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An Efficient Geometric Multigrid Solver for Viscous Liquids

MRIDUL AANJANEYA∗, Rutgers University
CHENGGUIZI HAN, Rutgers University
RYAN GOLDADE, University of Waterloo
CHRISTOPHER BATTY, University of Waterloo

Fig. 1. (Left) Four bunnies of different masses are two-way coupled to a viscous liquid (3842 × 192 grid).
(Middle) A creamy armadillo cake topping collapses under gravity (5123 grid). (Right) Chocolate buckles as it
pours onto a wafer (2562 × 512 grid).

We present an efficient geometric Multigrid solver for simulating viscous liquids based on the variational
approach of Batty and Bridson [2008]. Although the governing equations for viscosity are elliptic, the strong
coupling between different velocity components in the discrete stencils mandates the use of more exotic
smoothing techniques to achieve textbook Multigrid efficiency. Our key contribution is the design of a novel
box smoother involving small and sparse systems (at most 9 × 9 in 2D and 15 × 15 in 3D), which yields
excellent convergence rates and performance improvements of 3.5× - 13.8× over a naïve Multigrid approach.
We employ a hybrid approach by using a direct solver only inside the box smoother and keeping the remaining
pipeline assembly-free, allowing our solver to efficiently accommodate more than 194 million degrees of
freedom, while occupying a memory footprint of less than 16 GB. To reduce the computational overhead of
using the box smoother, we precompute the Cholesky factorization of the subdomain system matrix for all
interior degrees of freedom. We describe how the variational formulation, which requires volume weights
computed at the centers of cells, edges, and faces, can be naturally accommodated in the Multigrid hierarchy to
properly enforce boundary conditions. Our proposed Multigrid solver serves as an excellent preconditioner for
Conjugate Gradients, outperforming existing state-of-the-art alternatives. We demonstrate the efficacy of our
method on several high resolution examples of viscous liquid motion including two-way coupled interactions
with rigid bodies.
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1 INTRODUCTION
Liquids such as honey, syrup, glue, paints, molasses, and cake batter are ubiquitous in our daily lives.
Unlike inviscid fluids where the dominant flow features (such as splashes) result from turbulence in
the underlying velocity field, viscous liquids exhibit greater resistance to shearing flow. This results
in laminar or damped motion in the interior of the liquid, yet gives rise to a host of interesting
surface details such as liquid buckling and folding over itself. Thus, there is a strong demand for
computational methods that can realistically reproduce such effects [Rasmussen et al. 2004; Ruilova
2007; Wiebe and Houston 2004]. Motivated by this need, Batty and Bridson [2008] proposed an
implicit variational discretization that supports the rotational free surface motion that is necessary
for such flows. Their method has also been integrated into the Houdini animation software [SideFX
2019]. However, to achieve these effects, their approach introduces cross-derivative terms that
couple all three components of velocity together. This makes it computationally challenging to
solve the resulting linear system, as compared to the scalar Poisson equation for pressure projection:
the matrix is three times larger and it is not anM-matrix, the class of matrices for which standard
solvers such as incomplete Cholesky preconditioned Conjugate Gradients are known to work well.
In practice, the viscosity step is the major computational bottleneck in the simulation pipeline for
flows with significant viscosity coefficients.
Therefore, our focus in this paper is on the design of a fast Multigrid solver for the implicit

viscosity system arising in the variational formulation of Batty and Bridson [2008]. While great
progress has been made on the design of fast solvers for pressure projection [Aanjaneya et al.
2017; Ando et al. 2015; Chu et al. 2017; Liu et al. 2016; McAdams et al. 2010; Molemaker et al. 2008;
Setaluri et al. 2014; Zhang and Bridson 2014], to the best of our knowledge, ours is the first work to
consider a fast solver for the viscosity system.
Two building blocks are essential for a geometric Multigrid solver: (1) a smoothing routine to

remove high frequency errors in the solution; and (2) upsampling/downsampling operators to
transfer information between grid levels. The same principles used to design the transfer operators
in Multigrid solvers for pressure projection [McAdams et al. 2010] also apply to the viscosity
problem. However, because the discrete finite difference stencils in the viscosity system strongly
couple different velocity components, an appropriate smoother must be carefully designed for this
specific application. Indeed, as we demonstrate in Section 7, the damped-Jacobi smoother, which is
the standard choice for Multigrid pressure projection, performs extremely poorly for the viscosity
problem. Our key contribution is the design of a novel box smoother that leads to fairly small and
sparse systems (at most 9 × 9 in 2D and 15 × 15 in 3D); this enables the Multigrid solver to achieve
excellent convergence rates and speedups of 3.5× - 13.8× over a naïve Multigrid approach.
For maximum computational efficiency, we adopt a hybrid approach that uses a direct solver

inside the box smoother and keeps the remaining pipeline assembly-free, allowing our solver to
efficiently accommodate more than 194 million degrees of freedom, while occupying a memory
footprint of less than 16 GB. To reduce the computational overhead of our box smoother, we
pre-factorize the subdomain system matrix for all interior degrees of freedom. Our Multigrid solver
serves as an excellent preconditioner to Conjugate Gradients, reduces the residual by at least
an order of magnitude every iteration, and outperforms existing state-of-the-art solutions. The
variational approach of Batty and Bridson [2008] involves the use of volume fraction weights
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Fig. 2. A source pours honey on the floor, which displays buckling and folding patterns (simulated using a
1922 × 384 grid).

computed at the cell, edge, and face centers of the background Eulerian grid to properly enforce
the free surface boundary conditions. However, these weights are not well-defined at coarser levels
of the Multigrid hierarchy as, by definition, these levels cannot capture all topological features
in the computational domain. Our final contribution is a strategy to naturally accommodate this
slight discrepancy while maintaining a computationally efficient Multigrid V-cycle.

In summary, our main technical contributions are as follows:
• a novel box smoother for the implicit viscosity system of Batty and Bridson [2008];
• a memory-efficient geometric Multigrid solver for liquid viscosity that utilizes our novel box
smoother;
• enhancements to accommodate the variational approach for properly enforcing boundary
conditions; and
• high resolution simulations of viscous liquids deforming and undergoing two-way coupled
interactions with rigid bodies.

2 RELATEDWORK
Our work is based on the staggered grid variable layout and advection/viscosity/pressure splitting
approach that are common in hybrid/Eulerian fluid animation, as summarized by Bridson [2015].
Our review emphasizes this family of simulation methods; however, there is also substantial recent
research on implicit viscosity treatments for smoothed particle hydrodynamics [Barreiro et al. 2017;
Bender and Koschier 2017; Peer et al. 2015; Takahashi et al. 2015; Weiler et al. 2018].

2.1 Eulerian viscosity
By assuming constant viscosity coefficients, incompressibility, and simplified interface conditions,
early work on animating viscous flow modeled viscosity as a componentwise velocity diffusion
problem, i.e., one heat equation per velocity component. Foster and Metaxas adopted an explicit
discretization of this model [Foster and Metaxas 1996] which was later supplanted by implicit
discretizations for the sake of greater stability [Carlson et al. 2002; Fält and Roble 2003; Stam 1999].
Rasmussen et al. [2004] observed that in the presence of spatially varying viscosity, additional
stress terms arise that couple the distinct velocity components together. They suggested a hybrid
implicit-explicit scheme to reduce the cost of this coupling. Batty and Bridson [2008] showed that
the coupled variable viscosity system could be discretized with a variational strategy that yields a
symmetric positive definite (SPD) system. This approach has the additional benefit of naturally
enforcing the zero-traction free surface boundary condition. This condition on the fluid stress is
necessary for proper rotational behavior, even for constant viscosity coefficients, and is critical to
plausible bending behavior in high viscosity liquids. Larionov et al. [2017] subsequently showed that,
at the cost of tightly coupling viscosity and pressure and solving a much larger SPD system, slightly
more physical surface behavior could be achieved, including recovering the classic liquid rope
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Fig. 3. A source pours chocolate that displays buckling patterns as it falls on the wafer (simulated using a
2562 × 512 grid).

coiling instability. A viscous dissipation model similar to that of Batty and Bridson [2008] has also
been adopted in the context of material point methods [Ram et al. 2015], albeit on co-located grids.
More generally, models for (visco-)elastic fluids and solids often involve similar terms [Goktekin
et al. 2004; Losasso et al. 2006], particularly for damping, due to the natural relationship between
stress and strain rate (e.g., [Bergou et al. 2010]).

Tetrahedral schemes have also been proposed that support realistic viscosity, under both Euler-
ian [Batty and Houston 2011] and Lagrangian [Clausen et al. 2013; Erleben et al. 2011] frameworks,
including spatial adaptivity to reduce computational cost. However, the less-structured nature
of tetrahedral meshes makes them ill-suited to geometric Multigrid. Algebraic Multigrid (AMG)
has been successfully applied to Poisson problems on tetrahedral meshes [Chentanez et al. 2007],
although AMG is less readily parallelizable and also less optimal in settings where geometric
Multigrid is feasible.

Scope. Because of the significant additional cost of Larionov’s Stokes approach [Larionov et al.
2017] and the broader adoption of Batty and Bridson’s decoupled method [Batty and Bridson
2008], we adopt the latter in the present work. As these authors noted, their model introduces
new challenges for efficient numerical solution compared to earlier Laplacian-type discretizations
because the cross-derivative terms yield a larger (albeit still symmetric positive definite) system,
and more importantly, they introduce negative off-diagonal coefficients. Therefore, unlike finite
difference discretizations of the Poisson or diffusion problems, the matrix is no longer an M-matrix
and standard preconditioners for Conjugate Gradients, such as modified incomplete Cholesky, do
not perform as effectively. As such, our goal is to develop an efficient Multigrid preconditioner for
this problem.

2.2 Fast solvers
Fast linear system solvers like Multigrid [Trottenberg et al. 2000] and domain decomposition [Valli
et al. 1999] have a long history in computational mathematics, and have proven quite effective for a
variety of fluid animation problems over the last decade or so. Most of these efforts have focused on
solving the Poisson problem to enforce incompressibility. An early example is work by Bolz et al.
[2003] who applied Multigrid to Stam’s classic stable fluid solver [Stam 1999] in two dimensions.
Molemaker et al. [2008] applied Multigrid for smoke simulation on rectangular domains, using
additional alternating orthogonal projections to enforce voxelized solid boundaries. McAdams et al.
[2010] presented a Multigrid solver for voxelized projection with general Neumann (solid) and
Dirichlet (free surface) boundaries. Dick et al. [2016] employed a graph-based coarsening strategy
to avoid the topological discrepancies typically introduced in the geometric Multigrid hierarchy.
Their approach outperforms competing geometric Multigrid methods in domains with many thin
solid boundaries (e.g., mazes) at the expense of additional memory overhead and implementation
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Fig. 4. A creamy armadillo topping on a cake collapses under its own weight (simulated using a 5123
background grid).

complexity. Chentanez and co-authors [2011] applied Multigrid to a tall-cell grid problem with sub-
grid boundary geometry to achieve real-time rates, later adding support for separating boundary
conditions [Chentanez and Mueller-Fischer 2012]. Weber et al. [2015] achieved faster convergence
by constructing higher levels in the hierarchy in a manner compatible with a cut-cell approach.
Ferstl et al. [2014] applied Multigrid to an octree-based co-located cut-cell finite element solution of
the Poisson problem for liquids. In a similar vein, Setaluri et al. [2014] and Aanjaneya et al. [2017]
developed Multigrid solvers for octree finite volume discretizations of the Poisson problem for
smoke and liquids, respectively, exploiting sparse grid structures.

Multigrid has been applied to other (non-fluid) animation tasks as well. Zhu et al. [2010] developed
an efficient Multigrid scheme for linear and co-rotational elasticity on staggered grids. Unlike our
viscosity problem, which is always positive definite, elasticity involves indefinite systems which
complicates the design of a viable Multigrid scheme; Zhu et al. authors addressed this challenge with
an augmented form of the problem, a distributive smoothing technique, and a specially-designed
symmetric smoother near boundaries. This technique was later extended to character skinning
with contact and collisions [McAdams et al. 2011]. Tamstorf et al. [2015] developed a smoothed
aggregation variant of algebraic Multigrid tailored to large-scale cloth simulation. Because fast
solution of linear systems is a perennial problem across computer graphics as a whole, many
more applications have benefited from Multigrid strategies, and we shall not review them all;
however, an illustrative example is the recent work of Kazhdan and Hoppe [2018], who proposed a
general-purpose adaptive Multigrid solver using Gauss-Seidel smoothing for diverse finite element
problems and considered applications to surface reconstruction, gradient-domain image stitching,
and distance field computation.
Domain decomposition is another powerful acceleration technique, which adopts a divide and

conquer strategy by subdividing the domain into smaller decoupled components that can be solved
independently and in parallel (divide step), and subsequently re-combined (conquer step). This
approach was demonstrated both by Liu et al. [2016], who advocated a hybrid GPU/CPU approach,
and Chu et al. [2017], who applied a recursive decomposition and distinct solver types on the
resulting sub-domains. Other common but largely orthogonal techniques for accelerating fluid
solvers include h- or p-adaptivity (e.g., [Edwards and Bridson 2014; Losasso et al. 2004]) and GPU
implementation [Bolz et al. 2003; Wu et al. 2018]. Most recently, Goldade et al. [2019] proposed a
symmetric, variational octree extension of the method of Batty and Bridson [2008].

3 BACKGROUND
We first review the underlying theory behind Multigrid [Trottenberg et al. 2000], which is a multi-
scale method for solving elliptic partial differential equations. Suppose we wish to solve a system of
equationsAhxh = bh , whereAh is an elliptic operator on a regular grid with voxel size h. Assuming
an initial guess x0

h , one approach is to first compute the residual rh = bh − Ahx
0
h , and solve a
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new system, Aheh = rh , for the error eh . Subsequently, the exact solution x⋆
h can be computed by

adding together x0
h and eh to produce:

x⋆
h = x0

h + eh = x0
h +A

−1
h rh = x0

h +A
−1
h (bh −Ahx

0
h ) = A−1h bh . (1)

Notice that this approach is as expensive as solving the original systemAhxh = bh . However, when
the operator Ah is elliptic, then the following property holds: for small residual rh , the error eh is
always smooth, where the “smallness” of rh is measured by an appropriate vector norm (e.g., either
the L2 or L∞ norms). The smoothness of the error implies that it can be faithfully approximated
on a coarser grid as well, with voxel size 2h. Based on this principle, Multigrid solvers employ the
following algorithm:

(1) Use a smoothing routine to reduce the norm of rh .
(2) Downsample rh onto a grid with voxel size 2h.
(3) Solve the system A2he2h = r 2h .
(4) Upsample e2h back onto the original grid with voxel size h.
(5) Compute xnew

h = xold
h + eh .

(6) Use the smoothing routine again to reduce the residual.

For clarity of exposition, the above algorithm is a simplified version of Multigrid on only two levels,
but the same technique can be recursively applied to step (3) to obtain the general algorithm for an
arbitrary number of levels. The smoothing routine mentioned in steps (1) and (6) is a “lightweight”
operator that can quickly reduce the norm of the residual. For the standard 7-point Laplacian opera-
tor, a damped-Jacobi operator is a very effective smoother, which is also highly parallel [McAdams
et al. 2010]. After the smoothing operation, the current residual rh is downsampled onto a coarser
grid with voxel size 2h to compute r 2h (step (2)). Subsequently, the system A2he2h = r 2h is solved
for the error e2h on the coarse grid (step (3)). Note that this system is much smaller than the original
system on the fine grid, and so its solution can be computed more efficiently. Moreover, we are
assured from the property of ellipticity that e2h is a faithful approximation to the original error eh
on the fine grid. The error e2h is upsampled on the fine grid (step (4)) and added to the solution
vector (step (5)), after which the smoothing routine is applied once again to decrease the norm of
the residual (step (6)).
Steps (1) − (6) together comprise a Multigrid V-cycle. Depending on the effort spent in the

smoothing steps (1) and (6), as well as the accuracy of the solve in step (3), one or more iterations
of a V-cycle may be required to reduce the norm of the residual below a specified threshold. Notice
that the entire Multigrid algorithm is hinged on the premise that the smoothing operator will
effectively reduce the norm of the residual, after which the error can be approximated on a coarser
grid based on the property of ellipticity. In the ideal case with a perfect smoother, a Multigrid
solver should produce resolution-independent convergence rates. However, in the unfortunate
circumstance when the smoother is poor, the remaining steps in the Multigrid algorithm do not
work well, and the convergence behavior of the entire V-cycle degrades to that of the smoother.
As shown in Section 7, the damped-Jacobi operator is a poor smoother for the viscosity system of
Batty and Bridson [2008], motivating the need for a new smoother, as proposed in Section 6.3.

4 GOVERNING EQUATIONS
We review the governing laws that describe solid and fluid motion.
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4.1 Fluid Equations
Consider the incompressible Navier-Stokes equations

u⃗t + (u⃗ · ∇)u⃗ +
∇p

ρ
=

1
ρ
∇ · τ + f⃗ (2)

∇ · u⃗ = 0 (3)
τ = µ (∇u⃗ + (∇u⃗)T ) (4)

where ρ is density, u⃗ is velocity, p is pressure, µ is dynamic viscosity, f⃗ comprises accelerations
due to external forces (such as gravity), and τ is the viscous shear stress tensor. We discretize
these equations on a staggered Cartesian grid [Harlow and Welch 1965] and use standard operator
splitting [Stam 1999]. We first employ the basic semi-Lagrangian method [Stam 1999] to solve for
advection

u⃗
⋆
− u⃗

n

∆t
+ (u⃗

n
· ∇)u⃗

n
= f⃗

n
(5)

taking care to clip backward-cast rays near solid objects [Guendelman et al. 2005]. Next, we solve
the pressure Poisson equation and update the velocity:

u⃗
⋆⋆
= u⃗

⋆
− ∆t

∇p

ρ
. (6)

We then solve for viscous effects following Batty and Bridson [2008]

u⃗
†
− u⃗

⋆⋆

∆t
= ∇ · τ (7)

and finally, project velocities u⃗† to be divergence-free once again. We use the particle level set
method [Enright et al. 2005] and the reinitialization scheme of Losasso et al. [2005] for interface
tracking, the velocity extrapolation of Adalsteinsson and Sethian [1999], and second order accurate
pressure projection [Enright et al. 2003] (though our contributions do not require these particular
choices). For two-way coupling rigid bodies with fluids, we use the impulse-based monolithic
formulation of Robinson-Mosher et al. [2011] and efficiently solve the coupled system using the
Multigrid-style approach of Aanjaneya [2018].

4.2 Solid Equations
We use Newton’s laws of motion to evolve the rigid bodies

x⃗ t = v⃗, qt =
1
2ω⃗q

v⃗t = F⃗/m, L⃗t = α⃗
(8)

where x⃗ is position, q is orientation (in quaternions),m is mass, v⃗ is linear velocity, ω⃗ is angular
velocity, F⃗ is net force, α⃗ is net torque, and L⃗ = Iω⃗ is angular momentum with inertia tensor
I = RDRT (R is the world space orientation matrix and D is the diagonal inertia tensor in object
space). We follow Guendelman et al. [2003] for collisions and contact.

5 NUMERICAL DISCRETIZATION
Batty and Bridson [2008] express the solution to a backward Euler discretization of (7) as the
minimum of a convex energy functional$

Ω

*
,
ρ∥u⃗ − u⃗

⋆⋆
∥22 + 2µ∆t


∇u⃗ + (∇u⃗)⊺

2


2

F

+
-
dV (9)
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where Ω is the liquid domain and ∥ · ∥F denotes the Frobenius norm. The benefit of using equation (9)
is that the zero-traction free surface boundary conditions are naturally enforced by thisminimization
procedure, while the simpler no-slip boundary conditions near solid walls can be applied explicitly
to the discrete equations.

u

v (a) τxx = 2µ ∂u
∂x (b) τyy = 2µ ∂v

∂y (c) τxy = µ ( ∂v∂x +
∂u
∂y )

Fig. 5. Variable locations for velocities (far left) and stresses (a-c) in 2D, with control volumes shaded in light
green. Stress stencils are illustrated with colored arrows.

To discretize this formulation on staggered grids, centered differences are used to approximate
quantities inside the integral at the sample locations. The contributions of sample points are scaled
by the amount of liquid inside the corresponding cubic control volumes and summed to compute
the total discrete energy, and finally the total energy is minimized with respect to velocity.

Figures 5 and 6 illustrate this approach in both 2D and 3D, where face-centered velocities u,v,w
are shown in red, cyan, and light green, cell-centered stresses τxx ,τyy ,τzz are shown in dark green,
purple, and orange, and edge-centered stresses τxy ,τyz ,τxz are shown in gray. Nodal stresses τxy in
2D are shown with magenta diamonds. The first term inside the integral in equation (9) is evaluated
at face centers. The second term corresponds to the stress whose components live at centers of cells
and nodes (resp. edges) in 2D (resp. 3D) and are computed using finite differences. The resulting
discrete energy takes the form

(u −u⋆⋆)TVuM (u −u⋆⋆) + 2∆tuTDT SKVτDu (10)

where M is a diagonal matrix of per-velocity densities, ∆t is the time step, Vu (resp. Vτ ) is a
diagonal matrix of liquid control volumes per velocity (resp. stress) sample, D is the finite difference
deformation rate operator such that D ≈ (∇u + (∇u)T )/2, K is a diagonal matrix of viscosity
coefficients, and S is a diagonal matrix of scale factors to correctly account for the contribution of
cross-derivative terms to produce the Frobenius norm. Since the discrete energy in equation (10) is
convex and quadratic in u, differentiating and equating to zero yields the following symmetric and
positive definite system:

(VuM + 2∆tDT SKVτD)u = VuMu⋆⋆. (11)

Up to a constant scaling factor, the resulting discrete system of equations matches a direct finite
difference discretization of the partial differential equation in equation (7) deep in the interior of
the liquid, but automatically handles the free surface boundary condition through the use of the
control volume weights.
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(a) τxx = 2µ ∂u
∂x (b) τyy = 2µ ∂v

∂y (c) τzz = 2µ ∂w
∂z

(d) τxy = µ ( ∂u∂y +
∂v
∂x ) (e) τyz = µ ( ∂v∂z +

∂w
∂y ) (f) τxz = µ ( ∂u∂z +

∂w
∂x )

Fig. 6. Variable locations for face velocities in red, cyan, and light green, (a-c) cell-centered stresses in dark
green, purple, and orange, and (d-f) edge-centered stresses in 3D in gray. Stress stencils are illustrated with
colored arrows.

6 MULTIGRID SOLVER
We follow the convention of McAdams et al. [2010] to discretize the simulation domain (Fig-
ure 7(left)) into voxels (Figure 7(right)). Each grid voxel’s label is either FLUID (blue), SOLID (green),
or AIR (red), depending on whether its cell center lies inside a liquid, solid, or air region. To simplify
implementation we keep a “ghost” layer padding of SOLID voxels along the domain boundary. For
convenience, we assume that the finest grid size is divisible by 2k−1 along each axis, where k is the
number of levels in the Multigrid hierarchy.

6.1 Multigrid Hierarchy
We adopt the same coarsening strategy as Zhu et al. [2010], where each coarse voxel is marked as
SOLID if any one of its fine children (4 in 2D and 8 in 3D) is marked as SOLID. Otherwise, it is marked
as FLUID if any one of its fine children is marked as FLUID. If none of the above are true, then it is
marked as AIR. Each coarse level in the Multigrid hierarchy also has a “ghost” padding of SOLID
voxels. As illustrated in Figure 8, this procedure recursively constructs the Multigrid hierarchy. The
above coarsening procedure is known to create geometric and topological discrepancies at coarser
levels of the hierarchy, but the resulting inaccuracies are mitigated by an efficient smoother, as
well as the use of the Multigrid solver as a preconditioner for Conjugate Gradients [McAdams et al.
2010]. In the variational method of Batty and Bridson [2008], velocity samples at grid faces are
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Fig. 7. (Left) A sample domain. (Right) Discretized domain with voxels marked as either FLUID (blue), SOLID
(green), or AIR (red), depending on whether corresponding cell centers lie completely inside the liquid, solid,
or air regions.

marked as active degrees of freedom if they themselves have a non-zero control volume weight,
or if any of the neighboring stress samples have a non-zero control volume weight. Because we
handle control volumes implicitly at coarse levels, we mark coarse grid faces as active degrees of
freedom if they satisfy one of two conditions: (1) the face is incident to a FLUID voxel, implying a
non-zero control volume weight at the face and neighboring the cell-centered stress, or (2) at least
one of the edges on the face’s boundary is itself incident to a FLUID voxel, implying a non-zero
control volume weight at a neighboring edge stress sample.

Fig. 8. Recursively computed Multigrid hierarchy, showing the various geometric and topological discrepan-
cies.

6.2 Restriction/Prolongation Operators
The restriction operator R interpolates values stored at centers of grid faces from a given level to
faces of the next (coarser) level in the Multigrid hierarchy. We construct this operator as the tensor
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9/256
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Fig. 9. Multigrid restriction stencil for a velocity degree of freedom (bright red) in (Left) 2D and (Right) 3D
for down-sampling values from finer to coarser grids. The interpolation values have been color-coded in 3D
according to the legend.

product of the 1D stencil A with 3 samples points along the axis of the face, and the 1D stencil B
with 4 sample points for all other axes, where A and B are defined as:

(Auh ) (x ) =
1
4u

h (x − h) +
1
2u

h (x ) +
1
4u

h (x + h) (12)

(Buh ) (x ) =
1
8u

h
(
x −

3h
2

)
+
3
8u

h
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Here,u is the quantity being interpolated at a given location x , andh refers to the fine grid voxel size.
Figure 9(left) shows the restriction stencil R = B ⊗ A for the Y -faces in 2D, while Figure 9(right)
shows the restriction stencil R = B⊗B⊗A for theZ -faces in 3D. In both cases, the resulting coarse
degree of freedom is highlighted in red and the fine degrees of freedom are color-coded according
to their interpolation weights. Similar to McAdams et al. [2010], the prolongation operator P is
defined as a scaled transpose of the restriction operator R to ensure the symmetry of a Multigrid
V-cycle. The prolongation operator P corresponds exactly to trilinear interpolation from coarse to
fine degrees of freedom. We limit the input/output of the restriction and prolongation operators to
active degrees of freedom, substituting a zero value elsewhere.

6.3 Smoother Design
As we will show in Section 7, a damped Jacobi smoother, which is standard practice for Multigrid-
based pressure projection [McAdams et al. 2010], performs poorly on the viscosity system (11)
due to the strong coupling between different components of velocity. Brandt and Dinar [1978]
proposed to address such problems with a so-called box smoother that locally solves for the subset
of variables within a small subdomain while all exterior variables are held fixed.

Consider the local neighborhood for theX -velocity component shown in purple in Figure 10(left).
Assuming this degree of freedom (DOF) is completely inside the liquid domain, its rectangular
neighborhood comprises 17 staggered velocity variables in 2D (9 along the X axis, and 8 along
the Y axis) and 75 in 3D (27 along the X axis, and 24 each along the Y and Z axes). A standard
box smoother would require solving a 17 × 17 matrix in 2D and 75 × 75 matrix in 3D per velocity
sample. While we have verified that this smoother does indeed achieve excellent convergence rates,
it presents a significant computational overhead that limits its practical utility. Instead, we have
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Fig. 10. Neighboring degrees of freedom (green) in the stencil for an X -face (red) for the variational viscosity
system in (left) 2D and (right) 3D. The naïve box smoothing neighborhood for the 2D case is shown in purple.

empirically observed that excellent convergence rates for the Multigrid solver can still be preserved
while restricting the small system for the box smoother to include only the neighbors inside the
stencil of the given DOF. That is, we take the original local neighborhood subdomain matrix that
the box smoother would have assembled for a given DOF and treat all the variables that are not
involved in the immediate stencil of that single DOF as Dirichlet boundary conditions. Conveniently,
this stencil involves just 9 neighbors in 2D and 15 neighbors in 3D, as shown in Figure 10, and
therefore yields a much smaller system of equations (at most 9 × 9 in 2D and 15 × 15 in 3D). This
smoother can be viewed as a tighter, modified box smoother in which the “box” is non-rectangular.
Note that the subdomain system matrix can be even smaller if some of the variables inside the
stencil of the DOF fall completely inside the solid or air regions. In our implementation, we use a
direct Cholesky solver inside the smoother. For all strictly interior degrees of freedom away from
free surface and solid boundaries, the small subdomain system matrices are identical. Thus, as an
additional optimization, we precompute the Cholesky decomposition of this matrix, allowing us to
perform only forward and backward substitutions for these DOFs during smoothing.

The above formulation has two key advantages: (1) the small size of the subdomain systemmatrix
allows the box smoother to be applied at all degrees of freedom, which helps in decreasing the norm
of the residual more rapidly, and (2) the pre-factorization of the subdomain system matrix for all
strictly interior degrees of freedom allows our smoother to scale to large problem sizes. The use of a
box smoother for Multigrid is not new itself, and has been previously explored by Zhu et al. [2010]
in the context of elasticity simulation. However, they did not explore the “non-rectangular box” as
we describe, nor consider any opportunities for pre-factorizing the subdomain system matrix. As
such, they reported that the box smoother was impractical for their application. While line-based
box smoothers have been previously explored in the context of two-phase flow simulation [Brandt
and Dinar 1978], to the best of our knowledge, the non-rectangular box smoother is novel. We have
empirically found it to work well for smoothing the implicit viscosity system of Batty and Bridson
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[2008]. Its formulation, however, is not tied to the viscosity system in any way, and we conjecture
that it should work well for the unsteady Stokes equations [Larionov et al. 2017] and volumetric
elasticity [Zhu et al. 2010], among other problems with strongly coupled system of equations.

Solver 2562 grid 5122 grid 10242 grid 20482 grid
57, 341 DOFs 229, 276 DOFs (916, 912 DOFs) 3, 667, 424 DOFs

Multigrid 11 iterations 13 iterations 14 iterations 16 iterations
(Naïve baseline) 1.9 seconds 3.1 seconds 4.7 seconds 10.3 seconds

3 levels 4 levels 5 levels 6 levels
Multigrid 12 iterations 14 iterations 16 iterations 18 iterations
(Improved baseline) 0.74 seconds 1.4 seconds 3.1 seconds 8.9 seconds

3 levels 4 levels 5 levels 6 levels
Multigrid 4 iterations 5 iterations 5 iterations 4 iterations
(Ours) 0.68 seconds 1.8 seconds 5.0 seconds 12.5 seconds

3 levels 4 levels 5 levels 6 levels

Eigen 729 iterations 1434 iterations 2816 iterations 5522 iterations
0.91 seconds 6.3 seconds 51.9 seconds 470.4 seconds

ICPCG 80 iterations 143 iterations 255 iterations 465 iterations
0.22 seconds 1.7 seconds 15.2 seconds 118.6 seconds

PARDISO 0.36 seconds 1.3 seconds 5.3 seconds 24.3 seconds
Table 1. Solver comparisons in 2D on an Intel Xeon E5-2630 v3 16-core CPU with 128 GB of RAM and 2.4
GHz processing speed.

6.4 Enhancements to Accommodate Variational Volume Weights
The variational approach of Batty and Bridson [2008] requires multiplying stencil coefficients with
face-, edge-, and cell-centered weights to enforce boundary conditions, as described in Section 5.
At coarser levels of the Multigrid hierarchy, however, these weights are not well-defined owing to
the various geometric and topological discrepancies introduced during the coarsening procedure
(see Section 6.1). We assume that all weights are either 1 or 0 at these coarser levels (and do not
explicitly store them), essentially using a voxelized representation for the liquid. While this does
create a mismatch between the fine and coarse level operators, this mismatch is localized only near
the boundaries. Thus, as long as care is taken to ensure that both the residual computation and the
smoothing routine at the finest level use the variational weights, this discrepancy does not affect
the convergence of the Multigrid solver, because the fine level smoother effectively reduces the
error near the boundaries. In practice, we have found this approach to be more efficient than the
deferred correction suggested in prior work [Aanjaneya et al. 2017; Liu et al. 2016], where all levels
in the Multigrid hierarchy would use weights that are either 1 or 0, and extra Jacobi smoothing
iterations would be required (with the actual volume weights at the finest level) before and after
the Multigrid V-cycle. By directly using the correct volume weights at the finest level, we avoid this
additional computational overhead.

6.5 Moving Solids
Kinematic and two-way coupled solids impose non-zero velocity Dirichlet boundary conditions on
the variational viscosity system in equation (11), which are not well-defined at coarser levels of
the Multigrid hierarchy. We handle this issue by adjusting the right hand side vector with these

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 2, Article 14. Publication date: July 2019.



14:14 Mridul Aanjaneya, Chengguizi Han, Ryan Goldade, and Christopher Batty

boundary terms before the viscosity solve, essentially translating all non-zero Dirichlet boundary
conditions to zero Dirichlet boundary conditions. This modification is also well-aligned with the
design choice that the input and output of our restriction and prolongation operators are limited to
active degrees of freedom only, substituting a value of zero elsewhere.

Fig. 11. (Left) A block of liquid with spatially varying viscosity is dropped (2562 × 512 grid), creating a splash
at the low viscosity end. The deformation on the opposite end with a higher viscosity coefficient is much less
pronounced. (Right) Convergence profiles for the Multigrid solver using Jacobi smoothing, and our proposed
box smoothing.

6.6 Variable Viscosity
Our solver also supports variable viscosity, as shown in Figure 11(top), where a block of liquid
with spatially varying viscosity is dropped. A splash occurs at the end with lower viscosity, while
the deformation on the opposite end with a higher viscosity coefficient is much less pronounced.
Since the viscosity coefficients vary in space, our smoother cannot employ the pre-factorization
of the subdomain system matrix for all strictly interior degrees of freedom, as the subdomain
system matrices change from point to point. Thus, our box smoother is not as efficient as it would
have been for the spatially constant viscosity case. However, compared to Jacobi-preconditioned
Multigrid (see baseline solver in Section 7) with an average solve time of 211.2 s for viscosity per
time step, our proposed solver has an average solve time of 140.9 s for reducing the residual by two
orders of magnitude, obtaining a 1.5× speedup. Figure 11(bottom) shows the convergence profiles
of the two solvers.

7 RESULTS
We use the direct Cholesky solver from the Eigen library [Guennebaud et al. 2010] in the implemen-
tation of our box smoother; for boundary DOFs we perform a standard solve of the corresponding
small subdomain system while for interior DOFs we can quickly perform forward/backward substi-
tution using a precomputed factorization. We use the sparse Conjugate Gradients solver from the
Eigen library [Guennebaud et al. 2010] as an approximation for the “exact” solver at the bottom of
the Multigrid V-cycle, which we found to be more efficient than either a direct solve or additional
box smoother iterations. We set the floating-point precision of 10−7 as the error tolerance for this
“exact” solver, to preserve the symmetry of the V-cycle.

For benchmarking purposes, we consider a test problem, where a solid sphere rests in the
center of a square domain going from [0, 0] to [1, 1] in 2D (resp. [0, 0, 0] to [1, 1, 1] in 3D), and the
liquid-air interface is dictated by the analytic function ϕ = x − 0.5 + 0.25 · sin(x · y) in 2D (resp.
ϕ = x − 0.5 + 0.25 · sin(x · y · z) in 3D). The right hand side is initialized as a delta function at
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FLUID

SOLID

AIR

Fig. 12. A test problem with mixed boundary conditions. The right hand side is a delta function centered at
the point shown in green. The exact solution is shown in the right.

Fig. 13. Four bunnies, increasing in density from left to right, are dropped in a pool of viscous liquid. The
heavier bunnies sink immediately, causing the liquid to rise on the left and cushion the fall of the lighter
bunnies. Then, due to insufficient buoyancy force to support their weight, the lighter bunnies subsequently
also sink (simulated on a 3842 × 192 grid).

the faces nearest to the point (0.1, 0.1) in 2D (resp. (0.1, 0.1, 0.1) in 3D). The exact solution for the
liquid velocity (u,v ) in 2D is visualized as a height field, and resembles a “tent” function, as shown
in Figure 12(right).
To provide a baseline Multigrid for comparison, we followed typical practice in the design of

Multigrid solvers for pressure projection and implemented the damped-Jacobi smoother ofMcAdams
et al. [2010]. At each level in theMultigrid hierarchy, we perform 3 Jacobi iterations in a 3 voxel-wide
narrow band along the boundary, followed by 1 Jacobi iteration in the entire domain, followed by 3
boundary Jacobi iterations again to maintain symmetry. At the bottom of the Multigrid hierarchy,
we simply use 200 Jacobi iterations in the entire domain as an approximation for the “exact” solver
(again following McAdams et al. [2010]).

We stress that while we use this Multigrid solver as a baseline point of comparison to hold our
proposed solver to a high standard, even this “baseline” approach has not been previously applied
to the viscous liquid animation problem we consider [Batty and Bridson 2008]. Standard practice is
to use solvers such as Eigen [Guennebaud et al. 2010], Intel’s MKL PARDISO solver [De Coninck
et al. 2016], or ICPCG, which are far less efficient (or wasteful in terms of memory usage) compared
to our baseline Multigrid (see Tables 1 and 2). For example, Houdini [SideFX 2019] uses Jacobi-
preconditioned Conjugate Gradients. Figure 14 shows the convergence profiles of the baseline
Multigrid solver (labeled as J, and hereon referred to as the “naïve” baseline Multigrid solver),
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Solver 1283 grid 2563 grid 5123 grid
3, 035, 346 DOFs 24, 303, 388 DOFs 194, 503, 048 DOFs

Multigrid 20 iterations 34 iterations 39 iterations
(Naïve 377.3 s 975.3 s 2920.4 s
baseline) 0.256 GB 2.18 GB 15.94 GB

2 levels 3 levels 4 levels
Multigrid 21 iterations 36 iterations 41 iterations
(Improved 90.1 s 333.8 s 1512.4 s
baseline) 0.256 GB 2.18 GB 15.94 GB

2 levels 3 levels 4 levels
3 iterations 3 iterations 4 iterations

Multigrid 27.3 s 119.6 s 834.7 s
(Ours) 0.256 GB 2.18 GB 15.94 GB

2 levels 3 levels 4 levels

Eigen
377 iterations 707 iterations out of

35.6 s 619.4 s memory
1.536 GB 11.78 GB

ICPCG
39 iterations 53 iterations out of

6.7 s 95.3 s memory
1.024 GB 8.32 GB

PARDISO 1626.9 s N/A N/A24.96 GB
Table 2. Solver performance comparisons in 3D for the test problem in Figure 12 on an Intel Xeon E5-2630 v3
CPU with 16 cores, 128 GB of RAM, and 2.4 GHz processing speed.

Fig. 14. Convergence profiles for theMultigrid solver using Jacobi smoothing, and our proposed box smoothing
in 2D (left) and 3D (right) for the test problem in Figure 12.

compared to our proposed Multigrid solver using a box smoother (labeled as B). As can be seen,
our solver requires far fewer iterations.

Tables 1 and 2 provide computational performance and memory usage numbers for reducing the
residual (computed in the L∞ norm) by 6 orders of magnitude, comparing: our Multigrid solver, the
baselineMultigrid solver, the sparse Conjugate Gradients solver from the Eigen library [Guennebaud
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et al. 2010], Intel’s MKL PARDISO solver [De Coninck et al. 2016], and our own implementation of
Modified Incomplete Cholesky-preconditioned Conjugate Gradients (ICPCG). To better isolate the
benefits of using our box smoother, we also provide performance comparisons with an “improved”
baseline Multigrid solver that uses the sparse CG solver from the Eigen [Guennebaud et al. 2010]
library as an approximation for the coarsest-level “exact” solver (consistent with our recommended
approach), rather than a large number of smoothing steps as suggested by e.g., McAdams et al.
[2010]. In 2D, we find that this improved baseline Multigrid is the fastest solver for large enough grid
resolutions. This is because the computational overhead of our box smoother is not insignificant,
and the coupling between different components of the velocity in 2D is not strong enough to hurt
the effectiveness of Jacobi smoothing. However, the story changes dramatically in 3D. We find that
the PARDISO solver is far too slow with a very large memory footprint, most likely due to the
presence of many more non-zero terms compared to Poisson problems, and so we did not run it
beyond the 1283 grid. Both the Eigen solver and ICPCG run out of memory for our largest example
with grid resolution 5123. Finally, our proposed solver is faster by a factor between 3.5× - 13.8×
compared to the naïve baseline Multigrid solver, and by a factor between 1.8× - 3.3× compared to
the improved baseline Multigrid solver. All Multigrid solvers are also memory-efficient, requiring
an overall footprint of less than 16 GB for our largest example with grid resolution 5123. Although
the observed relative gains offered by the current implementation of our proposed solver vs. the
baseline Multigrid solvers decrease noticeably with higher grid resolutions, they remain significant.
Moreover, we believe that the use of SIMD vectorization in our box smoother, similar to the use of
macroblocks for non-linear elasticity as proposed by Mitchell et al. [2016], could further boost the
computational performance of our solver.

Implementation notes: Compared to a Multigrid solver for pressure projection [McAdams et al.
2010] on a given domain, a Multigrid solver for viscosity inherently incurs a higher memory
overhead because the variational viscosity system in equation (11) is three times larger than the
scalar Poisson equation, with more non-zeros to account for the cross-derivative terms between
different components of the velocity. At each level of the Multigrid hierarchy, we store the solution
vector x⃗ , the right hand side b⃗, the residual vector r⃗ , and a bitmask indicating all active faces
(computed using the cell labels FLUID, SOLID, and AIR, as outlined in Section 6). In addition, we
store the cell-centered, edge-centered, and face-centered volume weights at the finest level of the
hierarchy to apply the variational finite difference operators, as explained in Section 5. Even so,
our solver can efficiently solve for more than 194 million degrees of freedom, while occupying a
memory footprint of less than 16 GB, as shown in Table 2. We use the post-advected divergence-free
velocities as initial guess for Conjugate Gradients when solving for the effects of viscosity, obtaining
faster convergence. We partition the simulation domain along the X -axis for multi-threading, and
use red-black coloring to avoid race conditions in our box smoother, iterating only on partitions of
one color in each sweep.

7.1 Simulation Examples
To highlight the benefits of our solver, we simulated high resolution examples of viscous liquids.
Figure 3 shows a moving rectangular source pouring chocolate that displays gentle buckling
patterns as it falls on the wafer. Figure 4 shows a cake topped with a creamy armadillo topping
that collapses under its own weight, exhibiting detailed folding behavior. (The slightly “voxelized”
appearance of the armadillo surface is due to a coarse sampling of the initial signed distance field
from an explicit mesh representation.) Figure 13 shows an example with two-way coupled rigid
bodies in which four bunnies, of increasing weight from left to right, are dropped in a pool of
viscous liquid. The heavier bunnies sink in first, causing the liquid surface to rise on the left and
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cushion the fall of the lighter bunnies. The heaviest bunny collides with the ground and rebounds,
creating interesting flow features. After a while, the two lighter bunnies also sink into the liquid,
since the liquid cannot provide sufficient buoyancy force to support their weight. Table 3 gives
the average solve times per time step for all our examples for reducing the residual by 2 orders of
magnitude.

Figure 2 Figure 3 Figure 4 Figure 13
Viscosity Solve 25.5 s 30.2 s 53.1 s 47.8 s
MG levels 5 5 5 5
PCG iterations 2 2 2 2

Table 3. Average timings for all examples, computed on an Intel Xeon E5-2630 v3 (16-core, 2.4GHz) CPU.

8 CONCLUSION AND FUTUREWORK
We presented a geometric Multigrid-preconditioned Conjugate Gradients solver for efficiently
solving the viscosity system of Batty and Bridson [2008]; it exploits assembly-free restriction and
prolongation operators along with an effective specially-tailored box smoother that only requires
the solution of a small sparse matrix (at most 9 × 9 in 2D and 15 × 15 in 3D). Our solver is fully
parallelizable, memory-efficient, and outperforms existing solutions such as Eigen [Guennebaud
et al. 2010], Intel’s MKL [De Coninck et al. 2016], andModified Incomplete Cholesky-preconditioned
Conjugate Gradients (ICPCG). To the best of our knowledge, this is also the first time Multigrid
techniques have been applied to the viscosity equations in computer graphics applications.
Perhaps the biggest limitation of our existing implementation is the computational overhead

incurred by the box smoother. It would be interesting to explore the use of SIMD vectorization
techniques, similar to the macroblock-based approach for non-linear elasticity, as proposed by
Mitchell et al. [2016]. Alternatively, the use of distributive smoothing techniques [Brandt and Dinar
1978; Gaspar et al. 2008; Zhu et al. 2010] could also be beneficial; these use an appropriate change
of variables to convert the system into one that only has Laplacians on the diagonal, since damped-
Jacobi smoothers are known to work well in such situations. The latter approach would still require
some special treatment for handling the free surface and solid wall boundary conditions, by either
tweaking the discretization itself [Zhu et al. 2010], or using our box smoother.
Goldade et al. [2019] developed an octree-based discretization for the same viscosity PDE, and

we would like to explore combining it with our solver. Finally, it would be interesting to extend our
approach to design a geometric Multigrid solver for the full unsteady Stokes scheme of Larionov
et al. [2017]. Their discretization entails solving an even larger coupled system for velocity and
pressure to simultaneously capture the effects of viscosity and incompressibility, achievingmarkedly
improved behavior at the liquid surface (e.g., classic rope coiling). Its increased computational cost
currently renders it much less attractive for practical applications, but an efficient Multigrid scheme
could at least partially alleviate this concern.
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