Elasticity & Discretization

Jan 14, 2014



Schedule

* First round schedule is almost complete
— if you haven’t picked a paper yet, email me ASAP!

 We'll have two round of presentations.
* For final third of the course, longer group discussions instead.



Elasticity



Elasticity

An elastic object is one that, when deformed, seeks to return to some
reference of rest configuration.

Previously: discrete mass/spring models.
Today: more principled, “continuum mechanics” approach.

Generalize 1D elasticity (springs) to 3D objects.

Will roughly follow Sifakis” SIGGRAPH course:

http://run.usc.edu/femdefo/sifakis-courseNotes-
TheoryAndDiscretization.pdf



http://run.usc.edu/femdefo/sifakis-courseNotes-TheoryAndDiscretization.pdf

Continuum Mechanics

View the material under consideration as a continuous mass, rather
than a collection of particles/atoms.

V.S.

Useful model for both solids and fluids.

Not always applicable: e.g., at tiny scales, during some kinds of
fracture, etc.



Elasticity - Springs

Recall: (Linear) spring force is dictated by displacement, Ax = L — L,
away from rest length (Hooke’s law).

F = —kAx

This follows from its potential energy:
1
U= Ek(AX)Z

i.e., force acts to drive potential energy towards zero.



Conservative Forces

A spring force is an example of a conservative force — it depends only
on the current state (path-independent).

For such forces, given potential energy U, the force is F = —VU.

Thus, we seek a potential energy that is zero when our 3D object is
undeformed.



Elasticity — 3D

How can we generalize these notions to three-dimensional volumes of
material? :

First, need a way to describe 3D deformations.



Deformation Map

A function q? that maps points from the reference configuration ()_f) to
current position in world space (x).

¢: R® - R3

Similar to the state/transform of a rigid body, except points in the body
may all have different transformations.
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Deformation Gradient, F =
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Deformation Gradient

Shape changes are indicated by local differences in the deformation map, ¢.

This is reflected in the deformation gradient (wrt. reference configuration X.)
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Deformation Gradient

For some offset position from )?, say X + d_X), what is the
corresponding world position? Relative

deformation

i sl 00— _,
X+dx=¢(X+dX)~ ¢(X)+a—§dX=9?+FdX
Taylor Translation

expand...

Deformation gradient describes how particle positions have changed
relative to one another.



Deformation Gradient

Examples of deformations:

Translation: # = ¢(X) = £ + X implies F = 1.
Uniform Scaling: x = ¢(X) = sX implies F = sI.
Rotation: x = ¢(X) = RX implies F = R.



One Possible Potential Energy

What if we use F directly to construct a potential energy?

k
U(F) = S IIF - I|%

Resulting forces will drive F towards I, i.e., a deformation that is (just)
a translation.

What’s wrong with this?



Strain Measures

Want a deformation measure that ignores rotation (and translation),
but captures other deformations.

Can we extract this from F?

Recall: Rotation matrices are orthogonal, R"R = 1I.
. . 1
So a useful measure is Green/Lagrange strain tensor, E = E (FT'F - 1.

lgnores translation and rotation, retains shear/stretch/compression.



Strain Measures

But, Green strain is nonlinear (quadratic), so more costly.

For small deformations, use small/infinitesimal/Cauchy strain:
1
€ = E (FT ~+ F) — I

(A linearization of Green strain.)

Many other strain tensors exist (and these two have many names)...



Equations of Motion

Consider F=ma for a small, continuous blob of material.
Q 00 Q

F: body forces that act throughout the material (e.g. gravity,
magnetism, etc.) force per unit volume (i.e., force density).

T: tractions, i.e., force per unit area acting on a surface.
() is the region of material being considered.



Traction

Traction T is the force (vector) per unit area on a small piece of surface.

- > F

Cauchy’s postulate:

Traction is a function of position X and normal 7. -
i.e., doesn’t depend on curvature or other properties. Q

Consists of normal/pressure component along 71, and tangential/shear components perpendicular
to it.

3l



Traction

Consider the internal traction on any slice through a volume of

material.

This describes the forces acting on this plane between the two “sides”.

Note: T(x,n) = -T(x,-n)
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Traction

We can characterize internal forces by considering tractions on 3
perpendicular slices (i.e., normals along x, y, z directions).

3 components per traction along 3 axes gives us 9 components.

This gives us the Cauchy stress tensor, o.

Traction on any plane can be recovered with:
T =on




Stress

The 3x3 stress tensor describes the forces acting within a material.
Oxx Oxy Oxz]

o = |%yx Oyy Oyg

Ozx Ozy Ozz,

o can be shown to be symmetric, i.e., g),, = 0y, etc. (from
conservation of angular momentum.)



Stress — Meaning?

Diagonal components correspond to compression/extension.

Off-diagonal components correspond to shears.




Equations of motion

Q) Q) Q)

*PluginT = on...

f Fbodde +J ondS =j deX
Q Q) Q)

* Integrate by parts (divergence theorem) to eliminate surface integral:

J Fbodde +f V.-odX = j deX
Q) Q) Q

In the limit, F,4, + V - 0 = pX, for every infinitesimal point.



Big Picture — So Far

* Deformation map ¢ describes map from rest to world state
* Deformation gradient F describes deformations (minus translation)

* Strains € or E describe deformation (minus rotation) .
42 Missing step!

* Stress o describes forces in material

* PDE Fpoqy +V - 0 = pX describes how to apply stress to get motion

e (Later, will discretize the PDE to get discrete equations to solve.)



Constitutive models

Strain E/ € describes deformations of a body.
Stress o describes (resulting) forces within a body.

Constitutive models dictate the stress-strain
relationship in a material. (Why rubber responds
differently than concrete.)

i.e., Given some deformation, what stresses (forces)
does it induce?

(e.g., linear spring force, F=-kx. )




Linear elasticity - simplest isotropic model

Hooke’s law in 3D, for small strain, €.

Potential Energy:
A o
U(F) = ue:e +Etr (€)

Stress:
o = 2ue + Atr(e)l

u, A are the Lamé parameters, one choice of “elastic moduli”.
“tr” is the trace operator (sum of diagonals)

“:” is a tensor double dot product, where A: B = tr(ATB)



Linear Elasticity

* Can see it is linear by expressing in
matrix/vector form

e Flatten 3x3 tensors € and o into
vectors.

* [sotropy and symmetry of €/o reduce
81 coeffs down to 2 independent
parameters.

= [9x9 coef ficient matrix]




Other Elastic moduli

More common/intuitive (but interconvertible) parameter pair is
Poisson’s ratio, v, and Young’s modulus, E, or Y. (Careful overloading E).

Y
2(1+v)

u

and...
Yv

A= AT nd -




Elastic Moduli — Young’s modulus

Young’s modulus:
* Ratio of stress-to-strain along an axis.
* Should be consistent with linear spring.



Elastic moduli — Poisson’s ratio

* Poisson’s ratio is negative ratio of transverse to axial strain.
* |f stretched in one direction, how much does it compress in the others?
* Expresses tendency to preserve volume.
* 0.5 =incompressible (e.g., rubber)
* 0 =no compression (e.g., cork)

Negative is possible, though weird...




The “linear” in linear elasticity

* Describes the stress-strain relationship.

* But, strain itself could still be either linear (small strain, €) or
nonlinear (Green strain, E) in the deformation.

Use E instead of € with the same equations gives:
A
U(F) = uE:E + Etrz(E)

Better for larger deformations/rotations. (AKA St. Venant Kirchhoff
model)



Other models

* Corotational linear elasticity:

* Try to factor out the rotational part of strain, treat the remainder with linear
elasticity.

* We'll see this idea in the “Interactive Virtual Materials” paper

* Neo-Hookean elasticity:
e St.V-K breaks down under large compression (stops resisting)
* Neo-Hookean is a nonlinear model that corrects this



Common
Discretization
Methods



Discretization

Need to turn our continuous model...

Fpoay +V -0 = px
...into a discrete model that approximates it (and thus can be computed).

Common choices: Finite difference (FDM), finite volume (FVM), and finite
element methods (FEM).

I’ll give a brief flavour, but...
e There’s a truly vast literature. (See e.g. Numerical PDE course, CS778.)



Discretization

* Notice: Time integration schemes (FE, RK2, BE, etc.) are just
discretizations of time derivatives, along the 1D time axis.

* We will distinguish time discretization from spatial discretization.



T=0¢c

Finite differences DR E
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Dice the domain into a grid of sample points  mw 444 4 4 & 4L
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Replace all (continuous) derivatives with finite approximations.

e.g.,
dy _y(x+An) - y()

dx Ax




Finite differences

Quite common for fluids... less so for elastic
solids.

Some graphics papers use FDM for solids: e.g.,
“An efficient multigrid method for the
simulation of high-resolution elastic solids”

Advantages: maybe simpler, grid structure
offers various optimizations, cache coherent
memory accesses...

Disadvantages: trickier for irregular shapes,
boundary conditions




Finite volume

* Divide the domain up into a set of non-
overlapping “control volumes.”

* Could be irregular, tetrahedra, hexahedra,
general polyhedral, etc.

* Apply the relevant equations to each
discrete control volume.

Figure from the DistMesh gallery:
http://persson.berkeley.edu/distmesh/gallery _images.html



Finite volume

Instead of differential/strong form, return to the integral form of equations...

f Fbodde +f V-.-odX = f deX
Q) Q) Q)

Convert divergence terms into surface integrals by divergence th'm. ,
L

e.g. Jo V-odX = [, o-ndS P

~ z (o7 np)Ly
faces f
Integrate remaining terms to get volume-averaged quantities per cell.



Finite volume

Convenient for conserved quantities:

* Exact “flow” leaving one cell enters the next.
* E.g. liquid volume,

Easily applied to irregular shapes.
* ...IF you have a mesh of the domain. Y

Particularly common in fluids/CFD.

See e.g., “Finite Volume Methods. for the Simulation of Skeletal Muscle” for
a nice step by step description of FVM applied to elasticity in graphics.



Finite element methods

Core idea: Can’t solve the infinite dimensional, continuous problem —
instead find a solution that we can represent, in some finite
dimensional subspace.

Concretely, choose a representation of functions on a discrete mesh,
and we’ll try to find the “best” solution that it can describe.



Finite elements — basis functions

In 1D, consider the space of functions
representable by (piecewise) linear
interpolation on a set of grid points.

Just a linear combination of scaled and
translated “hat” functions at each
gridpoint, called a basis function.

Many others bases possible (e.g. higher
order polynomials).
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Finite elements

Then, any function u in this space can be described by:

u() = ) wew)
k=1
where u; are the coefficients, and v, (x) are the basis functions,
(“hats” in our case.)

To find a solution to a problem, want to find the discrete set of
coefficients, u,. (Recover the actual shape by interpolation.)



Higher dimensional spaces

This generalizes to higher dimensions.
e.g., two dimensions:

2D mesh with numbered nodes. 2D linear basis function.




Finite elements

2
1D model problem: Z = f on [0,1], with u(0) = 0,u(1) =0.

For given f, find wu.

For a proper solution, it will also be true that

ﬁvdx—ffvdx

for “test functions” v (that are smooth and satisfy the BC).



Finite elements

Integrate LHS by parts to get:

du dv J P
dx dx dx = [ fvdx

This is called the weak form of the PDE.

Now, we will replace u, f, and v with our space of discrete, piece-wise
linear functions.



Finite elements

Specifically:
*u(x) = Xg=q UrVi(x)
* () = Xk=1 frevre (%)

*v(x) =vj(x)forj=1ton

From our simple (hat) basis functions, we can exactly find the inner products:
(vj,vk) = fvjvk dx

dvj dvy,

d(vjvg) = o dx




Finite elements

du dv

Plug in, do some manipulation, and fﬁﬁ = [ fv becomes a set of n
discrete equations of the form:
n n
E | we ¢, vy) = E fi (v, vie)
k=1 k=1
Unknown iKnnnoev;/n Known !<n0wn
coefficients oroducts input Inner

data products



Final system

Letting u be the vector of unknown coefficients, and b the RHS vector,
this becomes a matrix equation:

Lu=D>b

where the entries of L are just the qb(vj, vk)’s we defined.

See paper “Graphical Modeling and Animation of Brittle Fracture” for
details of an early application of FEM to elasticity in graphics.



Example




Discretization

* For FDM/FVM/FEM, much like mass springs, we get a (possibly
nonlinear) system of equations to solve for data stored on a discrete
mesh/grid.

* However:
* we can use physically meaningful parameters.
 as the mesh resolution increases, we can approach a true/real solution.
e behaviour is independent of the mesh structure (under refinement!)



