
A Practical Octree Liquid Simulator with Adaptive Surface Resolution

RYOICHI ANDO, National Institute of Informatics, Tokyo
CHRISTOPHER BATTY, University of Waterloo, Canada

Fig. 1. Top: a seaplane (wingspan: 11m; height: 4.3m) takes off from a lake (30m depth) at high speed. Effective resolution: 1024 × 1024 × 512. Compute time:
2.85 minutes per video frame. Bottom: the background octree cells, exhibiting a wide range of resolutions.

We propose a new adaptive liquid simulation framework that achieves highly
detailed behavior with reduced implementation complexity. Prior work has
shown that spatially adaptive grids are efficient for simulating large-scale
liquid scenarios, but in order to enable adaptivity along the liquid surface
these methods require either expensive boundary-conforming (re-)meshing
or elaborate treatments for second order accurate interface conditions. This

Authors’ addresses: Ryoichi Ando, National Institute of Informatics, Tokyo, rand@nii.ac.
jp; Christopher Batty, University of Waterloo, Canada, christopher.batty@uwaterloo.ca.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/7-ART32 $15.00
https://doi.org/10.1145/3386569.3392460

complexity greatly increases the difficulty of implementation and main-
tainability, potentially making it infeasible for practitioners. We therefore
present new algorithms for adaptive simulation that are comparatively easy
to implement yet efficiently yield high quality results. First, we develop a
novel staggered octree Poisson discretization for free surfaces that is sec-
ond order in pressure and gives smooth surface motions even across octree
T-junctions, without a power/Voronoi diagram construction. We augment
this discretization with an adaptivity-compatible surface tension force that
likewise supports T-junctions. Second, we propose a moving least squares
strategy for level set and velocity interpolation that requires minimal knowl-
edge of the local tree structure while blending near-seamlessly with standard
trilinear interpolation in uniform regions. Finally, to maximally exploit the
flexibility of our new surface-adaptive solver, we propose several novel
extensions to sizing function design that enhance its effectiveness and flexi-
bility. We perform a range of rigorous numerical experiments to evaluate
the reliability and limitations of our method, as well as demonstrating it on
several complex high-resolution liquid animation scenarios.

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392460

32:2 • Ryoichi Ando and Christopher Batty

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: fluid simulation, liquid, octrees

ACM Reference Format:
Ryoichi Ando and Christopher Batty. 2020. A Practical Octree Liquid Simu-
lator with Adaptive Surface Resolution. ACM Trans. Graph. 39, 4, Article 32
(July 2020), 17 pages. https://doi.org/10.1145/3386569.3392460

1 INTRODUCTION
Simulation practitioners deciding whether to adopt a given method
must consider how best to realize their ultimate objectives with lim-
ited time and resources, both human and computational. The imple-
mentation complexity and expected benefits of a method are there-
fore critical factors. For example, staggered grids, FLuid-Implicit-
Particle (FLIP) [Zhu and Bridson 2005], and Affine-Particle-in-Cell
(APIC) [Jiang et al. 2015] have been widely incorporated into the
film production toolkit due to their relative ease of implementation,
proven reliability, and clearly demonstrated advantages. On the
other hand, spatially adaptive fluid simulation has seen compara-
tively slow adoption in visual effects [Nielsen and Bridson 2016],
despite a long history of work on this topic. We believe there are
primarily two reasons for this: significant implementation costs,
due to algorithmic complexity, and difficulties in achieving perfor-
mance gains on actual simulations, as compared to highly optimized
regular grid codes.
All adaptive schemes inevitably exhibit greater complex than

regular grids, but this is especially the case for methods that al-
low adaptivity along the surface itself. For example, tetrahedral
schemes [Ando et al. 2013; Clausen et al. 2013; Misztal et al. 2012]
require comparatively elaborate mesh generation and traversal. The
overset grids of English et al. [2013] generate unstructured Voronoi
cells at grid-grid boundaries, similar to pure Voronoi and power
diagram schemes [Brochu et al. 2010; de Goes et al. 2015; Zhai
et al. 2018]. Aanjaneya et al. [2017] uses an implicit power diagram
layered on top of an octree for efficiency, but the connectivity is
nevertheless complex to precompute and manipulate (e.g., requiring
extra diagonal neighbors and large precomputed lookup tables).

Therefore, the aim of this paper is to simplify the algorithms nec-
essary to achieve surface-adaptive octree liquid simulation without
compromising the quality of the resulting visual details. We provide
an extensive variety of numerical tests and practical evaluations of
our method, along with comparisons against the uniform staggered
grid method, so that practitioners can evaluate the benefits and
expected performance gains that our method makes possible.

At the heart of our method is a novel adaptive grid Laplace oper-
ator that supports free surface and solid boundary conditions in the
presence of level transitions. For each cell, its stencil involves only
the neighboring cells with which it shares a face in the octree. That
is, compared to the prior hybrid octree/power diagram method of
Aanjaneya et al. [2017], our method works directly on the basic oc-
tree and requires neither additional diagonal neighbor connectivity
nor elaborate precomputation.
Our Laplace discretization comes in two flavors. If strict sec-

ond order accuracy is desired at the free surface, our approach
yields a non-symmetric Poisson system which can, for example, be
efficiently solved with preconditioned BiCGStab. If a Symmetric

Positive Definite (SPD) matrix is desired, in order to access the nu-
merical benefits of Preconditioned Conjugate Gradients (PCG), we
offer a slight modification in certain geometric configurations that
nevertheless provides qualitatively indistinguishable results.
With this foundation for surface-adaptive liquid simulation in

place, we present several additional enhancements to its expressive-
ness, quality, and convenience. To support surface-tension effects in
the presence of adaptivity, we propose a new T-junction compatible
approach based on a reinterpretation of the uniform grid method
of Enright et al. [2003]. To simplify interpolation while minimizing
additional dissipation, we adopt a Moving Least Squares (MLS) strat-
egy that has much less dependence on the intricate local structure of
the octree, while yielding the same result as trilinear interpolation
in uniform regions. To take full advantage of the surface-adaptivity
offered by our method, an effective dynamic octree sizing function is
also critical; we therefore propose several extensions to prior sizing
function methods to better track moving details, improve temporal
coherence, offer user-controllability, and reduce octree initialization
and adaptation costs.

In summary, the main novel contributions of this paper are:

• A surface-adaptive octree liquid simulation framework with
reduced implementation complexity.

• A new pair of pressure discretizations for octree T-junctions
near liquid surfaces that offer smooth surface motion and
qualitatively indistinguishable results, and exhibit either sym-
metric positive definiteness or strict second order accuracy.

• A compatible octree surface tension force that supports vary-
ing surface resolution by generalizing the method of Enright
et al. [2003].

• An approach to easily interpolate velocity and level set val-
ues near T-junctions based on Moving Least Squares, which
transitions seamlessly to trilinear interpolation on regular
cells.

• Several enhancements to sizing function design that together
provide artist control and more effective grid adaptation ac-
cording to key features of the motion and geometry.

Along the way, we suggest a set of complementary algorithms
to round out our high-quality liquid simulation pipeline. This in-
cludes: Extended Narrow Band FLIP (EXNBFLIP) [Sato et al. 2018]
to enrich the detail of splashes, an octree grid construction that does
not require explicit balancing, and a cell-based adaptation of dual
contouring [Ju et al. 2002] for reconstructing adaptive surfaces from
cell-centered octree level set data.

2 PREVIOUS WORK
Spatial adaptivity for fluid simulation has a long history in computer
graphics, as well as computational fluid dynamics. We primarily
focus our review on the former for brevity.

Octree discretizations of fluid dynamics were first considered in
computational physics by Popinet [2003] with a non-symmetric
scheme. Subsequently, Shi and Yu [2004] developed the first octree-
based adaptive method to animate smoke and Losasso et al. [2004]
proposed the first octree-based liquid solver on non-graded trees.

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392460

A Practical Octree Liquid Simulator with Adaptive Surface Resolution • 32:3

Fig. 2. A pair of liquid bunnies in zero gravity collapse due to surface tension and eventually merge (top), simulated with varying octree resolution (middle),
including adaptive surface detail (bottom). Effective resolution: 2563. Compute time: 1.6 minutes per video frame.

The latter method was improved to second order accuracy in pres-
sure [Losasso et al. 2006] with a minor modification, thereby elim-
inating problematic motion artifacts. These methods can be used
with standard cut-cell and/or ghost-fluid methods to support sec-
ond order accuracy with irregular solid [Batty et al. 2007; Ng et al.
2009] and free surface [Enright et al. 2003] boundary conditions,
respectively. However, doing so requires the entire boundary to be
uniformly refined so that it does not interact with T-junctions (grid
level transitions); this may be tremendously wasteful depending
on the scenario under consideration. Ferstl et al. [2014] proposed a
finite element-based cut-cell discretization for octree-based fluids
with free surfaces, but again assumed a uniformly refined interface.
Nielsen and Bridson [2016] similarly proposed a finite element-based
approach on (generalized) octrees used within the Bifrost simulator,
using mass-lumping to achieve a sparser Laplace stencil. While the
details are not described in their paper, the framework currently
supports adaptivity along solid boundaries, but not at free surfaces
(R. Bridson, personal communication, April 27, 2020). Setaluri et al.
[2014] presented a new data structure to efficiently support octrees
using a pyramid of sparsely allocated grids.
Unstructured or semi-structured tetrahedral and/or polyhedral

meshes are an attractive alternative for adaptivity, since they do not
generally exhibit T-junction configurations. Klingner et al. [2006]
was the first to exploit spatially adaptive tetrahedral meshes for

smoke animation, with Chentanez et al. [2007] extending these
ideas to liquid animation. Support for embedded/sub-grid bound-
aries in adaptive Delaunay tetrahedral meshes (with a Voronoi dual
mesh) was proposed by Batty et al. [2010], which is made possible
by the absence of T-junctions; Ando et al. [2013] similarly showed
a finite element-like ghost fluid discretization on tetrahedra that
offers varying resolution along the liquid surface, supported by a
novel surface-adaptive sizing function. Voronoi meshes can likewise
incorporate embedded boundaries and support adaptivity as illus-
trated by Brochu et al. [2010], including surface tension, building
on the earlier point-based Voronoi liquid solver of Sin et al. [2009].
A closely related alternative is power diagrams [de Goes et al. 2015;
Zhai et al. 2018] which possess a primal-dual mesh orthogonality
that Voronoi diagrams also share. Aanjaneya et al. [2017] observed
that a graded octree could be conceptually overlaid with a power di-
agram to effectively eliminate T-junctions from the pressure solver,
and thereby recover accurate support for irregular embedded bound-
aries that cross grid levels. However, compared to our work, this
entails either explicit power diagram meshing or complex precom-
putation of geometric cases, and gives a somewhat denser structure
in the Poisson matrix. Many of the preceding schemes adopt special-
ized mesh-dependent interpolation schemes for velocity or level set
values; an exception is the (conceptually meshless) Moving Least
Squares [Nealen 2004] approach used for tetrahedral meshes by

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

32:4 • Ryoichi Ando and Christopher Batty

Feldman et al. [2005]. We propose a related scheme that is tailored
to the octree setting to avoid dissipation and ensure continuity with
uniform (trilinear) regions. MLS has also been used by Sousa et al.
[2019] inside the Poisson solve to construct ghost data for non-
graded octree discretizations that yield second order gradients (in
the absence of complex boundaries), and by Guittet et al. [2015] for
more costly quadratic interpolation, using inverse distance weights
rather than our trilinear kernel. MLS has seen many more applica-
tions in animation, including recent improvements to the material
point method [Hu et al. 2018].

A large variety of additional adaptivity strategies have been pre-
sented in the literature, which we survey briefly below. The use of
overset uniform grids in axis-aligned (Adaptive Mesh Refinement or
AMR) or more general configurations is traditional in computational
fluid dynamics [Berger and Oliger 1984]. The latter case is some-
times referred to as a Chimera grid as considered, for example, by
English et al. [2013] who used a Voronoi diagram to stitch different
regular grids together. Localized regions of tall cells were considered
by Irving et al. [2006] and Chentanez and Müller [2011] to avoid
the cost of simulating deep liquid regions that have little impact on
the surface. Zhu et al. [2013] suggested using more general axially
stretched regular grids for adaptivity in multiple directions. Oth-
ers have considered warped [Ibayashi et al. 2018] and curvilinear
[Azevedo and Oliveira 2013] grids, which maintain the connectiv-
ity of a uniform grid but significantly deform to locally increase
resolution or match object boundaries. Lastly, adaptive Lagrangian
schemes for conforming tetrahedral meshes have also been explored
(e.g., [Clausen et al. 2013; Misztal et al. 2012]), and while these can
support surface-adaptivity including surface tension, they suffer
from significant remeshing costs.

3 METHOD OVERVIEW

3.1 Notation
For clarity, hereafter [·] denotes a matrix (or discrete linear operator)
and {·} denotes a discretized variable expressed in vector form.
Symbols without [] or {} express continuous variables/operators
or a single-valued scalar/vector field. For a vector variable qi the
subscript denotes the ith scalar element of the vector. A single
subscript i on a matrix variable denotes the ith row of the matrix.
We use qT to express the transpose of a matrix/vector. A list of
symbols is available in Table 1. While our derivation is non-trivial,
the resultings equations are relatively straightforward; we indicate
equations that are important for the final implementation using a
gray background. Throughout, we use the notation <vids/xxx.mp4>
to indicate specific supplemental video materials.

3.2 Overview
We simulate liquid by solving the incompressible Euler equations,

∂u

∂t
+u · ∇u = −

1
ρ
∇p + д, ∇ · u = 0, (1)

where u, t, ρ,p and д denote velocity, time, density, pressure and
gravity, respectively. For convenience, we set ρ = 1 for liquid, and
treat air as a vacuum with ρ = 0. For regular cells, we use a stan-
dard staggered grid layout and operator-splitting [Bridson 2015] to

Table 1. List of symbols used in the paper.

Sections from 4.1 to 4.5
Sym Type Location/Dim Description
u Vector Continuous Incompressible velocity
{u} Vector Face centers Discretized velocity above
u∗ Vector Continuous Advected velocity
{u∗} Vector Face centers Discretized advected velocity
p Scalar Continuous Pressure
{p} Vector Cell centers Discretized pressure on cells
k Integer Per face Reference number of a face
∇ Operator R→ R3 Gradient operator
∇· Operator R3 → R Divergence operator
[∇] Matrix Faces × Cells Discretized gradient operator
[∇]k Matrix 1 × Cells kth row of the above matrix
[∇]T Matrix Cells × Faces Discretized −∇· operator
ek Vector Per face Face normal (unit vector)
[A] Matrix Faces × Faces Area fraction (diagonal)
[F] Matrix Faces × Faces Inverse of fluid fraction (diag)
[V] Matrix Faces × Faces Face volume (diag)
ϕ Scalar Continuous Level set of liquid
{ϕ} Vector Cell centers Discretized level set
n Vector Continuous Liquid surface normal
Q∗
k Set Per face All the cells referenced in [∇]k

Qk Set Per face Cells inside liquid in Q∗
k

Wk Scalar Per face Scalar coefficient per face
Sections from 4.5 to 7

{u⋆} Vector Continuous Pre-modified u∗
ϕsolid Scalar Continuous Level set of solid
N (·) Function R3 → R Trilinear shape function
S(·) Function R3 → R Sizing function
{S} Scalar Cell centers Sizing value
κ Constant N/A Surface tension parameter

{κH } Scalar Cell centers Scaled mean curvature
x Vector Per cell/face Discretized sample position
p Vector Arbitrary Query position

integrate time. For interface tracking we use the level set method
[Osher et al. 2004] and enforce second order accurate boundary
conditions both on free surfaces [Enright et al. 2003] and solids
[Batty et al. 2007; Ng et al. 2009]. We later describe an (optional)
extension to incorporate extended narrow band FLIP [Sato et al.
2018] for enriched splash details.

We use basic semi-Lagrangian advection for both the velocity and
the level set due to its ease of use. MacCormack advection is also
possible, but as Selle et al. [2008] discuss, first order semi-Lagrangian
advection is recommended for velocity near liquid surfaces anyway.
We did not observe significant improvement in animation quality
using MacCormack, and therefore we did not prefer it, given its
added storage and computational cost. This is illustrated in our
supplemental material in <vids/maccormack.mp4>. The added cost
of MacCormack may be worth paying in smoke simulation contexts.
Similar to previous methods, we start with construction of the

octree grid. Next, we advect the level set and velocity values from the
previous step’s octree grid and simultaneously assign the resulting

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

A Practical Octree Liquid Simulator with Adaptive Surface Resolution • 32:5

values to the new octree grid (as first demonstrated for tetrahedra by
Klingner et al. [2006]). Optionally, we seed extended FLIP particles
and advect/delete existing ones. We then enforce incompressibility
through Chorin’s projection [Chorin 1968]. Finally, we redistance
the level set and extrapolate velocity outwards.

4 OCTREE PRESSURE DISCRETIZATION

4.1 Pressure projection overview
Since the central component of our method is the pressure pro-
jection, we begin with a brief review of this step. Let {u∗} be the
divergent velocity field after advection has been performed. The
projection starts with solving a linear system,

− [∇]T [V][A][F][∇]{p} = −[∇]T [V][A]{u∗}, (2)

or, more simply,

[∇]T [VA][F∇]{p} = [∇]T [VA]{u∗}, (3)

where [V], −[∇]T , [∇], [A], and [F] denote, respectively, the volume
of a face (not the volume of a cell), a discrete divergence operator, a
discrete gradient operator, a diagonal matrix of fluid area fractions
(second order accurate Neumann boundary conditions for solids
[Ng et al. 2009]) and the inverse of a diagonal liquid fraction matrix
(second order accurate Dirichlet boundary conditions for liquid
[Enright et al. 2003]). If we assume that grid cells are all uniform, [V]

can simply be an identity matrix. Next, the solution for the pressure
{p} is used to update the divergent velocity {u∗} to complete the
projection:

{u} = {u∗} − [F][∇]{p}. (4)
To form (3) the key question is how to discretize [∇], [F∇] and [VA],
which we detail in the next subsections.

4.2 Discretizing spatial variables

Fig. 3. Locations of pressure
(yellow circle) and velocity (blue
and red arrows).

We discretize spatial variables
according to the method of
[Losasso et al. 2006]. Consistent
with staggered regular grids, we
sample pressure and level set val-
ues at the center of cells and ve-
locity components on faces. At
T-junction faces, we sample ve-
locity only at the center of the
large (parent) face; the incident
small (child) faces effectively in-
herit this velocity. We always as-
sume a 2:1 graded tree for sim-
plicity, as did Aanjaneya et al. [2017]). This is illustrated in Figure 3.

4.3 Discretizing the gradient operator
This subsection describes the computation of [∇] in (3). Once [∇]
is available, we can compute −[∇]T (in practice, this is done by
a local matrix transpose), noting that [∇]T = −[∇·]. Figure 4 left
illustrates a 2D example of the discrete gradient along the horizontal
direction on a T-junction. We first compute the average pressure
value and average position between the two smaller cells’ centers.
Next, we measure the distance L between this average position and

Fig. 4. 2D discrete gradient (left) and the volume (right) on a T-junction
face. ck1,ck2,ck3 denote coefficients of [∇]k : the gradient of the kth face
in the face normal direction.

the center of the large cell. Finally, a finite difference estimate of the
gradient at the face is constructed using the difference of the average
pressure value and that of large cell divided by L. The analogous
procedure is employed for the 3D case (that is, the coefficients for
smaller cells will be 1/(4L) in 3D while L remains the same). Note
that in this way the differentiation direction is aligned with the face
normal, and as such overall second order accuracy in pressure is
preserved (in the absence of boundary conditions for now) [Batty
et al. 2010; Losasso et al. 2006]. Note that this is not the case for
some adaptive methods [Chentanez et al. 2007; Feldman et al. 2005;
Losasso et al. 2004]. Gradients on faces of regular cells are computed
with standard centered finite differences. To summarize, let [∇]k be
the kth row of [∇] where k denotes an (integer) reference to a face.
Then [∇]k is given in 2D by

[∇]2Dk = sgn(face)
[
−1 1/2 1/2

]
/(1.5∆x), (5)

where the leftmost entry corresponds to a large cell, and the re-
maining entries to small cells. The expression sgn(face) ∈ {−1, 1}
indicates the sign of the face direction relative to the large cell,
which is 1 for Figure 4, for example. The symbol ∆x is the grid cell
size of the smaller side. Similarly, [∇]k in 3D is given by

[∇]3Dk = sgn(face)
[
−1 1/4 1/4 1/4 1/4

]
/(1.5∆x).

(6)
For faces incident on two regular cells,

[∇]k =
[
−1 1

]
/∆x, (7)

for both 2D and 3D (a sign flip is not needed). Therefore, for faces
whose incident cell centers are all inside the liquid, either (5), (6) or
(7) is plugged into (3) as [F∇]k .

4.4 Assembling the diagonal matrix
This subsection describes the computation of [VA] in (3). For con-
venience, we use the same terminology "volume" when referring to
face (edge) area in 2D and face volume in 3D. Figure 4 right illustrates
a 2D example of the face volume on a T-junction. As in our gradient
expressions, the same length L is used to measure the distance be-
tween incident cell centers. The remaining dimensions are straight-
forward to compute, leading to the expressions V2D = 3∆x2 for

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

32:6 • Ryoichi Ando and Christopher Batty

volume in 2D, and V3D = 6∆x3 for volume in 3D. When a face
crosses a solid boundary, we compute the area fraction 0 < A < 1
which encodes the non-solid volume fraction of the face, i.e., one
minus the face’s solid fraction [Ng et al. 2009]. The product VA is
inserted as the diagonal entry of [VA] in (3) for that face.

4.5 Second order accuracy on T-junctions near surfaces

Fig. 5. Second order accurate
free surface boundary condi-
tions on a T-junction.

The preceding sections are suf-
ficient to achieve a second or-
der accurate pressure projection
on simple domains and the liq-
uid interior, and is consistent
with the method of Losasso et al.
[2006]. However, careful treat-
ment of non-axis-aligned surface
configurations is known to be es-
sential for ensuring smooth mo-
tion [Enright et al. 2003]. This
subsection therefore describes
the computation of [F∇] in (3) on
T-junction faces crossing an ir-
regular liquid surface. Once [F∇]
is available, we can form and
solve (3). Consider three cells
incident on a T-junction that
crosses the interface (Figure 5).
Cell centers inside the liquid are
colored yellow and the outside center is colored red. In the discus-
sion below, we assume that all the spatial variables are linear within
the T-junction cells, and any quadratic or higher order changes are
ignored (which was also implicitly assumed in earlier derivations).
Under these conditions, pressure p and level set value ϕ along the
line p1 and p2 are given by

p = θ1p1 + θ2p2, ϕ = θ1ϕ1 + θ2ϕ2, (8)
θ1 = w1/(w1 +w2), θ2 = w2/(w1 +w2), (9)

wherew1 andw2 are arbitrary numbers that can be freely chosen
for convenience. Notice that the constraint θ1 + θ2 = 1 is imposed
by construction. Hence, the equations above describe either an
interpolation or an extrapolation based on the two data points.
More generally, a linear combination of an arbitrary number of data
points is given by

p =
∑
i ∈Qk

θi {p}i , ϕ =
∑
i ∈Qk

θi {ϕ}i , θi = wi

/ ∑
j ∈Qk

w j , (10)

where Qk denotes a set of indices in [∇]k for which {ϕ}i < 0, indi-
cating that cell center i resides in the liquid. The θ values again form
a partition of unity. Since the gradient of a function is perpendicular
to its isosurfaces, and our boundary conditions assume the pressure
on the surface (and outside) is p = 0, the interior pressure gradient
near the surface can be approximated as

∇p =

(
p − 0
ϕ

)
n =

pn

ϕ
, (11)

wheren is the liquid surface normal in the vicinity of the T-junction
cells. (A similar approximation was used by Bojsen-Hansen and

Wojtan [2013].) Plugging the expressions (10) in for p and ϕ in (11)
and simplifying gives:

∇p =
©«
∑
i ∈Qk

θi {p}i
ª®¬n

/ ©«
∑
i ∈Qk

θi {ϕ}i
ª®¬ (12)

=
©«
∑
i ∈Qk

wi {p}i
ª®¬n

/ ©«
∑
i ∈Qk

wi {ϕ}i
ª®¬ . (13)

Notice that in (13) the θ parameters completely vanish and we are
only left with the choice ofw without constraints (except when the
wi are all zeros). Hence, thewi need not necessarily sum to 1.

Now, let [∇] be a discrete gradient operator (matrix) on a set of
values {q}i , where {q}i denotes arbitrary quantities sampled on
the cell centers, including cells outside the liquid. Up to this point
[∇] has no dependence whatsoever on the free surface boundary; it
is simply a discrete operator used to approximate ∇q. Recall that,
given [∇], a discrete divergence operator is conveniently given
as −[∇]T and the Laplace operator ∇ · ∇ in the absence of free
surfaces is approximated as −[∇]T [∇]. Since this is the product of
a matrix and its transpose, the resulting linear system is positive
semidefinite by construction, and with at least one free surface
(Dirichlet boundary value) it becomes SPD. Naturally we wish to
impose that our resulting linear system near surfaces is also SPD.
Our next task is to determine the component of the pressure

gradient in the face-normal direction, ek · ∇p, where ek denotes the
normal of the kth face, i.e., an axis-aligned unit vector. Let ck j be
the jth element of a single-row matrix [∇]k (that is, ck j = [∇]k j).
In this setting, we have

ek · n = [∇]k {ϕ} =
∑
j ∈Q∗

k

ck j {ϕ}j , (14)

In the above we have used the relation n = ∇ϕ, which holds since
ϕ is a signed distance field. The symbol Q∗

k denotes the set of all
cells referenced in [∇]k , including cells outside the liquid. Using
(14) with our pressure gradient approximations in (11) and (13), the
pressure gradient component in the face normal direction is

ek · ∇p = ek ·
pn

ϕ
= (ek · n)

p
ϕ (15)

=
©«
∑
j ∈Q∗

k

ck j {ϕ}j
ª®®¬
©«
∑
i ∈Qk

wi {p}i
ª®¬
/ ©«

∑
i ∈Qk

wi {ϕ}i
ª®¬ . (16)

Since this statement holds independent of the choice ofw , we can
specifically choose w j = ck j . By doing so, we get the following
equations:

ek · ∇p =
©«
∑
j ∈Q∗

k

ck j {ϕ}j
ª®®¬
©«
∑
i ∈Qk

cki {p}i
ª®¬
/ ©«

∑
i ∈Qk

cki {ϕ}i
ª®¬ . (17)

Recalling that we impose pi = 0 outside the liquid, we have∑
i ∈Qk

cki {p}i =
∑
j ∈Q∗

k

ck j {p}j = [∇]k {p}. (18)

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

A Practical Octree Liquid Simulator with Adaptive Surface Resolution • 32:7

Fig. 6. Left: example of a degenerate zone in 2D with the liquid surface
normal pointing upward. When the liquid surface lies within the red range,
Wk < 0 and special care is needed. Right: the correct (face) normal
direction (blue arrow) vs. the flipped normal direction (red arrow). Leaving
Wk < 0 corresponds to non-physically flipping the normal direction of the
pressure gradient, leading to "kink" artifacts.

Substituting (18) into (17) yields

ek · ∇p =
©«
∑
j ∈Q∗

k

ck j {ϕ}j
ª®®¬
©«
∑
j ∈Q∗

k

ck j {p}j
ª®®¬
/ ©«

∑
i ∈Qk

cki {ϕ}i
ª®¬ (19)

=Wk [∇]k {p}, (20)
where

Wk =
©«
∑
j ∈Q∗

k

ck j {ϕ}j
ª®®¬
/ ©«

∑
i ∈Qk

cki {ϕ}i
ª®¬ . (21)

Therefore, this choice forw j gives
∇p = diag(W)[∇]{p}. (22)

Applying the discrete divergence operator −[∇]T to (22) yields our
discrete approximation of the Laplacian accounting for free surfaces:

∇ · ∇p ≈ −[∇]T diag(W)[∇]{p}. (23)
The resulting linear system is only assuredly SPD if Wk > 0
(e.g., by Theorem 4.2.1 of Golub and Van Loan [2012]), but it is
not uncommon to encounter geometric configurations for which
Wk < 0. For example, such a case occurs when the interface lies
entirely within the red region in Figure 6, left. In the worst case this
results in negative diagonal terms in the resulting linear system.
When we encounter a case whereWk < 0, we can circumvent

it either by setting wi = 1 or clampingWk = 0. Note that it is
possible to leaveW without any modification at all; however, we
very occasionally observed small kinks on the surface when liquids
nearly settle using this indefinite form. Physically, this is because
Wk < 0 corresponds to a flip in the normal direction of the pressure
gradient with respect to the liquid surface, as illustrated in Figure 6,
right, which should not be allowed in practice.

The choice of settingwi = 1 retains full second order accuracy,
but the resulting linear system is asymmetric and therefore PCG
cannot be used to solve it. We find that preconditioned BiCGStab can
efficiently solve the system, although it lacks some of the favorable
numerical and convergence properties of PCG.
The choice of clampingWk = 0 instead sacrifices strict second

order accuracy in exchange for recovering symmetric positive defi-
niteness. Interestingly, this is also equivalent to assuming a solid face
in that position, which is of course somewhat nonphysical. However,

the SPD property ensures that PCG can be used and, moreover, we
have in practice observed no resulting visual artifacts across a wide
variety of simulation scenarios. A set of comparisons is provided
in Figure 13. Note that clamping to zero does not necessarily imply
zero diagonal terms in the resulting linear system: the contributions
from other non-degenerate faces will still make the diagonal terms
positive, except for the extreme case in which all the adjacent faces
are degenerate (or solid). In our examples, we handle this by using
a very small positive number (Wk = 10−2) rather than 0 for faces
adjacent to a cell for which at least one adjacent cell’s face contains
a solid fraction. Finally, the above expressions give [F∇] as either

[F∇]k =
[∇]k {ϕ}∑
i ∈Qk

{ϕ}i

[
1 · · · 1

]
, (24)

for the fully second order case and

[F∇]k = max(Wk , 0) [∇]k , (25)

for the SPD case (in practice, albeit not unconditionally). See (21) for
the computation ofWk . As described above, one may (infrequently)
need to swap zero for a very small positive number if positive
definiteness should be unconditionally guaranteed. When forming
the above equations only the actual degrees of freedom of pressure
must be considered. Hence, entries not in the actual degrees of
freedom will be dropped. Our extension to support the presence of
surface tension forces is described in Section 4.6. Interestingly, for
regular faces our second order accurate approach produces exactly
the same formula as the familiar ghost fluid method [Enright et al.
2003]. This can be seen by observing

pG =
ϕG
ϕL

pL,
pG − pL

∆x
=

ϕG − ϕL
ϕL∆x

pL =
[∇]k [ϕG ϕL]

T

ϕL
pL, (26)

where pG ,pL,ϕG ,ϕL denote ghost pressure, pressure in the liquid
cell, level set on the ghost cell, level set on the liquid cell. Notice
that (26) is exactly the same as both (24) and (25). Our technique can
alternatively be seen as an adaptation of the warped grid method of
Ibayashi et al. [2018] to a variant of finite volume methods (their
method is based on a finite element method); however, we also
provide a more rigorous evaluation and a fully second order accurate
non-symmetric alternative in the case of degenerate situations.

4.6 Surface tension forces
We develop a new surface tension formulation to complement our
surface-adaptive pressure projection. We do so by generalizing the
approach of Enright et al. [2003] to an arbitrary Chorin-style pro-
jection method [Chorin 1968]. Using H and κ to denote the mean
curvature (of the form avoiding factors of two) and surface tension
coefficient, respectively, we revisit (11) and replace the zero surface
pressure with κH motivated by the Young-Laplace law:

∇p =

(
p − κH

ϕ

)
n. (27)

We compute H via level set differentiation [Bridson 2015], though a
mesh-based evaluation could be used instead [Brochu et al. 2010;

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

32:8 • Ryoichi Ando and Christopher Batty

Fig. 7. Curvature/surface tension force computation on an octree grid. Red
cells are air and blue cells are liquid. The dashed line indicates the liquid
interface. Yellow circles represent active (i.e., interior) pressure samples and
blue circles represent mean curvature evaluation points. Red and blue arrows
represent the surface tension forces computed by applying [F ∇]{κH } on
the incident faces.

Thürey et al. 2010]. Equation 27 is equivalent to

∇p =

(
p − 0
ϕ

)
n −

(
κH − 0

ϕ

)
n, (28)

which can in turn be conveniently rewritten using our discrete
gradient operator as

∇p = [F∇] {p − κH } . (29)

The gradient operator [F∇] is independent of the discretization
choice, and henceforth [F∇] can be either (24) or (25). This is made
possible by our generalization from (27) to (29). (Our same final
discrete equations could also be developed in the manner of Losasso
et al. [2006], but the derivations would depend explicitly on which
of our two gradient operators was adopted.)

Notice that in (29) we store mean curvature at the same position
as the pressure samples, as illustrated in Figure 7, but the mean
curvature itself is nevertheless still computed on the exact liquid
surface position. In this way, a cell may have multiple mean cur-
vature values; the appropriate value is selected depending on the
relevant face in the gradient computation. On T-junction cells, we
compute mean curvature per T-junction, hence the same mean cur-
vature is assigned to multiple liquid cells. Next, we substitute (29)
into (3) to get a new linear system,

[∇]T [VA][F∇]{p} = [∇]T [VA]
(
{u∗} + [F∇]{κH }

)
. (30)

The new velocity is then given as

{u} = {u∗} + [F∇]{κH } − [F∇]{p}. (31)

In practice, it is convenient to instead simply pre-modify {u∗} as

{u⋆} = {u∗} + [F∇]{κH }, (32)

and perform the standard projection on {u⋆} without considering
surface tension. This pre-modification of {u∗} interpretation was
also employed by Ando et al. [2015] in a different context. Our
approach is therefore a decoupled, explicit, and sharp interface
application of the surface tension force which can be used with
any gradient discretization, but remains mathematically equivalent
to the use of a boundary condition on the usual Poisson system
[Enright et al. 2003].

5 OCTREE INTERPOLATION

5.1 Moving Least Squares Approach
We adapt a Moving Least Squares (MLS) approach for velocity and
level set interpolations near T-junctions (for a concise summary of
MLS, we recommend the review by Nealen [2004]). Regions where
MLS is applied are shown in light blue, dark blue and green in the
first row of Figure 9. However, our MLS interpolation scheme im-
plicitly categorizes the colored regions shown in this figure without
explicit knowledge of the grid structure. This conveniently allows
us to interpolate arbitrarily positioned variables using the same
routine. For example, when we interpolate an arbitrary discrete
variable {q} (e.g., a level set or velocity value) at a query point
p = [px ,py ,pz], we first collect a set of nearby samples. We discuss
our sample collection strategy in Section 5.2. Let ∆x be a vector of
which the ith element represents the size of the ith cell/face, and let
xi = [xi ,yi , zi] be the position of the ith sample. The interpolated
value q(p) using MLS is given by

q(p) =
[
px py pz 1

]
(ZTDZ)−1ZTD

{q}1
...

{q}n

 ,
Z =

x1 y1 z1 1
...

...
...

xn yn zn 1

 , D = diag
©«

N (p − x1,∆x1)

...

N (p − xn,∆xn)

ª®®¬ ,

N (r ,h) =
3∏
j=1

max(1 −
||r j | |

h
, ε),

(33)

(34)

(35)

where n denotes the number of points. The length h is the cell size
of the grid level corresponding to a given sample point. The safety
constant ε is used to avoid zero weights; this can occur if sample
points are outside the trilinear kernel distance, as illustrated in dark
blue in Figure 9. We set ε = 10−2 for all our tests, and solved the
normal equations linear system directly with a Cholesky solver.

We use trilinear interpolation for regular cells (red regions in Fig-
ure 9), except where the shape function of a larger grid resolution
overlaps (green regions in Figure 9). Because our MLS gives the ex-
act same formula as trilinear interpolation when applied on regular
cells, our interpolation scheme isC0 continuous, with the exception
of the boundary of the dark blue region where ε has an effect. This
equivalence is only true because we chose (35) for computing D,
and will not be the case if we choose different shape functions (e.g.,
constant). We provide a sketch of a proof aided by a computer alge-
bra package in the supplemental material (interpolation.maxima).
This property also holds for 2D (bilinear interpolation).

If desired, a fully C0 continuous interpolant can be constructed
by inserting a set of ghost samples with anisotropic (axially scaled)
trilinear kernels, as shown in the second row of Figure 9. However,
this requires more explicit knowledge of the local grid structure,
making the interpolation problem-specific (face centers vs. cell cen-
ters); it therefore comes with additional implementation complexity
and effort. In practice, we find that the above (mildly discontinuous)
interpolation scheme does not differ noticeably from the truly con-
tinuous interpolation scheme on actual simulations. A comparison

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

A Practical Octree Liquid Simulator with Adaptive Surface Resolution • 32:9

(both face and cell interpolations) is provided in the supplemen-
tal material (mildly discontinuous <vids/noncont_MLS.mp4>, C0

continuous <vids/c0_MLS.mp4>). We also provide a number of nu-
merical tests to clarify the discontinuity error and the quality of the
above modified C0 continuous interpolation scheme in Figure 17.

Special care is needed near boundaries of the simulation domain
because there may be insufficiently many nearby points. In such
cases, wemirror points across the boundary, as illustrated in Figure 8,
and count them as additional ghost values.

Fig. 8. Mirrored values. Samples ad-
jacent to domain boundaries are mir-
rored across the boundary to prevent
degenerate cases when performing
MLS interpolation.

Note that mirrored ghost
particles are generated only
at the exterior (axis-aligned)
domain boundary — we do
not generate ghost particles
within solids. As in our uni-
form MAC solver, we ex-
trapolate level set and veloc-
ity values into solids, and
use them during interpola-
tion. Very thin solids may
cause “cross-talk” artifacts,
which could potentially be
addressed by adapting a one-
sided interpolation strategy
(e.g., [Azevedo et al. 2016;
Guendelman et al. 2005]).
Notably, we do not perform any (temporary) nodal/element-

center velocity conversions [Aanjaneya et al. 2017; Batty et al. 2010;
Brochu et al. 2010; Klingner et al. 2006; Losasso et al. 2004], which
may require special care to prevent additional numerical diffusion.
In our method, velocity is always separated into u,v ,w components
on faces, and our MLS interpolation scheme is applied indepen-
dently to each. Hence, this potential source of numerical diffusion
is avoided.

5.2 Sample point collection
An initial set of nearby samples from an arbitrary position p is
determined by the condition N (p − x,∆x) > ε where x denotes a
sample position and ∆x its cell (or face) size. A brute-force approach
could loop over all the samples and check if N (p − x,∆x) > ε . This
is a standard neighbor searching problem, for which a variety of
methods exists (e.g., [Arya et al. 1998; Li et al. 2012]). However, for
efficiency we exploit the local tree structure.

We first gather the trilinear interpolation weights corresponding
to each active sample on every layer of the octree at p. Since a
graded octree guarantees that all the nearby sample points lie in
levels L and L + 1 (supposing that the level transition is smooth
enough; if a sharp transition is present such that a cell contains both
larger and smaller cell neighbors, one may also include the level
L − 1), where L denotes a layer level, we can avoid looping over all
the layers in practice.

In most regions, the above sample collection scheme finds enough
points, except for the dark blue region in the Figure. When p falls
within such a region, we first find the nearest active sample from

Fig. 9. Top row: Our partially discontinuous MLS interpolation scheme,
applied to cell-centered data (left) and face-centered data (right). Trilinear
interpolation is performed in the red region, while MLS interpolation is
performed in the green, blue, and dark blue regions. Dark blue indicates
the region where ε has an effect; the value across its boundary is not neces-
sarily continuous. Bottom row: A fully continuous MLS interpolation. The
discontinuity above is resolved by inserting ghost samples, shown as green
circles. The red rectangular boxes illustrate the boundaries of the anisotropic
trilinear shape functions, shown with half of their true widths and heights
for the sake of visual clarity. The blue lines and white circles represent the
interpolation points for constructing those ghost samples. In actual visual
simulations, the former discontinuous interpolation suffices.

p, and additionally incorporate all the "one-ring" neighbors of that
sample; these are (implicitly) assigned a weight of ε by 35.

6 OCTREE SIZING FUNCTION AND CONSTRUCTION
A vital component of a spatially adaptive simulator is the design of a
scalar sizing function S : R3 → R to determine the required level of
local adaptivity. Much of the previous work primarily employed the
distance to some geometry of interest (e.g., liquid surfaces or solid
obstacles) [Aanjaneya et al. 2017; Chentanez et al. 2007; Ferstl et al.
2014; Losasso et al. 2004]. Such distance-based criteria may suffice
when surfaces are uniformly resolved with the highest resolution
cells; however, surface adaptivity requires us to distinguish the
relative importance of different regions of the surface itself.
To the best of our knowledge, in the graphics literature, the

only sizing function that adapts to surface detail is that of Ando et
al. [2013], which also considers velocity derivatives and curvature
metrics. Our contribution is to improve these metrics even further
with the following four novel extensions:

• A temporal adaptivity mechanism for the sizing function
(§6.1).

• A surface propagation method to precisely capture sharp
surface details during refinement (§6.2).

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

32:10 • Ryoichi Ando and Christopher Batty

<vids/s100.mp4> <vids/s40.mp4>

Fig. 10. Comparison of variable sizing strength. α = 1.0 (left) and α = 0.4 (right). Notice that cells inside the red circles have smaller sizes on the right. More
simulations with alpha ranging from 0.0 to 1.0 with 0.2 intervals are provided in <vids/waterdrop_sizing/s00-100.mp4> (e.g., α = 0.4 corresponds to s40.mp4).

• A progressive refinement scheme to avoid accessing all the
high-resolution cells at the initial time step (§6.4).

• An additional user parameter to control the degree of adap-
tivity and conveniently blend the uniform and adaptive grid
structures (§6.5).

6.1 Temporal adaptivity
Sato et al. [2018] assigned a (metaphorical) heat variable to FLIP par-
ticles in the context of their extended narrow-band FLIPmethod. The
heat dissipates as time progresses and its value is used in blending
between the level set and the particle-based surfaces. The motivat-
ing principle is that any interesting detail or motion that emerges
should not be immediately deleted in the next time step, but is in-
stead likely to be carried with the flow for a period of time. We
can apply an analogous idea to the design of our sizing function.
Unlike Sato et al. [2018] though, we will not depend on FLIP parti-
cles to carry heat, because we do not seed particles on coarse cells
(Section 7.2).

First, assume that we already have sizing values {St−∆t } stored on
the octree from the previous time step. We advect the sizing values
in the same manner as the level set, denoting the result by {S∗t }.
(Because the octree structure at the previous and new steps will
typically differ, we perform the semi-Lagrangian trace-back using
the old octree’s velocity, starting from the desired sizing function
sample position on the new octree [Klingner et al. 2006]). Next,
we evaluate the proposed sizing values for the next time step as
{St }. Finally, our new sizing value is computed for each point as
max

(
R(∆t){S∗t }, {St }

)
, where

R(∆t) = T
(∆t/T2)
1 , (36)

andT1 andT2 are constants that control the rate at which the effect of
the old sizing value diminishes. This indicates that a variableqwould
be reduced toT1q after a specified period of time ofT2. We useT1 =
0.9 andT2 = 0.01 seconds in our examples. An example of Figure 14
without this extension is shown in <vids/notemporal_cylinder.mp4>.
In addition to better tracking the motion of salient details, our
temporal modification also improves temporal coherence in the
refinement pattern (i.e., avoids flicker).

6.2 Propagating values outwards
For simplicity, when performing an octree grid remeshing, we adopt
a coarse-to-fine strategy. In doing so, we would hope that all the fine
details are eventually captured by the refinement process. Unfortu-
nately, if we naively evaluate a sizing function only at the center of
each coarse cell to decide if it should be subdivided, we would often
fail to refine where needed and thereby overlook fine details. To
ensure that all the interesting details are captured in the remeshing,
we propose what we call a propagation method.

First, we assume that all relevant interesting details are concen-
trated near liquid surfaces. At this point, we have two octrees: one
from the current time step and one for the next time step. Next,
we compute sizing values only on the cells adjacent to liquid in-
terfaces on the current step’s octree. These sizing values are then
propagated inwards/outwards into the liquid/air, similar to velocity
extrapolation. One iteration of our propagation rule is given by

{Snew}i jk =

∑
m vmmax({S}i jk , {S}Nm)∑

m vm
, (37)

wherevm = ∆x3m denotes cell volume and {S}Nm denotes the sizing
values on cell neighbors which share the same face, similar to a PDE-
based level set redistancing algorithm. As such, a cell is updated
multiple times during the propagation, which may introduce exces-
sive diffusion. To prevent such diffusion, we perform this update
rule up to five times per cell.

6.3 Octree subdivision and smoothing adaptivity
With the above propagated sizing values, we perform subdivision
on the next time step’s octree by the following procedures:

(1) Locate the center of an octree cell p, and denote its cell size
as ∆x .

(2) Evaluate the distance from the liquid surface, |ϕ |, using the
level set values at that position.

(3) Interpolate the (propagated) sizing value at p as S(p).
(4) Subdivide if |ϕ | < ∆x and S(p) > 1/∆x .
(5) Move on to the subdivided cells and recursively apply the

above procedures.

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

A Practical Octree Liquid Simulator with Adaptive Surface Resolution • 32:11

Fig. 11. Our progressive remeshing, applied at the initial time step, correctly
captures the high curvature at the edge of the hemisphere. Iterations proceed
from left to right and top to bottom. Our top-down iterative remeshing
avoids looping over all the finest level cells only to find where the octree
should be subdivided.

The above algorithm can be naively parallelized for each cell. It
should be noted that this subdivision strategy does not yet guaran-
tee that the tree is graded; i.e., that each cell differs from its neighbor
by at most one level. Allowing more than one level of change would
increase the algorithmic difficulty and potentially introduce unex-
pected visual artifacts (e.g., grid-aligned reflections due to steep
resolution changes [Söderström et al. 2010]). Explicit octree bal-
ancing [Isaac et al. 2012] could be used to eliminate such sharp
level transitions, but this entails additional implementation effort
and computational cost. Other tree-balancing methods have been
based specifically on the distance to the surface, rather than the tree
structure alone (e.g., [Cecil et al. 2006; Strain 1999]). However, such
approaches are incompatible with our aim of surface-adaptivity.
Instead, we propose "adaptivity smoothing", as follows:

(1) Starting from the highest resolution (finest) level L, dilate
active cells 3 times.

(2) Upsample the locations of cells on the coarse level L + 1, and
mark (coarse) cells as active at these locations.

(3) If a coarse cell contains at least one fine cell but not all eight
cells, mark the eight child cells as active.

(4) Move to one level coarser level. Recursively apply the same
procedures for the remaining levels.

The above simple refinement method not only removes very sharp
transitions, but also naturally smooths out the spatial rate of refine-
ment as illustrated in Figure 12. The dilation count may be increased
to control the transition smoothness.

6.4 Progressive refinement
In the above algorithms, we assumed that we have an auxiliary
octree from the previous step, which we use to perform value prop-
agation. Unfortunately, neither an octree nor prior values are avail-
able at the initial time step, so the aforementioned algorithm is not
applicable. Accessing every cell at the highest resolution is often
not a feasible solution for very large-scale scenarios.
We solve this problem by an iterative remeshing approach. We

start from a comparatively low resolution octree, and assign sizing
values on it. We then use the above algorithms to propagate values
and subdivide the octree. This iteration is repeated until sufficient

Unbalanced Configuration One Dilaion Three Dilations

Fig. 12. Adaptivity smoothing. Left: An unbalanced octree configuration.
Middle: Our "adaptivity smoothing" applied with one pass of dilation. Right:
Two dilation passes. Our adaptivity smoothing operation not only eliminates
sharp transitions but also smooths out the transitions, in a user-controllable
fashion.

subdivision is achieved. In our examples, three iterations was suffi-
cient. An example of our initial progressive remeshing is shown in
Figure 11.

We note that our progressive refinement may still overlook sharp
sizing values since the coarse grid may not be resolved enough
to capture the value (this will not be the case after the first step
except for analytically represented geometries, such as sharp solids
or ballistic FLIP particles) . When locations of such sharp sizing
values are known explicitly, we directly process the sizing field in a
local way to capture it (e.g., this is similar to how Boyd and Bridson
[2012] (Figure 7) post-process their level set field to capture sub-grid
particles).

6.5 Controlling adaptivity strength
Oftentimes, we wish to control the strength of adaptivity, such
as blending uniform grids and a sharp adaptive pattern, because
uniform grids provide superior quality in animation (albeit at sig-
nificantly greater computational cost). Including a new blending
parameter α into a sizing function would fail since our subdivision
algorithm also depends on the distance to the liquid surface. Instead
of modifying the sizing function, we achieve this by introducing a
pseudo cell size ∆x∗ as

∆x∗ = 2ln(∆x/∆x0)/ln(1+α)∆x0, (38)

where ∆x0 denotes a cell size at the highest resolution layer, and
0 < α < 1 denotes a blending coefficient. Setting α = 0 indi-
cates a uniform grid and α = 1 dictates strong adaptivity. Note that
substituting α = 0 results in division by zero, and fully uniform
grids should directly be used in this case. The pseudo cell size ∆x∗ is
then used instead of ∆x to check if a subdivision criterion is met. A
comparison with different α is shown in Figure 10 and in the supple-
mental videos (α = 1.0: <vids/s100.mp4>, α = 0.4:<vids/s40.mp4>).
We leave the choice of α up to a practitioner’s discretion since
it provides a balance between the desired visual quality and the
availability of computational time/resources.

6.6 Sizing function
Up to this point we have not stated a specific sizing function, as we
believe any reasonable generic sizing function would be compatible
with the extensions described above. However, the specific sizing

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

32:12 • Ryoichi Ando and Christopher Batty

<vids/naive_1st.mp4> <vids/spd.mp4> <vids/2nd_order.mp4>

Fig. 13. Comparison of different boundary conditions on free surfaces. Left: A naive first order accurate method. Center: Our SPD method of (25) . Right: Our
truly second-order accurate method of (24). Notice that the naive first order accurate method results in a clear artifact in the region marked with a red circle
while the SPD method in the middle produces indistinguishable results from the second order solution on the right. Note that we used a fixed sizing function
field to keep the horizontal position of T-junctions in place on the free surfaces, to eliminate the chance that dynamically changing surface adaptivity could
hide such artifacts.

function we use is

S(p) = γϕ |∇ · ∇ (ϕ + ϕsolid)| + γu

√√∑
i

(
∂ui
∂xi

)2
, (39)

where ϕsolid denotes a solid level set. The coefficients γϕ and γu
denote weights, which we set toγϕ = 4 andγu = 3 except in Figure 1
for which we use γu = 0.032 because the Laplacian term of (39)
is independent of spatial scale, but the velocity is dependent on
the expected maximal velocity. Note that S(p) has units of 1/m (as
implied by Section 6.3, item (4)) so γϕ is unitless, and γu has units
of s/m.
We chose the velocity term in (39) because it conveniently re-

sponds to any non-translation motion and is easy to evaluate on
staggered grids (by contrast, the Jacobian of velocity is somewhat
complicated to evaluate on staggered grids). Although (39) tech-
nically also responds to rigid rotations, this can be regarded as a
source of vorticity, which is also an important feature. Note that we
only evaluate the sizing function near liquid surfaces, and propagate
it inwards/outwards as in Section 6.2.

7 IMPLEMENTATION

7.1 Surface mesh extraction and extrapolation
We apply (a cell-centered variant of) Dual Contouring [Ju et al.
2002] on the cell-centered signed distance (level set) field to extract
liquid surfaces. For velocity extrapolation, we use a simple iterated
averaging technique. Since we coarsen grid resolution rapidly away
from the surface on the air side, extrapolation can be quickly per-
formed over the entire domain. Similarly, we redistance the level
set throughout the entire domain (i.e., not just near the surfaces)
using a variant of serial Fast Marching [Sethian 1996] on the set of
neighboring cells.

7.2 Adding extended narrow band FLIP
We incorporated extended narrow-band FLIP (EXNBFLIP) [Sato
et al. 2018] into our pipeline because it enriches our results both
in advection (lessened dissipation near liquid surfaces) and visual
expression (particulate splashes) without any special modification
to the original EXNBFLIP. EXNBFLIP is used only on the highest

resolution layer of the octree, both for simplicity and because our
sizing function already suggests that these are the regions with the
greatest need for fine details (although EXNBFLIP still uses its own
internal seeding strategy). This extension to EXNBFLIP is optional,
and an example without it is shown in <vids/levelset.mp4>.

8 RESULTS

Table 2. Timing breakdowns of our examples.

Timings (Seconds)
Description Fig. 1 Fig. 2 Fig. 14 Fig. 15
Time per step 21.96 9.27 20.16 16.12

Time per video frame 171.01 96.26 140.42 98.01
Level set advection 2.85 0.90 2.17 1.58
Velocity advection 5.20 1.97 3.12 2.30
Extrapolation 1.06 0.51 1.51 1.24
Projection 1.21 0.35 1.63 0.95

Octree construction 1.14 0.62 1.29 0.96
Sizing value evaluation 4.22 1.90 2.46 1.94

Mesh generation 0.81 0.45 1.27 1.21
EXNBFLIP operations 4.74 N/A 6.38 5.95

Numbers / Ratio / Measured Video Frames
FLIP particles 632K N/A 1288K 1167K
Total cells 716K 201K 1319K 1042K

Active fluid cells 332K 90K 647K 460K
Degenerate T-junctions 33.43% 11.13% 19.59% 28.43%

Corresponding video frames 216 0 194 353

We ran our simulations on an Intel(R) Core(TM) i9-9900K (Linux)
except for Figure 2 which was run on an Intel(R) Core(TM) i7-6900K
CPU 3.20GHz (Linux). Timing breakdowns are summarized in Ta-
ble 2. Since the timings significantly fluctuate depending on the
complexity of the scene, we chose representative challenging mo-
ments and averaged 100 time steps (10 frames for video) around
those moments. The mesh generation is not included in "Time per
step" since it is performed only when exporting a video frame. The
corresponding video frame number is shown in the last row of the
table. Unless noted, all of our simulations were run with our (mildly

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

A Practical Octree Liquid Simulator with Adaptive Surface Resolution • 32:13

Fig. 14. A moving cylinder stirs a tank. Effective resolution: 512 × 256 × 512. Compute time: 2.34 minutes per video frame.

Fig. 15. Swimming fish jumping over a shallow rocky waterfall. Effective resolution: 320 × 160 × 640. Compute time: 1.64 minutes per video frame.

discontinuous) MLS interpolation and the conditionally second-
order accurate (i.e., SPD) boundary conditions on pressure at free
surfaces using (25). A range of experiments demonstrating the nu-
merical convergence orders of our Laplace discretizations, including
second order for the non-symmetric scheme, are provided in the
supplemental material.

Before reviewing our main results, we highlight the fact that our
(technically first order accurate) pressure boundary conditions of
(25) do not introduce any noticeable visual differences from the
truly second-order accurate (non-symmetric) solutions on any of
our tests. We found this a surprising result, given that for many
of examples a significant fraction of the T-junctions exhibited the
"degenerate" configurations that require clamping, as shown in the
second row from the bottom in Table 2.

We emphasize that a naive first order pressure treatment (i.e., set-
ting p = 0 without a proper gradient scaling) near T-junctions, even
while using proper ghost fluid on regular cells, clearly manifests
objectionable artifacts as shown in Figure 13. As such, our novel free
surface treatment does effectively eliminate these artifacts despite
technically being only first order accurate in grid refinement tests.
Figure 13 also used a fixed adaptivity pattern to keep T-junctions
in the same (horizontal) locations, eliminating the possibility that

dynamic octree adaptivity might act to hide such artifacts. We do,
however, observe error on an extreme numerical experiment (Fig-
ure 16). A more rigorous analysis of this finding is left for future
work.

For all simulations including uniform grids, we used the Algebraic
Multigrid code of Demidov [2019] to precondition the BiCGSTAB
and CG solvers, with a relative residual tolerance of 10−4. We
also used a variant of global/regional volume correction schemes
(e.g.,[Kim et al. 2007; Thürey et al. 2010]) to compensate long-term
accumulated volume loss/gain of liquid.

8.1 Moving cylinder
Figure 14 demonstrates the ability of our method to effectively
handle general liquid simulation scenarios. Notice that our auto-
matic sizing function and octree construction capture the detailed
motion without creating artifacts or seams near level transitions.
The simulation had a resolution of 512 × 256 × 512, and took 2.34
minutes per video frame. To give a rough sense of the expected
storage and time savings on this scene, we have conducted two
simulations: one with our method and another with the uniform
grid method <vids/cylinder_mac.mp4> [Bridson 2015]. Both were
run on an Intel(R) Core(TM) i9-9980XE CPU 3.00GHz (Linux). The

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

32:14 • Ryoichi Ando and Christopher Batty

average liquid cell count for the uniform method was 33.3 million,
while our method was 0.29 million, i.e., 114.8× fewer cells, thus
requiring significantly less memory. Regarding the simulation time,
the uniform method took 26 minutes per video frame while ours
took 63.77 seconds. This is suggestive of a 24.4× speed-up.

We also ran the same setup using the truly second-order accurate
method (24) with a BiCGSTAB solver, and found that the average
time for the projection was 1.33× slower, indicating that this is also
a practical choice. A comparison of the same scene using (24) with
a BiCGSTAB solver is shown in <vids/2nd_cylinder.mp4>.

8.2 Fish jumping over a rocky waterfall
Figure 15 demonstrates that our method can provide highly detailed
interactions of streaming water through rocks, while the calm bulk
regions of the liquid are cheaply simulated with coarse cells. This
simulation had a resolution of 320×160×640 resolutions, and a cost
of 1.64 minutes per video frame. Later in the simulation, a small
school of fish enters the domain and jumps over the rocks. In those
moments, our dynamic sizing function subdivides coarse cells and
allows the simulator to capture the ensuing fine, detailed splashes.

8.3 Merging bunnies
Figure 2 shows two liquid bunny shapes deforming due to surface
tension under zero gravity and eventually merging. The simula-
tion resolution was 256 × 256 × 256, with a compute time of 1.27
minutes per video frame. Notice that our dynamic sizing function
indicates the relative importance of different surface regions, pro-
ducing varying grid resolution across the bunny. Nonetheless, we
did not observe any visual artifacts near grid level transition thanks
to our novel treatment of surface tension for T-junctions. Unfor-
tunately, for this single example our method did not outperform
the uniform grid method (for example, at the first time step the
MAC method took 5 seconds while our method took 9.27 seconds),
because the overhead added to our algorithms (e.g., sizing func-
tion evaluation, MLS interpolation, octree construction) exceeds the
performance benefit of using our adaptive strategy.
One may be tempted to increase the grid resolution; however,

explicit surface tension forces comewith a severe stability restriction
(e.g., ∆t must be O(∆x3/2) [Sussman and Ohta 2009]), and naively
increasing grid resolution drastically slows down the simulation.
One possible direction to circumvent this issue would be to develop
an implicit approximation for surface tension [Zheng et al. 2006] or
an approach based on volume-preserving mean curvature [Sussman
and Ohta 2009], which we leave for future work.

8.4 Seaplane taking off from a lake
Finally, Figure 1 highlights an ideal case for our method with a
very large-scale scenario where the standard uniform grid method
would fail. In this example, a seaplane (wingspan: 11m; height: 4.3m)
takes off from a lake (30m depth) at high speed, leaving complicated
splashes and waves in its wake. Such visually impactful features
are also impossible to fully express with a pure level set method at
this resolution, thereby also illustrating the benefit of coupling our
method with EXNBFLIP. This scene has an effective resolution of
1024 × 1024 × 512, simulated at 2.85 minutes per video frame.

A few apparently axis-aligned splash structures may be noted in
Figure 1 (bottom). We attribute this to the horizontally fast-moving
liquid, in combination with the usual (grid-dependent) manner in
which level sets unintentionally lose thinning sheets. Nevertheless,
we did not perceive the underlying motion to be objectionable in the
corresponding video sequence, nor did we observe grid-dependency
in our other simulations.

To approximately evaluate the speed-up achieved, we simulated
the same scenario using the uniform method but with the water
depth reduced to 2.3m <vids/seaplane_mac.mp4>. The average time
per video frame for the first 3 simulation seconds was 38.46minutes
(suggestive of a 13.49× speed-up).

9 DISCUSSION AND LIMITATIONS

9.1 Discussion
9.1.1 Sparse grid and linear system solve. For of ease of implemen-
tation and maintainability, our octree used a naive tile-based sparse
grid with each tile having a resolution of 163; however, our method
could potentially be sped up even further by switching our sparse
grid engine to the heavily optimized OpenVDB [Museth 2013]
or SPGrid [Setaluri et al. 2014]. We used an Algebraic Multigrid
method [Demidov 2019], but we expect that a dedicated geometric
multigrid solver [Aanjaneya et al. 2017; Setaluri et al. 2014] and fast
Laplacian streaming without explicit topology encoding [Setaluri
et al. 2014] could provide further speed-ups.

9.1.2 MLS interpolation. We designed a new MLS-based interpo-
lation which connects in a nearly continuous way with trilinear
interpolation on regular cells. While in general MLS interpolants
can suffer from instability when too few samples are used, since
the set of possible (local) octree configurations is highly restricted,
we did not encounter such situations. Our use of MLS interpolation
could be naturally extended to other simulation contexts (e.g., over-
set grids [English et al. 2013]) without loss of generality because it
handles interpolation using points and trilinear kernels alone, in
grid-oblivious fashion. However, specific to octree grids, the im-
proved node-based interpolation proposed by Setaluri et al. [2014]
may be a practical alternative to our method, although it involves
more explicit dependence on the local octree structure.
Some examples in Figure 17 exhibit kinks because our interpo-

lation is C0, not C1; this is consistent with standard (multi-)linear
interpolation. Increasing the MLS polynomial degree could increase
accuracy and smoothness (e.g., Guittet et al. [2015] considered a
quadratic basis on octrees), although this comes with potential
for instabilities (overshooting) and significantly increased costs for
neighbor finding and matrix inversion.

9.1.3 Choice of pressure discretization at free surfaces. In the above
examples, we mainly chose the SPD form (25) because of CG’s
efficiency; however, as also mentioned in Section 8.1, the non-
symmetric system of (24) also works without numerical difficul-
ties. Hence, the choice of (24) or (25) is left up to the practitioner’s
preference.

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

A Practical Octree Liquid Simulator with Adaptive Surface Resolution • 32:15

<vids/1st_tilted.mp4> <vids/spd_tilted.mp4> <vids/2nd_tilted.mp4>

<vids/1st_horizontal.mp4> <vids/spd_horizontal.mp4> <vids/2nd_horizontal.mp4>

Fig. 16. Error visualization of free surface boundary conditions (as in Figure 11 in the work of Batty et al. [2010]). A strong uniform gravity is added in surface’s
normal direction. Yellow arrows visualize the error of the pressure gradient. Left: A naive first-order accurate method. Middle: Our method with an SPD system
using (25). Right: Our truly second order accurate method (24). The first order accurate method produces error both on tilted (top) and horizontal (bottom)
configurations. Our method with (25) also produces (smaller) error on the top but no error on the bottom. Our method with (24) is error-free in both cases.

<vids/noncont_linear_cell.mp4> <vids/noncont_trig_cell.mp4> <vids/noncont_trig_face.mp4>

<vids/cont_linear_cell.mp4> <vids/cont_trig_cell.mp4> <vids/cont_trig_face.mp4>

Fig. 17. Error visualization of our MLS interpolation schemes on different test cases. Top: our mildly discontinuous interpolation. Bottom: Fully C0 continuous
interpolation. Left pair: Cell-centered interpolation of a linear mode. Middle pair: Cell-centered interpolation of a trigonometric function. Right pair: Face-
centered interpolation of a trigonometric function. Notice that both interpolation exactly schemes recover the linear modes (except for boundaries) while
exhibiting some slight discontinuity for trigonometric functions in the top row.

9.2 Limitations
9.2.1 Temporal adaptivity. We were able to significantly speed up
the runtime over uniform grids using spatial, but not temporal,
adaptivity. Therefore, doubling the effective resolution implies that
the time step size must be reduced by half to satisfy a reasonable

CFL number. Although semi-Lagrangian advection and FLIP are
unconditionally stable, using large CFL numbers introduces exces-
sive diffusion [Lentine et al. 2012]. While the method of Lentine et
al. enables simulation with large steps, it may still overlook some
visually interesting motions that would otherwise develop during

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

32:16 • Ryoichi Ando and Christopher Batty

large time steps. Incorporating temporal adaptivity (e.g., [Fang et al.
2018; Reinhardt et al. 2017]) is a promising research direction.

9.2.2 Compromised accuracy. For many practical scenes (but not
all) our method outperforms its uniform grid counterpart, though
this comes at the cost of somewhat damped visual details. As has
previously been observed, we find that a uniform grid tends to better
retain kinetic energy during simulations (e.g., motion remains lively
for longer durations) while our method damps out motion notice-
ably faster (e.g., see an example using the uniform MAC method
<vids/mac.mp4>). There are primarily two sources of this damp-
ing: a lack of resolution and excessive diffusion on coarse cells. A
lack of resolution means that the pressure solver cannot capture
high-frequency details, such as small localized regions of vorticity.
Excessive diffusion means that the local CFL number may be too
small for the coarse cells because the time step is determined by
the highest resolution cells. Therefore the cell’s velocity diffuses
rapidly over a short time period due to semi-Lagrangian advection.
The latter issue could be alleviated by the use of a bi-directional
advection scheme [Qu et al. 2019] or high-order schemes [Heo and
Ko 2010; Narain et al. 2019].

We observed second order accuracy on free surfaces, but we could
not obtain empirical second order accuracy on Neumann boundaries
(solids) crossing T-junctions, as detailed in the supplemental mate-
rial. Although the accuracy of pressure on solid faces does not play
a major role in our examples, this inaccuracy might cause artifacts
in some scenarios (e.g., a liquid bead sliding down a slope).

9.2.3 Extended narrow band FLIP. We believe that EXNBFLIP is
an effective extension to our pipeline, but we do observe some
surface noise arising from the particle-based surface construction on
calm surfaces. This noise eventually dissipates as the heat variable
assigned on FLIP particles cools down; this noticeable artifact could
be improved by designing another sizing function to prevent seeding
FLIP particles on calm regions or performing surface smoothing as
a post-process (which we did not).

9.2.4 Conservation. Since semi-Lagrangian advection is not con-
servative [Lentine et al. 2011], our method does not exactly preserve
momentum/mass during advection. This may result in noticeable
artifacts such as drifting center of mass, e.g., Figure 2. A momen-
tum/mass conserving advection scheme [Chentanez and Müller
2012; Lentine et al. 2011] might help with this.

9.2.5 Surface adaptivity. Lastly, our method works particularly well
for scenes where both calm and vibrant motions are present. When
the entire liquid surface is chaotic (e.g., stormy ocean waves) sur-
face adaptivity may not be beneficial because the sizing function
would simply set all cells to the highest resolution. For such sce-
narios, adding subgrid models such as FFT-based waves as a post-
process [English et al. 2013] might be effective.

10 CONCLUSIONS
We have proposed a set of new methods for octree-based liquid
simulation with a strong emphasis on practical cost-effectiveness.
Each of our core algorithms (accurate free surface octree Laplacian,
MLS interpolation strategy, and sizing function computation) are

designed with ease of implementation in mind without sacrificing
computational efficiencies or visual quality. The effectiveness of
these components is numerically verified through a range of tests
and practical scenes. As a result, our method offers remarkably
detailed liquid simulations with surface adaptivity, at modest com-
putational cost, while being more accessible to many practitioners.

ACKNOWLEDGMENTS
This research was supported by the JSPS Grant-in-Aid for Young
Scientists (18K18060) and the Natural Sciences and Engineering
Research Council of Canada (Grant RGPIN-04360-2014).

REFERENCES
Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty, and Eftychios Sifakis.

2017. Power Diagrams and Sparse Paged Grids for High Resolution Adaptive
Liquids. ACM Trans. Graph. 36, 4, Article 140 (2017), 12 pages. https://doi.org/10.
1145/3072959.3073625

Ryoichi Ando, Nils Thürey, and ChrisWojtan. 2013. Highly Adaptive Liquid Simulations
on Tetrahedral Meshes. ACM Trans. Graph. 32, 4, Article 103 (2013), 10 pages.
https://doi.org/10.1145/2461912.2461982

Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2015. A Dimension-Reduced Pressure
Solver for Liquid Simulations. Comput. Graph. Forum 34, 2 (2015), 473–480. https:
//doi.org/10.1111/cgf.12576

Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu.
1998. An Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed
Dimensions. J. ACM 45, 6 (1998), 891–923. https://doi.org/10.1145/293347.293348

Vinicius C Azevedo, Christopher Batty, and Manuel M Oliveira. 2016. Preserving
geometry and topology for fluid flows with thin obstacles and narrow gaps. ACM
Transactions on Graphics (TOG) 35, 4 (2016), 1–12.

Vinicius C Azevedo and Manuel M Oliveira. 2013. Efficient smoke simulation on
curvilinear grids. In Computer Graphics Forum, Vol. 32. 235–244.

Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational
framework for accurate solid-fluid coupling. In ACM Transactions on Graphics (TOG),
Vol. 26. ACM, 100.

Christopher Batty, Stefan Xenos, and Ben Houston. 2010. Tetrahedral embedded
boundary methods for accurate and flexible adaptive fluids. In Computer Graphics
Forum, Vol. 29. 695–704.

Marsha J Berger and Joseph Oliger. 1984. Adaptive mesh refinement for hyperbolic
partial differential equations. Journal of computational Physics 53, 3 (1984), 484–512.

Morten Bojsen-Hansen and Chris Wojtan. 2013. Liquid surface tracking with error
compensation. ACM Transactions on Graphics (TOG) 32, 4 (2013), 68.

Landon Boyd and Robert Bridson. 2012. MultiFLIP for Energetic Two-Phase Fluid
Simulation. ACM Trans. Graph. 31, 2, Article 16 (2012), 12 pages. https://doi.org/10.
1145/2159516.2159522

Robert Bridson. 2015. Fluid simulation for computer graphics. AK Peters/CRC Press.
Tyson Brochu, Christopher Batty, and Robert Bridson. 2010. Matching fluid simulation

elements to surface geometry and topology. ACM Trans. Graph. 29, 4 (2010), 1–9.
https://doi.org/10.1145/1778765.1778784

Thomas C. Cecil, Stanley J. Osher, and Jianliang Qian. 2006. Simplex free adaptive tree
fast sweeping and evolution methods for solving level set equations in arbitrary
dimension. J. Comput. Phys. 213, 2 (2006), 458 – 473. https://doi.org/10.1016/j.jcp.
2005.08.020

Nuttapong Chentanez, Bryan E. Feldman, François Labelle, James F. O’Brien, James F.
O’Brien, and Jonathan R. Shewchuk. 2007. Liquid Simulation on Lattice-based Tetra-
hedral Meshes. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (SCA ’07). 219–228. http://dl.acm.org/citation.cfm?id=
1272690.1272720

Nuttapong Chentanez and Matthias Müller. 2011. Real-time Eulerian water simulation
using a restricted tall cell grid. In ACM Transactions on Graphics (TOG), Vol. 30.
ACM, 82.

Nuttapong Chentanez andMatthias Müller. 2012. Mass-Conserving Eulerian Liquid Sim-
ulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA ’12). 245–254.

Alexandre Joel Chorin. 1968. Numerical Solution of the Navier-Stokes Equations. Math.
Comp. 22, 104 (1968), 745–762. http://www.jstor.org/stable/2004575

Pascal Clausen, Martin Wicke, Jonathan R. Shewchuk, and James F. O’Brien. 2013.
Simulating Liquids and Solid-Liquid Interactions with Lagrangian Meshes. ACM
Transactions on Graphics 32, 2 (2013), 17:1–15. https://doi.org/0.1145/2451236.
2451243

Fernando de Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun.
2015. Power Particles: An Incompressible Fluid Solver Based on Power Diagrams.

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

https://doi.org/10.1145/3072959.3073625
https://doi.org/10.1145/3072959.3073625
https://doi.org/10.1145/2461912.2461982
https://doi.org/10.1111/cgf.12576
https://doi.org/10.1111/cgf.12576
https://doi.org/10.1145/293347.293348
https://doi.org/10.1145/2159516.2159522
https://doi.org/10.1145/2159516.2159522
https://doi.org/10.1145/1778765.1778784
https://doi.org/10.1016/j.jcp.2005.08.020
https://doi.org/10.1016/j.jcp.2005.08.020
http://dl.acm.org/citation.cfm?id=1272690.1272720
http://dl.acm.org/citation.cfm?id=1272690.1272720
http://www.jstor.org/stable/2004575
https://doi.org/0.1145/2451236.2451243
https://doi.org/0.1145/2451236.2451243

A Practical Octree Liquid Simulator with Adaptive Surface Resolution • 32:17

ACM Trans. Graph. 34, 4, Article 50 (2015), 11 pages. https://doi.org/10.1145/2766901
D. Demidov. 2019. AMGCL: An Efficient, Flexible, and Extensible Algebraic Multigrid

Implementation. Lobachevskii Journal of Mathematics 40, 5 (2019), 535–546. https:
//doi.org/10.1134/S1995080219050056

R. Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013. Chimera Grids for Water
Simulation. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (SCA ’13). ACM, 85–94. https://doi.org/10.1145/2485895.
2485897

Doug Enright, Duc Nguyen, Frederic Gibou, and Ron Fedkiw. 2003. Using the particle
level set method and a second order accurate pressure boundary condition for free
surface flows. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference.
American Society of Mechanical Engineers Digital Collection, 337–342.

Yu Fang, Yuanming Hu, Shi-Min Hu, and Chenfanfu Jiang. 2018. A Tempo-
rally Adaptive Material Point Method with Regional Time Stepping. Com-
puter Graphics Forum 37, 8 (2018), 195–204. https://doi.org/10.1111/cgf.13524
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13524

Bryan E Feldman, James F O’brien, and Bryan M Klingner. 2005. Animating gases with
hybrid meshes. In ACM Transactions on Graphics (TOG), Vol. 24. Citeseer, 904–909.

F. Ferstl, R. Westermann, and C. Dick. 2014. Large-Scale Liquid Simulation on Adaptive
Hexahedral Grids. IEEE Transactions on Visualization and Computer Graphics 20, 10
(2014), 1405–1417. https://doi.org/10.1109/TVCG.2014.2307873

Gene H Golub and Charles F Van Loan. 2012. Matrix computations. Vol. 3. JHU press.
Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. 2005. Coupling

water and smoke to thin deformable and rigid shells. ACM Transactions on Graphics
(TOG) 24, 3 (2005), 973–981.

Arthur Guittet, Maxime Theillard, and Frédéric Gibou. 2015. A stable projection
method for the incompressible Navier–Stokes equations on arbitrary geometries
and adaptive Quad/Octrees. J. Comput. Phys. 292 (2015), 215–238.

Nambin Heo and Hyeong-Seok Ko. 2010. Detail-Preserving Fully-Eulerian Interface
Tracking Framework. InACM SIGGRAPHAsia 2010 Papers. ACM, Article 176, 8 pages.
https://doi.org/10.1145/1866158.1866198

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chen-
fanfu Jiang. 2018. A moving least squares material point method with displacement
discontinuity and two-way rigid body coupling. ACM Transactions on Graphics
(TOG) 37, 4 (2018), 1–14.

Hikaru Ibayashi, Chris Wojtan, Nils Thuerey, Takeo Igarashi, and Ryoichi Ando. 2018.
Simulating Liquids on DynamicallyWarping Grids. IEEE transactions on visualization
and computer graphics (2018).

Geoffrey Irving, Eran Guendelman, Frank Losasso, and Ronald Fedkiw. 2006. Effi-
cient simulation of large bodies of water by coupling two and three dimensional
techniques. In ACM Transactions on Graphics (TOG), Vol. 25. ACM, 805–811.

T. Isaac, C. Burstedde, and O. Ghattas. 2012. Low-Cost Parallel Algorithms for 2:1
Octree Balance. In 2012 IEEE 26th International Parallel and Distributed Processing
Symposium. 426–437. https://doi.org/10.1109/IPDPS.2012.47

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4
(2015), 51.

Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual Contouring of
Hermite Data. ACM Trans. Graph. 21, 3 (2002), 339–346. https://doi.org/10.1145/
566654.566586

Byungmoon Kim, Yingjie Liu, Ignacio Llamas, Xiangmin Jiao, and Jarek Rossignac.
2007. Simulation of Bubbles in Foam with the Volume Control Method. ACM Trans.
Graph. 26, 3 (2007), 98–es. https://doi.org/10.1145/1276377.1276500

Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O’Brien.
2006. Fluid Animation with Dynamic Meshes. In Proceedings of ACM SIGGRAPH
2006. 820–825. http://graphics.cs.berkeley.edu/papers/Klingner-FAD-2006-08/

Michael Lentine, Mridul Aanjaneya, and Ronald Fedkiw. 2011. Mass and Momen-
tum Conservation for Fluid Simulation. In Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA ’11). ACM, 91–100.
https://doi.org/10.1145/2019406.2019419

Michael Lentine, Matthew Cong, Saket Patkar, and Ronald Fedkiw. 2012. Simulating
Free Surface Flow with Very Large Time Steps. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA ’12). 107–116.

Shengren Li, Lance Simons, Jagadeesh Bhaskar Pakaravoor, Fatemeh Abbasinejad,
John D. Owens, and Nina Amenta. 2012. KANN on the GPU with Shifted Sorting.
In Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on High-
Performance Graphics (EGGH-HPG’12). 39–47.

Frank Losasso, Ronald Fedkiw, and Stanley Osher. 2006. Spatially adaptive techniques
for level set methods and incompressible flow. Computers & Fluids 35, 10 (2006), 995
– 1010. https://doi.org/10.1016/j.compfluid.2005.01.006

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating Water and Smoke
with an Octree Data Structure. ACM Trans. Graph. 23, 3 (2004), 457–462. https:
//doi.org/10.1145/1015706.1015745

M. K. Misztal, K. Erleben, A. Bargteil, J. Fursund, B. Bunch Christensen, J. A. Bun-
definedrentzen, and R. Bridson. 2012. Multiphase Flow of Immiscible Fluids on
Unstructured Moving Meshes. In Proceedings of the ACM SIGGRAPH/Eurographics

Symposium on Computer Animation (SCA ’12). 97–106.
Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology.

ACM Trans. Graph. 32, 3, Article 27 (2013), 22 pages. https://doi.org/10.1145/2487228.
2487235

Rahul Narain, Jonas Zehnder, and Bernhard Thomaszewski. 2019. A Second-Order
Advection-Reflection Solver. Proc. ACM Comput. Graph. Interact. Tech. 2, 2, Article
16 (2019), 14 pages. https://doi.org/10.1145/3340257

Andrew Nealen. 2004. An as-short-as-possible introduction to the least
squares, weighted least squares and moving least squares methods for
scattered data approximation and interpolation. Technical Report. URL:
http://www.nealen.com/projects/mls/asapmls.pdf.

Yen Ting Ng, Chohong Min, and Frédéric Gibou. 2009. An efficient fluid–solid coupling
algorithm for single-phase flows. J. Comput. Phys. 228, 23 (2009), 8807–8829.

Michael B. Nielsen and Robert Bridson. 2016. Spatially Adaptive FLIP Fluid Simulations
in Bifrost. In ACM SIGGRAPH 2016 Talks (SIGGRAPH ’16). ACM, Article 41, 2 pages.
https://doi.org/10.1145/2897839.2927399

Stanley Osher, Ronald Fedkiw, and K Piechor. 2004. Level set methods and dynamic
implicit surfaces. Appl. Mech. Rev. 57, 3 (2004), B15–B15.

Stéphane Popinet. 2003. Gerris: A Tree-Based Adaptive Solver for the Incompressible
Euler Equations in Complex Geometries. J. Comput. Phys. 190, 2 (2003), 572–600.
https://doi.org/10.1016/S0021-9991(03)00298-5

Ziyin Qu, Xinxin Zhang, Ming Gao, Chenfanfu Jiang, and Baoquan Chen. 2019. Efficient
and Conservative Fluids Using Bidirectional Mapping. ACM Trans. Graph. 38, 4,
Article 128 (2019), 12 pages. https://doi.org/10.1145/3306346.3322945

Stefan Reinhardt, Markus Huber, Bernhard Eberhardt, and Daniel Weiskopf. 2017. Fully
Asynchronous SPH Simulation. In Proceedings of the ACM SIGGRAPH / Eurographics
Symposium on Computer Animation (SCA ’17). ACM, Article 2, 10 pages. https:
//doi.org/10.1145/3099564.3099571

Takahiro Sato, Christopher Wojtan, Nils Thuerey, Takeo Igarashi, and Ryoichi Ando.
2018. Extended Narrow Band FLIP for Liquid Simulations. In Computer Graphics
Forum, Vol. 37. 169–177.

Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008.
An unconditionally stable MacCormack method. Journal of Scientific Computing 35,
2-3 (2008), 350–371.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A Sparse Paged Grid Structure Applied to Adaptive Smoke Simulation. ACM Trans.
Graph. 33, 6, Article 205 (2014), 12 pages. https://doi.org/10.1145/2661229.2661269

J A Sethian. 1996. A fast marching level set method for monotonically advancing fronts.
Proceedings of the National Academy of Sciences 93, 4 (1996), 1591–1595. https://doi.
org/10.1073/pnas.93.4.1591 arXiv:https://www.pnas.org/content/93/4/1591.full.pdf

Lin Shi and Yizhou Yu. 2004. Visual smoke simulation with adaptive octree refinement.
In Computer Graphics and Imaging. 13–19.

Funshing Sin, Adam W Bargteil, and Jessica K Hodgins. 2009. A point-based
method for animating incompressible flow. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ACM, 247–255.

Andreas Söderström,Matts Karlsson, and KenMuseth. 2010. A PML-BasedNonreflective
Boundary for Free Surface Fluid Animation. ACM Trans. Graph. 29, 5, Article 136
(2010), 17 pages. https://doi.org/10.1145/1857907.1857912

Fabricio Simeoni de Sousa, CF Lages, Jonas Laerte Ansoni, A Castelo, and A Simao.
2019. A finite difference method with meshless interpolation for incompressible
flows in non-graded tree-based grids. J. Comput. Phys. 396 (2019), 848–866.

John Strain. 1999. Tree methods for moving interfaces. J. Comput. Phys. 151, 2 (1999),
616–648.

Mark Sussman and Mitsuhiro Ohta. 2009. A Stable and Efficient Method for Treating
Surface Tension in Incompressible Two-Phase Flow. SIAM J. Sci. Comput. 31, 4
(2009), 2447–2471. https://doi.org/10.1137/080732122

Nils Thürey, Chris Wojtan, Markus Gross, and Greg Turk. 2010. A Multiscale Approach
to Mesh-Based Surface Tension Flows. ACM Trans. Graph. 29, 4, Article 48 (2010),
10 pages. https://doi.org/10.1145/1778765.1778785

X. Zhai, F. Hou, H. Qin, and A. Hao. 2018. Fluid Simulation with Adaptive Staggered
Power Particles on GPUs. IEEE Transactions on Visualization and Computer Graphics
(2018), 1–1. https://doi.org/10.1109/TVCG.2018.2886322

Wen Zheng, Jun-Hai Yong, and Jean-Claude Paul. 2006. Simulation of Bubbles. In
Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA ’06). 325–333.

Bo Zhu, Wenlong Lu, Matthew Cong, Byungmoon Kim, and Ronald Fedkiw. 2013. A
New Grid Structure for Domain Extension. ACM Trans. Graph. 32, 4, Article 63
(2013), 12 pages. https://doi.org/10.1145/2461912.2461999

Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions
on Graphics (TOG) 24, 3 (2005), 965–972.

ACM Trans. Graph., Vol. 39, No. 4, Article 32. Publication date: July 2020.

https://doi.org/10.1145/2766901
https://doi.org/10.1134/S1995080219050056
https://doi.org/10.1134/S1995080219050056
https://doi.org/10.1145/2485895.2485897
https://doi.org/10.1145/2485895.2485897
https://doi.org/10.1111/cgf.13524
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13524
https://doi.org/10.1109/TVCG.2014.2307873
https://doi.org/10.1145/1866158.1866198
https://doi.org/10.1109/IPDPS.2012.47
https://doi.org/10.1145/566654.566586
https://doi.org/10.1145/566654.566586
https://doi.org/10.1145/1276377.1276500
http://graphics.cs.berkeley.edu/papers/Klingner-FAD-2006-08/
https://doi.org/10.1145/2019406.2019419
https://doi.org/10.1016/j.compfluid.2005.01.006
https://doi.org/10.1145/1015706.1015745
https://doi.org/10.1145/1015706.1015745
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/3340257
https://doi.org/10.1145/2897839.2927399
https://doi.org/10.1016/S0021-9991(03)00298-5
https://doi.org/10.1145/3306346.3322945
https://doi.org/10.1145/3099564.3099571
https://doi.org/10.1145/3099564.3099571
https://doi.org/10.1145/2661229.2661269
https://doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.1073/pnas.93.4.1591
http://arxiv.org/abs/https://www.pnas.org/content/93/4/1591.full.pdf
https://doi.org/10.1145/1857907.1857912
https://doi.org/10.1137/080732122
https://doi.org/10.1145/1778765.1778785
https://doi.org/10.1109/TVCG.2018.2886322
https://doi.org/10.1145/2461912.2461999

	Abstract
	1 Introduction
	2 Previous work
	3 Method overview
	3.1 Notation
	3.2 Overview

	4 Octree Pressure Discretization
	4.1 Pressure projection overview
	4.2 Discretizing spatial variables
	4.3 Discretizing the gradient operator
	4.4 Assembling the diagonal matrix
	4.5 Second order accuracy on T-junctions near surfaces
	4.6 Surface tension forces

	5 Octree Interpolation
	5.1 Moving Least Squares Approach
	5.2 Sample point collection

	6 Octree Sizing Function and Construction
	6.1 Temporal adaptivity
	6.2 Propagating values outwards
	6.3 Octree subdivision and smoothing adaptivity
	6.4 Progressive refinement
	6.5 Controlling adaptivity strength
	6.6 Sizing function

	7 Implementation
	7.1 Surface mesh extraction and extrapolation
	7.2 Adding extended narrow band FLIP

	8 Results
	8.1 Moving cylinder
	8.2 Fish jumping over a rocky waterfall
	8.3 Merging bunnies
	8.4 Seaplane taking off from a lake

	9 Discussion and Limitations
	9.1 Discussion
	9.2 Limitations

	10 Conclusions
	Acknowledgments
	References

