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Schedule

• First round schedule is almost complete
– if you haven’t picked a paper yet, email me ASAP!

• We’ll have two round of presentations.

• For final third of the course, longer group discussions instead.



Elasticity



Elasticity

An elastic object is one that, when deformed, seeks to return to some 
reference of rest configuration.

Previously: discrete mass/spring models.
Today: more principled, “continuum mechanics” approach.

Generalize 1D elasticity (springs) to 3D objects.

Will roughly follow Sifakis’ SIGGRAPH course: 
http://run.usc.edu/femdefo/sifakis-courseNotes-
TheoryAndDiscretization.pdf

http://run.usc.edu/femdefo/sifakis-courseNotes-TheoryAndDiscretization.pdf


Continuum Mechanics

View the material under consideration as a continuous mass, rather 
than a collection of particles/atoms.

Useful model for both solids and fluids.

Not always applicable: e.g., at tiny scales, during some kinds of 
fracture, etc.

v.s.



Elasticity - Springs

Recall: (Linear) spring force is dictated by displacement, ∆𝑥 = 𝐿 − 𝐿0, 
away from rest length (Hooke’s law).

𝐹 = −𝑘∆𝑥

This follows from its potential energy:

U =
1

2
𝑘(∆𝑥)2

i.e., force acts to drive potential energy towards zero.



Conservative Forces

A spring force is an example of a conservative force – it depends only 
on the current state (path-independent).

For such forces, given potential energy 𝑈, the force is 𝐹 = −𝛻𝑈.

Thus, we seek a potential energy that is zero when our 3D object is 
undeformed.



Elasticity – 3D

How can we generalize these notions to three-dimensional volumes of 
material?

First, need a way to describe 3D deformations.



Deformation Map

A function 𝜙 that maps points from the reference configuration (  𝑋) to 
current position in world space (  𝑥).

𝜙: ℝ3 → ℝ3

Similar to the state/transform of a rigid body, except points in the body 
may all have different transformations.



Deformation Map, 𝜙

𝜙: ℝ3 → ℝ3

𝑋
 𝑥

Reference/rest/undeformed
configuration:

World/deformed configuration:



Deformation Gradient, 𝐹 =
𝜕𝜙

𝜕𝑋

𝑋

 𝑥

Reference/rest/undeformed
configuration:

World/deformed configuration:

𝑋 + 𝑑𝑋
 𝑥 + 𝑑𝑥

𝜙: ℝ3 → ℝ3



Deformation Gradient

Shape changes are indicated by local differences in the deformation map, 𝜙.

This is reflected in the deformation gradient (wrt. reference configuration X.)

𝑭 =
𝜕𝜙

𝜕  𝑋
=

𝜕𝜙1
𝜕𝑋1

𝜕𝜙1
𝜕𝑋2

𝜕𝜙1
𝜕𝑋3

𝜕𝜙2

𝜕𝑋1

𝜕𝜙2

𝜕𝑋2

𝜕𝜙2

𝜕𝑋3
𝜕𝜙3

𝜕𝑋1

𝜕𝜙3

𝜕𝑋2

𝜕𝜙3

𝜕𝑋3



Deformation Gradient

For some offset position from  𝑋, say  𝑋 + 𝑑𝑋, what is the 
corresponding world position?

 𝑥 + 𝑑𝑥 = 𝜙  𝑋 + 𝑑𝑋 ≈ 𝜙  𝑋 +
𝜕𝜙

𝜕  𝑋
𝑑𝑋 =  𝑥 + 𝑭𝑑𝑋

Deformation gradient describes how particle positions have changed 
relative to one another.

Translation

Relative 
deformation

Taylor 
expand…



Deformation Gradient

Examples of deformations:

Translation:  𝑥 = 𝜙(  𝑋) =  𝑡 +  𝑋 implies 𝐹 = 𝐼.

Uniform Scaling: 𝑥 = 𝜙 𝑋 = 𝑠𝑋 implies 𝐹 = 𝑠𝐼.

Rotation: 𝑥 = 𝜙 𝑋 = 𝑅𝑋 implies 𝐹 = 𝑅.



One Possible Potential Energy

What if we use 𝐹 directly to construct a potential energy?

U 𝐹 =
𝑘

2
𝐹 − 𝐼 𝐹

2

Resulting forces will drive 𝐹 towards 𝐼, i.e., a deformation that is (just) 
a translation.

What’s wrong with this?



Strain Measures

Want a deformation measure that ignores rotation (and translation), 
but captures other deformations.

Can we extract this from 𝐹?

Recall: Rotation matrices are orthogonal, 𝑅𝑇𝑅 = 𝐼.

So a useful measure is Green/Lagrange strain tensor, E =
1

2
(𝐹𝑇𝐹 − 𝐼).

Ignores translation and rotation, retains shear/stretch/compression.



Strain Measures

But, Green strain is nonlinear (quadratic), so more costly.

For small deformations, use small/infinitesimal/Cauchy strain: 

𝜖 =
1

2
(𝐹𝑇 + 𝐹) − 𝐼

(A linearization of Green strain.)

Many other strain tensors exist (and these two have many names)…



Equations of Motion

Consider F=ma for a small, continuous blob of material.

 
Ω

𝐹𝑏𝑜𝑑𝑦𝑑𝑋 + 
𝜕Ω

𝑇𝑑𝑆 =  
Ω

𝜌  𝑥𝑑𝑋

F: body forces that act throughout the material (e.g. gravity, 
magnetism, etc.) force per unit volume (i.e., force density).

𝑇: tractions, i.e., force per unit area acting on a surface.

Ω is the region of material being considered.



Traction

Traction T is the force (vector) per unit area on a small piece of surface.

𝑇(  𝑋, 𝑛) = lim
𝐴→0

 𝐹

𝐴

Cauchy’s postulate:

Traction is a function of position  𝑋 and normal 𝑛.

i.e., doesn’t depend on curvature or other properties.

Consists of  normal/pressure component along 𝑛, and tangential/shear components perpendicular 
to it.

𝑛 𝑇



Traction

Consider the internal traction on any slice through a volume of 
material.

This describes the forces acting on this plane between the two “sides”.

Note: T(x,n) = -T(x,-n)



Traction

We can characterize internal forces by considering tractions on 3 
perpendicular slices (i.e., normals along x, y, z directions).

3 components per traction along 3 axes gives us 9 components.

This gives us the Cauchy stress tensor, 𝜎.

Traction on any plane can be recovered with: 
𝑇 = 𝜎𝑛



Stress

The 3x3 stress tensor describes the forces acting within a material.

𝜎 =

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

𝜎 can be shown to be symmetric, i.e., 𝜎𝑦𝑥 = 𝜎𝑥𝑦, etc.  (from 
conservation of angular momentum.)



Stress – Meaning?

Diagonal components correspond to compression/extension.

Off-diagonal components correspond to shears.



Equations of motion

 
Ω

𝐹𝑏𝑜𝑑𝑦𝑑𝑋 + 
𝜕Ω

𝑇𝑑𝑆 =  
Ω

𝜌  𝑥𝑑𝑋

• Plug in 𝑇 = 𝜎𝑛…

 
Ω

𝐹𝑏𝑜𝑑𝑦𝑑𝑋 + 
𝜕Ω

𝜎𝑛𝑑𝑆 =  
Ω

𝜌  𝑥𝑑𝑋

• Integrate by parts (divergence theorem) to eliminate surface integral:

 
Ω

𝐹𝑏𝑜𝑑𝑦𝑑𝑋 + 
Ω

𝛻 ∙ 𝜎𝑑𝑋 =  
Ω

𝜌  𝑥𝑑𝑋

In the limit, 𝐹𝑏𝑜𝑑𝑦 + 𝛻 ∙ 𝜎 = 𝜌  𝑥, for every infinitesimal point.



Big Picture – So Far

• Deformation map 𝜙 describes map from rest to world state

• Deformation gradient 𝐹 describes deformations (minus translation)

• Strains 𝜖 or E describe deformation (minus rotation)

• Stress 𝜎 describes forces in material

• PDE 𝐹𝑏𝑜𝑑𝑦 + 𝛻 ∙ 𝜎 = 𝜌  𝑥 describes how to apply stress to get motion 

• (Later, will discretize the PDE to get discrete equations to solve.)

Missing step!



Constitutive models

Strain E/ 𝜖 describes deformations of a body.

Stress 𝜎 describes (resulting) forces within a body.

Constitutive models dictate the stress-strain 
relationship in a material. (Why rubber responds 
differently than concrete.)

i.e., Given some deformation, what stresses (forces) 
does it induce?

(e.g., linear spring force, F=-kx. )



Linear elasticity - simplest isotropic model

Hooke’s law in 3D, for small strain, 𝜖.

Potential Energy:

𝑈 𝐹 = 𝜇𝜖: 𝜖 +
𝜆

2
tr2(𝜖)

Stress:
𝜎 = 2𝜇𝜖 + 𝜆tr(𝜖)𝐼

𝜇, 𝜆 are the Lamé parameters, one choice of “elastic moduli”.

“tr” is the trace operator (sum of diagonals)

“:” is a tensor double dot product, where 𝐴:𝐵 = tr(𝐴𝑇𝐵)



Linear Elasticity

• Can see it is linear by expressing in 
matrix/vector form

• Flatten 3x3 tensors 𝜖 and 𝜎 into 
vectors.

• Isotropy and symmetry of 𝜖/𝜎 reduce 
81 coeffs down to 2 independent 
parameters.

𝜎𝑥𝑥
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑥
𝜎𝑦𝑦
𝜎𝑦𝑧
𝜎𝑧𝑥
𝜎𝑧𝑦
𝜎𝑧𝑧

= 9𝑥9 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑚𝑎𝑡𝑟𝑖𝑥

𝜖𝑥𝑥
𝜖𝑥𝑦
𝜖𝑥𝑧
𝜖𝑦𝑥
𝜖𝑦𝑦
𝜖𝑦𝑧
𝜖𝑧𝑥
𝜖𝑧𝑦
𝜖𝑧𝑧



Other Elastic moduli

More common/intuitive (but interconvertible) parameter pair is 
Poisson’s ratio, 𝜈, and Young’s modulus, E, or Y. (Careful overloading E). 

𝜇 =
𝑌

2(1 + 𝜈)

and…

𝜆 =
𝑌𝜈

(1 + 𝜈)(1 − 2𝜈)



Elastic Moduli – Young’s modulus

Young’s modulus:

• Ratio of stress-to-strain along an axis.

• Should be consistent with linear spring.



Elastic moduli – Poisson’s ratio

• Poisson’s ratio is negative ratio of transverse to axial strain.
• If stretched in one direction, how much does it compress in the others?

• Expresses tendency to preserve volume.

• 0.5 = incompressible (e.g., rubber) 

• 0 = no compression (e.g., cork)

• Negative is possible, though weird... 



The “linear” in linear elasticity

• Describes the stress-strain relationship.

• But, strain itself could still be either linear (small strain, 𝜖) or 
nonlinear (Green strain, E) in the deformation.

Use E instead of 𝜖 with the same equations gives: 

𝑈 𝐹 = 𝜇𝐸: 𝐸 +
𝜆

2
tr2(𝐸)

Better for larger deformations/rotations. (AKA St. Venant Kirchhoff 
model)



Other models

• Corotational linear elasticity:
• Try to factor out the rotational part of strain, treat the remainder with linear 

elasticity.

• We’ll see this idea in the “Interactive Virtual Materials” paper

• Neo-Hookean elasticity:
• St.V-K breaks down under large compression (stops resisting)

• Neo-Hookean is a nonlinear model that corrects this



Common 
Discretization 

Methods



Discretization

Need to turn our continuous model…

𝐹𝑏𝑜𝑑𝑦 + 𝛻 ∙ 𝜎 = 𝜌  𝑥

…into a discrete model that approximates it (and thus can be computed).

Common choices: Finite difference (FDM), finite volume (FVM), and  finite 
element methods (FEM).

I’ll give a brief flavour, but… 
• There’s a truly vast literature. (See e.g. Numerical PDE course, CS778.)



Discretization

• Notice: Time integration schemes (FE, RK2, BE, etc.) are just 
discretizations of time derivatives, along the 1D time axis.

• We will distinguish time discretization from spatial discretization.



Finite differences

Dice the domain into a grid of sample points

holding the relevant data.

Replace all (continuous) derivatives with finite approximations. 

e.g., 
𝑑𝑦

𝑑𝑥
≈
𝑦 𝑥 + ∆𝑥 − 𝑦 𝑥

∆𝑥



Finite differences

Quite common for fluids… less so for elastic 
solids.

Some graphics papers use FDM for solids: e.g., 
“An efficient multigrid method for the 
simulation of high-resolution elastic solids”

Advantages: maybe simpler, grid structure 
offers various optimizations, cache coherent 
memory accesses…
Disadvantages: trickier for irregular shapes, 
boundary conditions



Finite volume

• Divide the domain up into a set of non-
overlapping “control volumes.”

• Could be irregular, tetrahedra, hexahedra, 
general polyhedral, etc.

• Apply the relevant equations to each 
discrete control volume.

Figure from the DistMesh gallery:
http://persson.berkeley.edu/distmesh/gallery_images.html



Finite volume

Instead of differential/strong form, return to the integral form of equations…

 
Ω

𝐹𝑏𝑜𝑑𝑦𝑑𝑋 + 
Ω

𝛻 ∙ 𝜎𝑑𝑋 =  
Ω

𝜌  𝑥𝑑𝑋

Convert divergence terms into surface integrals by divergence th’m.

e.g.  Ω 𝛻 ∙ 𝜎𝑑𝑋 =  𝜕Ω𝜎 ∙ 𝑛𝑑𝑆

≈  

𝑓𝑎𝑐𝑒𝑠 𝑓

(𝜎𝑓∙ 𝑛𝑓)𝐿𝑓

Integrate remaining terms to get volume-averaged quantities per cell.

𝑛
𝐿



Finite volume

Convenient for conserved quantities: 
• Exact “flow” leaving one cell enters the next.

• E.g. liquid volume, 

Easily applied to irregular shapes.
• …IF you have a mesh of the domain.

Particularly common in fluids/CFD.

See e.g., “Finite Volume Methods. for the Simulation of Skeletal Muscle” for 
a nice step by step description of FVM applied to elasticity in graphics.



Finite element methods

Core idea: Can’t solve the infinite dimensional, continuous problem –
instead find a solution that we can represent, in some finite 
dimensional subspace.

Concretely, choose a representation of functions on a discrete mesh, 
and we’ll try to find the “best” solution that it can describe.



Finite elements – basis functions

In 1D, consider the space of functions 
representable by (piecewise) linear 
interpolation on a set of grid points.

Just a linear combination of scaled and 
translated “hat” functions at each 
gridpoint, called a basis function.

Many others bases possible (e.g. higher 
order polynomials).



Finite elements

Then, any function 𝑢 in this space can be described by:

𝑢 𝑥 =  

𝑘=1

𝑛

𝑢𝑘𝑣𝑘(𝑥)

where 𝑢𝑖 are the coefficients, and 𝑣𝑘 𝑥 are the basis functions, 
(“hats”  in our case.)

To find a solution to a problem, want to find the discrete set of 
coefficients, 𝑢𝑘. (Recover the actual shape by interpolation.)



Higher dimensional spaces

This generalizes to higher dimensions.

e.g., two dimensions:

2D mesh with numbered nodes. 2D linear basis function.



Finite elements

1D model problem: 
𝑑2𝑢

𝑑𝑥2
= 𝑓 on [0,1], with 𝑢 0 = 0, 𝑢 1 =0.

For given 𝑓, find 𝑢.

For a proper solution, it will also be true that

 
𝑑2𝑢

𝑑𝑥2
𝑣𝑑𝑥 =  𝑓𝑣𝑑𝑥

for “test functions” 𝑣 (that are smooth and satisfy the BC).



Finite elements

Integrate LHS by parts to get:

 
𝑑𝑢

𝑑𝑥

𝑑𝑣

𝑑𝑥
𝑑𝑥 =  𝑓𝑣 𝑑𝑥

This is called the weak form of the PDE.

Now, we will replace 𝑢, 𝑓, and 𝑣 with our space of discrete, piece-wise 
linear functions.



Finite elements

Specifically:

• 𝑢 𝑥 =  𝑘=1
𝑛 𝑢𝑘𝑣𝑘(𝑥)

• 𝑓 𝑥 =  𝑘=1
𝑛 𝑓𝑘𝑣𝑘(𝑥)

• 𝑣 𝑥 = 𝑣𝑗 𝑥 for j = 1 to n

From our simple (hat) basis functions, we can exactly find the inner products:

𝑣𝑗 , 𝑣𝑘 =  𝑣𝑗𝑣𝑘 𝑑𝑥

𝜙(𝑣𝑗𝑣𝑘) =  
𝑑𝑣𝑗
𝑑𝑥

𝑑𝑣𝑘
𝑑𝑥

𝑑𝑥



Finite elements

Plug in, do some manipulation, and  
𝑑𝑢

𝑑𝑥

𝑑𝑣

𝑑𝑥
=  𝑓𝑣 becomes a set of n 

discrete equations of the form:

Unknown 
coefficients

Known 
inner 
products 

Known 
inner 
products 

 

𝑘=1

𝑛

𝑢𝑘 𝜙 𝑣𝑗 , 𝑣𝑘 =  

𝑘=1

𝑛

𝑓𝑘 𝑣𝑗 , 𝑣𝑘

Known 
input 
data



Final system

Letting 𝐮 be the vector of unknown coefficients, and 𝐛 the RHS vector, 
this becomes a matrix equation:

L𝐮 = 𝐛

where the entries of L are just the 𝜙 𝑣𝑗 , 𝑣𝑘 ’s we defined.

See paper “Graphical Modeling and Animation of Brittle Fracture” for 
details of an early application of FEM to elasticity in graphics.



Example



Discretization

• For FDM/FVM/FEM, much like mass springs, we get a (possibly 
nonlinear) system of equations to solve for data stored on a discrete 
mesh/grid.

• However: 
• we can use physically meaningful parameters.

• as the mesh resolution increases, we can approach a true/real solution.

• behaviour is independent of the mesh structure (under refinement!)


