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Abstract
When simulating fluids, tetrahedral methods provide flexibility and ease of adaptivity that Cartesian grids find
difficult to match. However, this approach has so far been limited by two conflicting requirements. First, accurate
simulation requires quality Delaunay meshes and the use of circumcentric pressures. Second, meshes must align
with potentially complex moving surfaces and boundaries, necessitating continuous remeshing. Unfortunately,
sacrificing mesh quality in favour of speed yields inaccurate velocities and simulation artifacts. We describe how
to eliminate the boundary-matching constraint by adapting recent embedded boundary techniques to tetrahedra,
so that neither air nor solid boundaries need to align with mesh geometry. This enables the use of high quality,
arbitrarily graded, non-conforming Delaunay meshes, which are simpler and faster to generate. Temporal coher-
ence can also be exploited by reusing meshes over adjacent timesteps to further reduce meshing costs. Lastly, our
free surface boundary condition eliminates the spurious currents that previous methods exhibited for slow or static
scenarios. We provide several examples demonstrating that our efficient tetrahedral embedded boundary method
can substantially increase the flexibility and accuracy of adaptive Eulerian fluid simulation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Adaptivity is a key feature for the efficient animation of flu-
ids because it can focus computational resources on visu-
ally significant details. Examples include regions of greater
vorticity, inside the viewing frustum, and flow near free sur-
faces and solid objects [LGF04, KFCO06, KIC06]. Tetrahe-
dral meshes, octrees, elongated Cartesian cells [IGLF06],
and general nested Cartesian (AMR) grids (eg. [BO84])
have all been used for this purpose. These methods’ primary
drawback is that domain boundaries must align with the un-
derlying voxels or tetrahedra, which either limits the variety
of boundaries that can be simulated or greatly increases the
expense and difficulty of high quality mesh generation.

Embedded boundary methods that account for sub-grid
geometry of free surfaces and solid objects on Cartesian
grids have recently gained acceptance in graphics [ENGF03,
BBB07], by offering improved resolution of irregular shapes
with only minor modifications to existing solvers. These

methods yield equivalent or better results than conforming
tetrahedral meshes, because the regularity of the grid struc-
ture affords more accurate finite difference operators.

In terms of adaptivity however, tetrahedra offer substan-
tial advantages over Cartesian grids. Octrees and nested
grids provide only discrete jumps in grid size, which ar-
tificially prevent smooth grading between resolutions. At
these "T-junction" faces where jumps in resolution occur,
a single lower resolution face is shared by four or more
higher resolution faces. Besides added implementation com-
plexity, it is so far unclear how to apply embedded meth-
ods across such faces; at present grading must be disal-
lowed along air and solid boundaries. T-junctions also re-
quire care to avoid losing accuracy and causing simulation
artifacts [LGF04, CFL∗07, LFO05]. In contrast, tetrahedral
meshes need no T-junctions and allow elements of arbitrary
size, thus providing greater flexibility.

Our work seeks to hybridize tetrahedral methods with em-
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bedded boundary techniques. In this manner, we achieve
the high quality results associated with embedded boundary
Cartesian grid methods, while simultaneously providing the
best combination of speed, flexibility, and adaptivity of state-
of-the-art tetrahedral schemes. Our specific contributions are
the following:

Embedded Free Surfaces: We extend the ghost fluid sub-
grid free surface pressure projection [ENGF03] to tetrahe-
dra, which improves the accuracy of free surfaces and re-
moves their boundary alignment restriction.

Embedded Solid Boundaries: We adapt the sub-grid solid
boundary pressure projection [BBB07] to tetrahedra, to pro-
vide accurate support for non-mesh-aligned solids.

The elimination of boundary alignment constraints provides
several vital benefits:

Fast High Quality Delaunay Meshing: We can exploit high
quality non-conforming Delaunay meshes with circumcen-
tric pressures. Such meshes guarantee consistent finite dif-
ference estimates of at least first order, and are faster and
easier to generate, particularly for complex domains.

Improved Surface Motion: Enforcing the free surface
boundary condition precisely at the air-liquid interface im-
proves the resulting fluid motion, especially for slow or still
fluid.

Reduced Remeshing Frequency: Since adaptivity require-
ments typically exhibit high temporal coherence, we can
reuse entire meshes over several timesteps.

Increased Flexibility: It becomes possible to easily grade
along air or solid boundaries without simulation artifacts or
more complex mesh generation, allowing effectively arbi-
trary mesh adaptivity.

2. Related Work

2.1. Adaptive Fluids and Tetrahedral Meshes

Tetrahedral meshes have become popular within the com-
puter graphics fluid simulation community because they pro-
vide straightforward adaptivity and until recently were the
only simple method for accurately incorporating non-axis-
aligned boundary geometry into Eulerian schemes. Feldman
et al. [FOK05] first mapped the basic Stable Fluids method
[Sta99] to tetrahedra, using finite volume techniques (as in
the octree work of Losasso et al. [LGF04]). This was ex-
tended to mildly deforming meshes [FOKG05], and then to
rigid and deformable body coupling [KFCO06, CGFO06],
by remeshing on every timestep. Klingner et al. [KFCO06]
also specifically highlighted the adaptivity benefits of tetra-
hedra, where previous work had focused solely on match-
ing irregular boundaries. Wendt et al. [WBOL07] used a
slightly different discretization and a level set method to
include viscosity and non-conforming free surfaces. Chen-
tanez et al. [CFL∗07] presented an efficient algebraic multi-
grid method, along with conforming free surfaces through

Figure 1: Our method yields quality results on a dam break
example without matching air or solid boundaries. The top
frame shows a cutaway of the mesh.
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the use of isosurface stuffing for faster remeshing [LS07].
This method provides fast adaptive meshing with guaranteed
angle bounds, at the cost of the Delaunay property. An al-
ternate circulation-based approach was advocated by Elcott
et al. [ETK∗07], and Mullen et al. [MCP∗09] demonstrated
energy-preservation, using an Eulerian advection scheme
combined with a unified, fully non-linear solver. Sin et al.
[SBH09] recently presented a dual approach, solving the
pressure projection on unstructured Voronoi meshes clipped
against boundaries.

Tetrahedral methods achieve their best results when the
meshes used possess the Delaunay property and pressures
are stored at circumcentres; this ensures convex dual ele-
ments and consistent first order accurate finite difference ap-
proximations (see §4). If the tetrahedralization aligns with a
particular domain boundary, it is referred to as a conform-
ing Delaunay tetrahedralization [CSECY04]. Such meshes
are generally difficult to compute, although allowing flexi-
bility in the surface by adding Steiner points or approximat-
ing the boundary simplifies matters [CSECY04,ACSYD05].
Nonetheless, it remains substantially slower and more diffi-
cult than either non-conforming Delaunay meshing [WT08]
or conforming non-Delaunay meshing [LS07]. For example,
Alliez et al. [ACSYD05] performed Delaunay meshing up to
50 times during their iterative variational scheme, while re-
quiring heuristic vertex jittering to discourage slivers near
boundaries. Klingner et al. [KFCO06] found that the same
method required 5 minutes per frame for 500K tetrahedra.
Recently Tournois et al. [TWAD09] interleaved Delaunay
refinement with optimization and improved the boundary
treatment to produce even higher quality meshes, but had
meshing times in the tens of minutes for 120K tetrahedra
and still provided no guarantees against slivers.

Because guaranteed quality conforming Delaunay mesh-
ing remains challenging, research in computational physics
has modified the finite volume method in hopes of achieving
good accuracy on more general meshes. Perot and Subrama-
nian [PS07] used an exact calculus discretization with im-
proved interpolation to handle non-Delaunay meshes. Sim-
ilarly, deferred correction approaches use geometric argu-
ments to correct directional errors in gradients [TAL09].
Though effective, such methods are more expensive and
complex, and it remains unclear how to enforce air and solid
boundaries simultaneously. In effect, these approaches seek
to relax the mesh quality requirements, whereas we will re-
lax the boundary alignment requirement.

2.2. Embedded Boundaries

Two techniques have allowed embedded (ie. non-mesh-
aligned) boundaries to be supported on Cartesian grids
with relative ease. The first is the second order accurate
ghost fluid free surface pressure condition of Enright et al.
[ENGF03], which greatly improves the behaviour of liquid
surfaces by modifying the finite difference gradient stencil.

The second is the sub-grid solid boundaries approach which
achieves high quality solid interaction on non-conforming
grids by adding face weights to the divergence stencil. Roble
et al. [RZF05] first derived the latter idea in a finite volume
manner, suggesting the use of face area weights. Batty et al.
[BBB07] developed a related variational method to handle
moving boundaries and full rigid body coupling. For the case
of static objects this yields essentially the same discretiza-
tion, except for the use of face volume weights. However, a
recent paper by Ng et al. [NMG09] has shown that face area
weights should be preferred, as this provides second order
accuracy in pressure. This solid boundary discretization can
also be combined with the free surface condition above, as
demonstrated by Batty & Bridson [BB08]. With the addi-
tion of a few simple weights to the standard finite difference
stencils, these two embedded boundary approaches naturally
extend the MAC scheme to irregular domains.

There are also numerous embedded boundary methods
in the computational physics literature. These include im-
mersed boundary methods [Pes02], cut-cell methods (eg.
[MKLU05, LKMU05, SBCL06]), ghost fluid variants (eg.
[BF08, MDB∗08]) and many more. Our focus on the works
of Enright et al. [ENGF03] and Batty et al. [BBB07] is mo-
tivated by these methods’ simplicity and effectiveness. Both
also have longstanding roots in computational fluid dynam-
ics. Enforcing the Dirichlet pressure condition at the sub-
grid free surface position was first suggested by Chan and
Street [CS70], albeit in rudimentary form. Similarly, the ba-
sic face area-weighting scheme for static embedded solids
can be traced to work by Purvis and Burkhalter [PB79].

While the majority of embedded boundary schemes use
Cartesian grids, a few have recently highlighted the benefits
of an underlying simplex mesh, as we do here (eg. [LCC∗07,
FD07]). However, they employ fundamentally different and
more complex cut-cell schemes than those we propose.

Another loosely related area of research is embedding
methods for simulating deformable objects. These ap-
proaches embed a more detailed surface mesh into a lower
resolution simulation mesh to reduce computational costs
[FvdPT97, CGC∗02]. This family was extended to handle
extreme plastic deformations by Wojtan & Turk [WT08],
with a simple but effective remeshing strategy that gener-
ates high quality non-conforming Delaunay meshes from an
adaptive BCC lattice. Because the simulation mesh need not
conform to the object’s surface geometry, they can guarantee
very high quality elements while apparently remeshing one
to two orders of magnitude faster than state-of-the-art con-
forming, non-Delaunay approaches. Our approach applies
essentially the same premise to fluid simulation.

3. System Overview

Our approach builds most directly on the work of Chentanez
et al. [CFL∗07], to which we refer the reader for implemen-
tation details and pointers to prior work. We will simply
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highlight the differences unique to our approach. The spe-
cific steps in our algorithm are:

1. Advect the liquid surface, with a standard surface tracker.
2. Optional: Remesh to generate a new tetrahedral mesh en-

veloping the liquid domain (§4). We use a quality non-
conforming adaptive Delaunay BCC lattice mesh genera-
tor in place of isosurface stuffing.

3. Apply semi-Lagrangian advection to mesh velocities. If
remeshing occurred, this transfers velocities to the new
mesh as usual (without extra smoothing [FOKG05]).

4. Add external forces.
5. Apply our tetrahedral embedded boundary pressure pro-

jection (§5 & §6). This replaces the standard conforming
tetrahedral pressure projection [FOK05].

We have not applied any volume preservation strategies in
our system. We solve the pressure projection with the con-
jugate gradient method, but expect that the algebraic multi-
grid (AMG) method proposed by Chentanez et al. [CFL∗07]
would provide a useful speed-up. A final key difference is
that we store pressures at tetrahedra circumcentres, and ve-
locities at face circumcentres, as in most earlier work (eg.
[KFCO06]).

4. High Quality Meshes

Basic staggered mesh methods for tetrahedra require a De-
launay mesh with pressures stored at tetrahedra circum-
centres [KFCO06]. These "covolume" meshes are a natu-
ral generalization of classic staggered grid (MAC) schemes
[Nic92, NW97, ZSP02]. Connecting neighbouring circum-
centres on a primal Delaunay mesh yields its circumcentric
or Voronoi dual, a valid Voronoi tesselation possessing two
very useful properties, as discussed by Perot and Subrama-
niam [PS07]. First, local orthogonality refers to the fact that
the line through neighbouring pressure locations (circum-
centres) is perpendicular to the shared face of their tetrahe-
dra, and thus parallel to the velocity sample stored at the face
(Figure 3, left). When we apply the standard fluid velocity
update (~u = ~u∗− ∆t

ρ ∇p) the pressure gradient corrects for
divergence in the appropriate velocity component, ensuring
that the pressure gradient estimate is at least first order ac-
curate. Perot and Subramaniam further note that while strict
second order accuracy requires that dual edge midpoints be-
tween neighbouring circumcentres coincide exactly with pri-
mal face circumcentres (as for uniform grids), second or-
der accurate convergence is frequently observed in practice
for fairly well-behaved meshes. The second useful property
of these meshes is the convexity and non-self-intersection
of the dual mesh, which avoids dual elements with concep-
tually negative volumes and allows generalized barycentric
interpolation of velocities [WSHD04, ETK∗07, KFCO06].
Klingner et al. [KFCO06] also used properties of Delaunay
meshes to simplify these interpolations.

Relaxing these two constraints would simplify mesh gen-

Figure 3: Different choices of triangulations (blue) and dual
meshes (red) in 2D. From left to right: 1) Delaunay tri-
angulation with circumcentric dual. 2) Non-Delaunay tri-
angulation with circumcentric dual. The dual mesh is self-
intersecting. 3) Delaunay triangulation with barycentric
dual. Primal/dual edge pairs lack orthogonality. Based on
figures by Perot & Subramaniam [PS07].

eration, but unfortunately this causes problems for simula-
tion. The dual mesh generated by connecting circumcen-
tres of non-Delaunay meshes is self-intersecting, though
it retains orthogonality (Figure 3, centre). Conversely, the
barycentric or median dual generated by connecting mesh
barycentres is comprised of valid convex elements, but sac-
rifices the crucial orthogonality property (Figure 3, right).
This latter situation gives rise to the linear inconsistency
mentioned by Chentanez et al. [CFL∗07] and partly accounts
for the artifacts they observed in slow-moving fluids.

As an aside, we note that in the original octree method of
Losasso et al. [LGF04] pressure gradients across T-junctions
lose accuracy because they too give up orthogonality. This
method places velocity samples on each small face incident
on a T-junction, and estimates a non-orthogonal pressure
gradient between the associated large and small cell pres-
sures. However, Losasso et al. [LFO05] later corrected this
to achieve second order accuracy with a slight modification.
The solution was to use just a single velocity sample on the
entire T-junction face and construct a fully orthogonal pres-
sure gradient as an area-weighted combination of the small
face pressure gradients. This further illustrates the impor-
tance of retaining orthogonality.

Instead of sacrificing mesh orthogonality or convexity, we
will use embedded boundary methods to eliminate the re-
striction that meshes align with domain geometry. This has
several practical consequences with respect to the meshes
used for simulation. First, it allows us to more aggressively
exploit temporal coherence. For example, in the case of a
moving object the user might desire high resolution ele-
ments around the object to capture small flow details. With
conforming methods, accommodating even slight motions
of an object can require substantial changes to the mesh to
maintain high quality. This holds true even if the mesher is
warm-started with the previous mesh, as done by Klingner
et al. [KFCO06]. With non-conforming methods, we remesh
only when our mesh adaptivity criterion ceases to be satis-
fied (eg. in Figure 4 we might remesh when the liquid sur-
face leaves the surrounding region of highest refinement).
By tailoring such criteria appropriately, we can balance the
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Static test Graded Boundaries Remesh frequency Remesh speed Mesh quality
Embedded regular grids Pass No N/A N/A High
Embedded octrees Pass No Low Fast High
Conforming Delaunay Fail Yes High Slow Low/Moderate
Chentanez et al. [CFL∗07] Fail No High Fast Low
Embedded Delaunay (ours) Pass Yes Low Fast High

Figure 2: A qualitative comparison of different methods and simulation meshes. "Mesh quality" encompasses orthogonality,
the Delaunay property, and angle bounds. "Static test" refers to still fluid where pressure should precisely balance gravity.
Our embedded Delaunay method (using an underlying adaptive BCC lattice) provides a good combination of accuracy, speed,
flexibility, and adaptivity.

Figure 4: An embedded fluid simulation on a high quality
adaptive non-conforming lattice mesh. Since we need not
match boundaries, we can reuse consecutive meshes to save
on meshing costs.

benefits of frequent adaptivity updates against the costs of
remeshing.

Second, because the true boundaries are allowed to cut
through the mesh arbitrarily, mesh grading can occur even
along free surfaces and solid boundaries. In contrast, the
complexity of correctly handling octree T-junctions makes it
unclear how to simultaneously combine them with embed-
ded boundaries; a uniform resolution is thus required along
all boundaries. Similarly, though isosurface stuffing is in-
credibly fast, it only provides effective angle guarantees if
adaptivity is restricted to the interior of the mesh. Consider
Figure 4, where high resolution is desired only near the liq-
uid surface. If all boundary elements needed to be uniformly
sized, many would be wasted resolving unnecessary details
along the bottom wall.

Third and most vitally, using embedded boundaries ac-
celerates and simplifies remeshing, and lets us easily guar-
antee that our simulator is provided with high quality De-
launay meshes with the properties necessary for maximum

accuracy. This is particularly important because poor mesh
quality and high meshing costs are two major drawbacks of
tetrahedra as compared to grids. Any Delaunay mesh that
fully envelops the domain may be used with our scheme.
For maximum remeshing speed and regularity, we recom-
mend the unmodified octree-graded BCC lattice as in the
work of Wojtan and Turk [WT08]. As they pointed out, this
results in high quality meshing that is effectively free com-
pared to the remaining steps of the algorithm. Furthermore,
its regularity may be exploited to accelerate point-location
and save memory [CFL∗07]. Our single-threaded implemen-
tation generates over 500K tetrahedra/second for meshes up
to three million elements.

5. Embedded Free Surfaces on Tetrahedra

The free surface (Dirichlet) pressure boundary condition
presented by Enright et al. [ENGF03] allows free surfaces
to lie between rather than strictly at grid cell centres. The
discretization for a velocity update due to pressure in one di-
mension for a particular face at the boundary between liquid
and air is:

u = u∗− ∆t
ρ
· p f s− pi

θ∆x
(1)

In this expression u is the final divergence-free face veloc-
ity, u∗ is the velocity before projection, ∆t is the time step,
ρ is the liquid density, ∆x is the grid cell size, pi is the pres-
sure variable in the liquid cell, p f s is the specified boundary
value for the free surface pressure (typically zero or standard
atmosphere), and finally θ is the fractional distance from the
last internal pressure sample to the sub-grid liquid surface.
In situations where θ is at or near zero, it is perturbed to be
slightly positive [GFCK02, Bri08]. θ is typically estimated
from signed distance values stored at pressure samples, but
more generally is extracted from the user’s choice of sur-
face tracker. Figure 5, left, illustrates this situation. This can
most directly be understood as a shortened finite difference
estimate of the pressure gradient from the last submerged
pressure cell to the free surface position. Equivalently, it
can be derived by placing a ghost pressure pG

i+1 in the adja-
cent air cell such that the linearly interpolated pressure value
crosses p f s precisely at the sub-grid interface location. In ei-
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Figure 5: Left: A 1D example of the method of Enright et
al. [ENGF03] for capturing the free surface position be-
tween pressure samples. Right: The same idea applied to an
unstructured triangle mesh.

ther case, this expression for the velocity update is plugged
into the divergence constraint ∇·~u = 0, yielding a symmet-
ric positive definite Poisson system and a second order ac-
curate pressure solution for smooth boundaries. Enright et
al. [ENGF03] showed that this drastically improves the be-
haviour of free surfaces on regular grids.

This method can be readily adapted to tetrahedral meshes
with minimal modification. If the interface lies between two
tetrahedra circumcentres (ie. where pressure is stored), we
replace ∆x with the distance between the circumcentres and
modify θ to be an estimate of the fractional position of the
interface along the line joining the two circumcentres (Fig-
ure 5, right). As in the Cartesian grid case this yields much
improved small-scale behaviour, and eliminates the tetrahe-
dral analog of free surface stairstep artifacts (See Figure 6).
(This is the "aliasing" noted by Wendt et al. [WBOL07].)

This discretization can beneficially be applied even to ex-
isting conforming tetrahedral methods. The current standard
approach to enforcing the Dirichlet boundary condition is
to use a mirrored ghost pressure set to p f s on the outside
of the appropriate face [FOK05, CFL∗07, SBH09]. Consid-
ering again Figure 5, right, this incorrectly sets the pres-
sure value at the exterior ghost point, rather than precisely
at the face where the liquid interface lies. This is likely
the second source of error which prevented hydrostatic bal-
ance (where pressure precisely cancels gravity forces) from
being achieved by Feldman [Fel07] and Chentanez et al.
[CFL∗07]. Our method easily corrects this; the denomina-
tor in the pressure gradient calculation should be the perpen-
dicular distance from the circumcentre to the surface face,
rather than twice that value.

6. Embedded Solid Boundaries on Tetrahedra

The variational projection technique presented by Batty et
al. [BBB07] allows for sub-grid resolution of solid (Neu-
mann) boundaries, by modifying the divergence operator
with weights to account for partial cells. Expressed in a finite

Figure 6: Sloshing tank Top row: The standard free sur-
face approach with non-conforming meshes yields bumpy
artifacts on the scale of one triangle. Second row: The
same approach on an irregular mesh illustrates the mesh-
dependency of these artifacts. Third row: Embedded free
surfaces with a regular mesh yields smooth sloshing with-
out artifacts. Fourth row: Embedded free surfaces with an
irregular mesh yields behaviour consistent with the regular
mesh case, demonstrating mesh independence. Bottom row:
Grading across free surfaces introduces no errors.

volume-like form their divergence operator is the following:

∇·~u≈ ∑
i∈ f aces

wi(~ui ·~ni) (2)

where the set of faces are those of the original cell. ~ui and
~ni are the fluid velocity and normal at the face, respectively.
A few weight choices are reasonable, but following Ng et
al. [NMG09] we choose the weights wi to be the partial non-
solid area of the face. As noted by Roble et al. [RZF05],
this choice yields a slightly simplified cut-cell finite vol-
ume discretization, as illustrated in Figure 7. The simplifica-
tion is that the standard cut-cell finite volume approach (eg.
[SBCL06]) would interpolate velocity samples to the mid-
points of the truncated faces and generate new faces along
the boundary, arriving at a non-symmetric linear system. In
contrast, our chosen approach weights the original faces by
their partial areas, but creates no new faces and leaves the
velocity samples at their original positions. This ensures that
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Geometry Finite Volume 
(Cut Cell)

Our Method

Figure 7: Left: A 2D example of a solid boundary (thick
line) cutting through a triangular element. Centre: A stan-
dard finite volume discretization clips the triangle and re-
locates the velocity samples, requiring complex interpo-
lation to accurately determine pressure gradients. Right:
Our embedded boundary scheme uses finite volume face
area weights (dashed lines) but leaves velocity positions un-
changed, thereby retaining local orthogonality.

Figure 8: Left: A 2D example in which one triangle face is
cut off by the solid boundary (curved line) and is assigned a
zero area weight. Right: The approximated physical bound-
ary (dashed) has a different average normal than the origi-
nal triangle face.

we retain both the accuracy provided by the local orthogo-
nality property and the symmetric positive definiteness of the
standard discretization, without requiring explicit clipping of
geometry or complex interpolation schemes to compute or-
thogonal pressure gradients. This approach can be applied to
tetrahedra by simply estimating partial tetrahedra face areas,
and extensions to one- and two-way solid coupling are also
straightforward, following Batty et al. [BBB07].

In our implementation we store signed distance values
for solid boundaries on the vertices of the tetrahedra. This
allows face area fractions to be estimated with simple 2D
marching triangles cases, and eliminates the need for mesh-
based geometric clipping. (In exchange, this gives up a slight
amount of resolution, since flows through cracks below the
mesh resolution are disallowed.)

For use during advection, a full velocity for each tetra-
hedron’s circumcentre is typically reconstructed from the
normal components on its faces using a least-squares fit
[ETK∗07, KFCO06, PVW06]. Given these circumcentre ve-
locities, we perform interpolation and advection exactly fol-
lowing Chentanez et al. [CFL∗07]. However, in our scheme
when a face is clipped entirely it has zero associated area
weight (Figure 8, left). It therefore does not participate in the

Figure 9: Our non-conforming embedded solid boundary
method (left) compared against the standard conforming
method (right), for a low resolution rotating disk of fluid
visualized with streamlines seeded at the same points. The
two are essentially indistinguishable, illustrating that our
method accurately handles boundaries and reconstructs the
free slip velocity even near zero-area faces.

pressure solve and is not assigned a valid velocity. Naïvely
using a zero velocity (or more generally, the wall velocity)
for this face frequently destroys free-slip in the reconstruc-
tion. This is because the missing face’s normal doesn’t nec-
essarily match the solid boundary normal (Figure 8, right),
so it may actually require a non-zero velocity component to
be consistent with the fluid velocity.

We handle this by simply dropping the zero-area face’s
row from the least-squares solve. The use of nodal signed
distances to compute weights ensures that if a quality tetra-
hedron is not entirely solid, it can have only one such
zero-area face, leaving three valid velocity components
with linearly independent normal vectors. Three indepen-
dent components are always sufficient to reconstruct a three-
dimensional velocity vector, so the linear system is never un-
derdetermined. Furthermore, the divergence-free condition
ensures that this velocity is in fact unique [ETK∗07], and
hence no information is lost in dropping the face. This ap-
proach robustly reconstructs the free slip fluid velocity.

Conveniently, the free surface and solid embedded bound-
ary methods above are entirely complementary, as illustrated
by Batty & Bridson [BB08]. Perhaps the simplest interpre-
tation is that the free surface condition modifies the gradi-
ent operator near air, while the variational pressure projec-
tion modifies the divergence operator near solids. By plug-
ging the modified velocity update into the modified diver-
gence operator, we get a method that straightforwardly han-
dles both boundaries without special cases.

7. Results

We focus on two-dimensional examples to emphasize the re-
lationship between the simulation and the underlying mesh,
however we stress that all of our results extend straightfor-
wardly to 3D. Furthermore, while we do not compare in
detail the speed of our method to that of Chentanez et al.
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Figure 10: From left to right: 1) Input geometry for a closed hydrostatic scene under uniform gravity. 2) A conforming Delaunay
mesh with circumcentric pressures finds the exact solution (no motion.) 3) The same mesh using barycentric pressures yields
substantial spurious velocities. 4) Using our embedded solid boundary method, the exact solution is found on a non-conforming
Delaunay mesh with circumcentric pressures.

Figure 11: From left to right: 1) Input geometry for a free surface hydrostatic test under uniform gravity. 2) Standard free surface
boundary conditions introduce spurious velocities near the surface, despite using a conforming circumcentric Delaunay mesh.
3) The use of barycentric pressures with the same mesh and boundary conditions worsens the errors. 4) A non-conforming
Delaunay mesh with circumcentric pressures using our embedded solid and free surface boundary conditions finds the exact
solution.

[CFL∗07], we expect that optimized implementations will
exhibit approximately the same speed, assuming we replace
our CG routine with AMG and remesh continuously for
both. Our reasoning is that both our proposed method and
isosurface stuffing first build a (potentially adaptive) BCC
lattice. Isosurface stuffing then queries the boundary isosur-
face in order to stuff the tetrahedra inside it, whereas our
method instead uses these queries to determine the solid and
free surface weights used by the pressure discretization. The
methods can otherwise be made nearly identical, so we will
aim to demonstrate the key accuracy and flexibility benefits
of our method.

Figures 10 and 11 illustrate the ability of our projection
method to correctly handle the hydrostatic scenario, consist-
ing of a vertical gravity force that should be precisely can-
celled by the resulting pressure gradient, for a completely
enclosed case and a free surface case. We compare against
both circumcentric and barycentric conforming Delaunay
meshes, confirming that circumcentres are preferred. Note
that only our scheme is able to achieve the correct cancella-

tion in the difficult free surface scenario, and to our knowl-
edge it is the first tetrahedral method in computer graphics
able to do so.

To illustrate the improved motion provided by embed-
ded free surfaces, Figure 6 compares several versions of a
slow-moving sloshing scenario. The basic non-conforming
method yields bumpy artifacts due to its inability to "see"
waves below the scale of one triangle. These artifacts are
also highly mesh-dependent; the irregular mesh produces
different (and substantially worse) motion. The same exam-
ple using embedded free surfaces yield smoother and more
consistent results regardless of the underlying mesh, even
when grading is performed across the free surface itself. The
associated animations demonstrate that the embedded ap-
proach also exhibits less artificial damping.

An example in our accompanying video compares a 2D
free surface flow simulated with no remeshing, continuous
remeshing, and intermittent remeshing every 5 time steps,
on a high quality non-conforming adaptive lattice, like that
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in Figure 4. The non-remeshed example is chosen to have ap-
proximately the same number of triangles as an early frame
of the adaptive case. The low resolution of the non-remeshed
example performs comparatively poorly, however both in-
termittent and continuous remeshing provide much better
and qualitatively similar results despite the former expend-
ing one-fifth as much effort on remeshing. Real applications
might use more elaborate adaptivity criteria, but this already
illustrates the flexibility and power of combining adaptivity
with our embedding scheme: it enables an explicit trade-off
between accuracy and remeshing costs. This also suggests
an interesting potential optimization: at the cost of slightly
lagged adaptivity updates, remeshing could be performed in
parallel such that the simulator proceeds with the current
mesh until a new one becomes available. This holds out the
possibility of entirely hiding the costs of remeshing.

To illustrate that our non-conforming solid boundary ap-
proach gives qualitatively identical results to a conforming
scheme and fully reconstructs free slip velocities near walls,
we compare frames from a simple rotation inside a disk-
shaped 2D domain. Visualized with streamlines in Figure
9, it is clear that the two methods are almost perfectly con-
sistent. The accompanying video makes a similar compar-
ison against a naïve rasterized non-conforming approach,
which exhibits erroneous damping and inaccurate motion
near walls.

Our video also includes a complex 2D animation consist-
ing of liquid drops splashing against curved and angled solid
boundaries. This emphasizes that our two boundary con-
ditions can be used together without artifacts. Lastly, Fig-
ure 1 shows a 3D breaking dam example similar to one by
Chentanez et al. [CFL∗07]. The simulation used adaptive
BCC lattice meshes ranging between 400K and 1.1M non-
conforming tetrahedra, yet achieves accurate and smooth liq-
uid motion. Computation times averaged 31 seconds/frame
(about 40% of which is our single-threaded particle level set
surface tracker) on a 4-core Intel i7 860. The simulator was
parallelized using Intel’s Threading Building Blocks library.

8. Conclusions & Future Work

We have demonstrated a few simple modifications to tetra-
hedral mesh fluid simulation that can improve its accuracy,
flexibility, and speed. The use of non-conforming Delaunay
meshes together with embedded boundary techniques im-
proves the liquid behaviour in many scenarios while substan-
tially reducing the frequency, complexity, and costs of high
quality meshing. This has the potential to make tetrahedral
schemes more competitive with regular grid methods, while
retaining the vital advantage of adaptivity.

There are several directions for future work. Studying
the accuracy and convergence of our tetrahedral embedded
boundary techniques would be valuable. A potential draw-
back of circumcentric pressures is that they are not necessar-

ily contained in their associated tetrahedra, and though or-
thogonality ensures first order accuracy, this might impact
the magnitude of the approximation error on low quality
meshes. Research into so-called well-centred meshes might
prove useful in this respect [VHG08]. Relatedly, our method
should adapt seamlessly onto unstructured Voronoi meshes
(eg. [SBH09]), where Voronoi sites are guaranteed to be in-
side their associated cells. Extending unstructured meshes
to support free surface viscosity, viscoelasticity, and surface
tension are other interesting directions. Finally, given the
ubiquity of Poisson problems in graphics research, these em-
bedded boundary schemes could likely benefit applications
outside of fluid animation.
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