or widely varying viscosity coefficients the FLIP approach
is preferable. This simpler method produces results compa-
rable to the implicit coupling approach, and we use it for all
of our 3D animations.
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Figure 6: A 2D example comparing the different methods on
a collapsing viscous liquid column. Left: Face-based (im-
plicit coupling) solve. Centre: Node-based solve with FLIP
interpolation. Right: Node-based solve with PIC interpola-
tion. All the results are qualitatively similar, with FLIP ap-
pearing slightly less stiff due to reduced dissipation.

6. Results

We provide several examples of viscous fluid effects that
cannot be captured with existing adaptive Eulerian fluid
solvers.

Method Comparisons: To illustrate that the approaches
outlined above produce comparable results, we ran a two-
dimensional example of a column of viscous liquid collaps-
ing. We compare the node-based scheme using FLIP inter-
polation against the face-based (implicitly coupled) scheme,
and against the node-based scheme using PIC interpolation
(figure 6). The results for all three are highly similar, though
the FLIP variant exhibits slightly less damping.

Coiling Column: To test coiling, we emit a stream of vis-
cous liquid (µ=150) at a constant rate onto a flat surface.
Upon impacting the ground the liquid quickly begins to
bend, meander, and coil on itself (refer to the accompany-
ing video).

Buckling Sheet: We modify the above example to emit a
sheet of liquid (µ=100), which buckles symmetrically back
and forth (figure 1). The figure also shows a cutaway of the
adaptive tetrahedral mesh.

Variable Viscosity Tori: In this example we drop three liq-
uid tori onto the ground, with a continuous gradient on the
viscosity coefficient, from µ = 125 at one end of the domain
to µ = 0 at the other (figure 7).

Viscous Armadillo: We drop a high resolution viscous liq-
uid Stanford Armadillo (µ=40) on its head, demonstrating
that our method is effective for bulk volumes with smaller
details such as the tail and claws (figure 2). Realistic rota-
tional motion is visible in the sagging of the tail and legs.
Tetrahedra counts ranged between 0.9M-1.9M, while the
equivalent regularly sampled domain would consist of 40M

Figure 7: Three tori collapse under gravity with decreasing
viscosity coefficient from left to right.

tetrahedra. The simulation averaged 4.3 minutes/frame for
the first 300 frames (during which most of the challenging
dynamics occur) on a 6-core Intel Core i7 980X. The same
simulation performed using the Laplacian model for viscos-
ity fails to rotate properly and exhibits unnatural shearing.
However, as noted by Batty & Bridson [BB08], the Lapla-
cian form is more efficient, occasionally by as much as a
factor of three depending on the liquid configuration. Thus it
may be preferable in scenes where rotation and bending are
negligible.

7. Discussion & Conclusions

We presented an extension to Eulerian unstructured tetra-
hedral mesh liquid simulators to support previously diffi-
cult viscous effects, including buckling, coiling, and vari-
able viscosity. In doing so, we highlighted the connec-
tion to Lagrangian methods and described two ways to
couple differing sets of degrees of freedom on tetrahedral
meshes; we hope this proves useful as methods for solids and
fluids increasingly converge (e.g., [GBO04, ISF07, WT08,
MBE∗10]). For example, it suggests an alternative approach
to incompressibility in node-based FEM solids: map be-
tween node- and face-velocities, and perform the standard
staggered pressure projection. A drawback of our system is
the use of a structured lattice mesh and a marker level set sur-
face, which both limit the level of detail that can be tracked.
(The marker level set surface also exhibits slight temporal
incoherence particularly in merging regions. This visual ar-
tifact of particle level set methods is accentuated by the slow
movement of the liquid, but it is unrelated to our viscosity
model.) A valuable direction would therefore be to integrate
our method with the framework of Brochu et al. [BBB10] to
animate substantially thinner viscous sheets and threads.
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