Elasticity \& Discretization

Jan 14, 2014

Schedule

- First round schedule is almost complete
- if you haven't picked a paper yet, email me ASAP!
- We'll have two round of presentations.
- For final third of the course, longer group discussions instead.

Elasticity

Elasticity

An elastic object is one that, when deformed, seeks to return to some reference of rest configuration.

Previously: discrete mass/spring models.
Today: more principled, "continuum mechanics" approach.

Generalize 1D elasticity (springs) to 3D objects.

Will roughly follow Sifakis' SIGGRAPH course:
http://run.usc.edu/femdefo/sifakis-courseNotes-
TheoryAndDiscretization.pdf

Continuum Mechanics

View the material under consideration as a continuous mass, rather than a collection of particles/atoms.

Useful model for both solids and fluids.
Not always applicable: e.g., at tiny scales, during some kinds of fracture, etc.

Elasticity - Springs

Recall: (Linear) spring force is dictated by displacement, $\Delta x=L-L_{0}$, away from rest length (Hooke's law).

$$
F=-k \Delta x
$$

This follows from its potential energy:

$$
\mathrm{U}=\frac{1}{2} k(\Delta x)^{2}
$$

i.e., force acts to drive potential energy towards zero.

Conservative Forces

A spring force is an example of a conservative force - it depends only on the current state (path-independent).
For such forces, given potential energy U, the force is $F=-\nabla U$.

Thus, we seek a potential energy that is zero when our 3D object is undeformed.

Elasticity - 3D

How can we generalize these notions to three-dimensional volumes of material?

First, need a way to describe 3D deformations.

Deformation Map

A function $\vec{\phi}$ that maps points from the reference configuration (\vec{X}) to current position in world space (\vec{x}).

$$
\vec{\phi}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

Similar to the state/transform of a rigid body, except points in the body may all have different transformations.

Deformation Map, $\vec{\phi}$

Deformation Gradient, $F=\frac{\partial \vec{\phi}}{\partial \vec{X}}$

Deformation Gradient

Shape changes are indicated by local differences in the deformation map, ϕ.

This is reflected in the deformation gradient (wrt. reference configuration X.)

$$
\boldsymbol{F}=\frac{\partial \vec{\phi}}{\partial \vec{X}}=\left(\begin{array}{lll}
\frac{\partial \phi_{1}}{\partial X_{1}} & \frac{\partial \phi_{1}}{\partial X_{2}} & \frac{\partial \phi_{1}}{\partial X_{3}} \\
\frac{\partial \phi_{2}}{\partial X_{1}} & \frac{\partial \phi_{2}}{\partial X_{2}} & \frac{\partial \phi_{2}}{\partial X_{3}} \\
\frac{\partial \phi_{3}}{\partial X_{1}} & \frac{\partial \phi_{3}}{\partial X_{2}} & \frac{\partial \phi_{3}}{\partial X_{3}}
\end{array}\right)
$$

Deformation Gradient

For some offset position from \vec{X}, say $\vec{X}+\overrightarrow{d X}$, what is the corresponding world position?

$$
\vec{x}+\overrightarrow{d x}=\vec{\phi}(\vec{X}+\overrightarrow{d X}) \underset{\substack{\text { Taylor } \\ \text { expand... }}}{\approx} \vec{\phi}(\vec{X})+\frac{\partial \vec{\phi}}{\partial \vec{X}} \overrightarrow{d X}=\underset{\substack{\text { Translation }}}{\vec{x}}+\underset{\text { Fld }}{\stackrel{l}{d X}}
$$

Deformation gradient describes how particle positions have changed relative to one another.

Deformation Gradient

Examples of deformations:

Translation: $\vec{x}=\vec{\phi}(\vec{X})=\vec{t}+\vec{X}$ implies $F=I$.
Uniform Scaling: $x=\phi(X)=s X$ implies $F=s I$.
Rotation: $x=\phi(X)=R X$ implies $F=R$.

One Possible Potential Energy

What if we use F directly to construct a potential energy?

$$
\mathrm{U}(F)=\frac{k}{2}\|F-I\|_{F}^{2}
$$

Resulting forces will drive F towards I, i.e., a deformation that is (just) a translation.

What's wrong with this?

Strain Measures

Want a deformation measure that ignores rotation (and translation), but captures other deformations.

Can we extract this from F ?

Recall: Rotation matrices are orthogonal, $R^{T} R=I$.
So a useful measure is Green/Lagrange strain tensor, $\mathrm{E}=\frac{1}{2}\left(F^{T} F-I\right)$. Ignores translation and rotation, retains shear/stretch/compression.

Strain Measures

But, Green strain is nonlinear (quadratic), so more costly.

For small deformations, use small/infinitesimal/Cauchy strain:

$$
\epsilon=\frac{1}{2}\left(F^{T}+F\right)-I
$$

(A linearization of Green strain.)

Many other strain tensors exist (and these two have many names)...

Equations of Motion

Consider $F=m a$ for a small, continuous blob of material.

$$
\int_{\Omega} F_{b o d y} d X+\int_{\partial \Omega} T d S=\int_{\Omega} \rho \ddot{x} d X
$$

F: body forces that act throughout the material (e.g. gravity, magnetism, etc.) force per unit volume (i.e., force density).
T : tractions, i.e., force per unit area acting on a surface.
Ω is the region of material being considered.

Traction

Traction T is the force (vector) per unit area on a small piece of surface.

$$
\vec{T}(\vec{X}, \vec{n})=\lim _{A \rightarrow 0} \frac{\vec{F}}{A}
$$

Cauchy's postulate:

Traction is a function of position \vec{X} and normal \vec{n}.
i.e., doesn't depend on curvature or other properties.

Consists of normal/pressure component along \vec{n}, and tangential/shear components perpendicular to it.

Traction

Consider the internal traction on any slice through a volume of material.
This describes the forces acting on this plane between the two "sides".

Note: $T(x, n)=-T(x,-n)$

Traction

We can characterize internal forces by considering tractions on 3 perpendicular slices (i.e., normals along x, y, z directions).

3 components per traction along 3 axes gives us 9 components.

This gives us the Cauchy stress tensor, σ.

Traction on any plane can be recovered with:

$$
T=\sigma n
$$

Stress

The 3×3 stress tensor describes the forces acting within a material.

$$
\sigma=\left[\begin{array}{lll}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right]
$$

σ can be shown to be symmetric, i.e., $\sigma_{y x}=\sigma_{x y}$, etc. (from conservation of angular momentum.)

Stress - Meaning?

Diagonal components correspond to compression/extension. Off-diagonal components correspond to shears.

Equations of motion

$$
\int_{\Omega} F_{b o d y} d X+\int_{\partial \Omega} T d S=\int_{\Omega} \rho \ddot{x} d X
$$

- Plug in $T=\sigma n$...

$$
\int_{\Omega} F_{b o d y} d X+\int_{\partial \Omega} \sigma n d S=\int_{\Omega} \rho \ddot{x} d X
$$

- Integrate by parts (divergence theorem) to eliminate surface integral:

$$
\int_{\Omega} F_{b o d y} d X+\int_{\Omega} \nabla \cdot \sigma d X=\int_{\Omega} \rho \ddot{x} d X
$$

In the limit, $F_{b o d y}+\nabla \cdot \sigma=\rho \ddot{x}$, for every infinitesimal point.

Big Picture - So Far

- Deformation map ϕ describes map from rest to world state
- Deformation gradient F describes deformations (minus translation)
- Strains ϵ or E describe deformation (minus rotation)
- Stress σ describes forces in material
- PDE $F_{b o d y}+\nabla \cdot \sigma=\rho \ddot{x}$ describes how to apply stress to get motion
- (Later, will discretize the PDE to get discrete equations to solve.)

Constitutive models

Strain E/ ϵ describes deformations of a body.
Stress σ describes (resulting) forces within a body.

Constitutive models dictate the stress-strain relationship in a material. (Why rubber responds differently than concrete.)
i.e., Given some deformation, what stresses (forces) does it induce?
(e.g., linear spring force, $\mathrm{F}=-\mathrm{kx}$.)

Linear elasticity - simplest isotropic model

Hooke's law in 3D, for small strain, ϵ.

Potential Energy:

$$
U(F)=\mu \epsilon: \epsilon+\frac{\lambda}{2} \operatorname{tr}^{2}(\epsilon)
$$

Stress:

$$
\sigma=2 \mu \epsilon+\lambda \operatorname{tr}(\epsilon) I
$$

μ, λ are the Lamé parameters, one choice of "elastic moduli".
"tr" is the trace operator (sum of diagonals)
" $:$ " is a tensor double dot product, where $A: B=\operatorname{tr}\left(A^{T} B\right)$

Linear Elasticity

- Can see it is linear by expressing in matrix/vector form
- Flatten 3×3 tensors ϵ and σ into vectors.
$\left[\begin{array}{l}\sigma_{x x} \\ \sigma_{x y} \\ \sigma_{x z} \\ \sigma_{y x} \\ \sigma_{y y} \\ \sigma_{y z} \\ \sigma_{z x} \\ \sigma_{z y} \\ \sigma_{z z}\end{array}\right]=[9 x 9$ coefficient matrix $]\left[\begin{array}{c}\epsilon_{x x} \\ \epsilon_{x y} \\ \epsilon_{x z} \\ \epsilon_{y x} \\ \epsilon_{y y} \\ \epsilon_{y z} \\ \epsilon_{z x} \\ \epsilon_{z y} \\ \epsilon_{z z}\end{array}\right]$
- Isotropy and symmetry of ϵ / σ reduce 81 coeffs down to 2 independent parameters.

Other Elastic moduli

More common/intuitive (but interconvertible) parameter pair is Poisson's ratio, v, and Young's modulus, E, or Y. (Careful overloading E).

$$
\mu=\frac{Y}{2(1+v)}
$$

and...

$$
\lambda=\frac{Y v}{(1+v)(1-2 v)}
$$

Elastic Moduli - Young's modulus

Young's modulus:

- Ratio of stress-to-strain along an axis.
- Should be consistent with linear spring.

Elastic moduli - Poisson's ratio

- Poisson's ratio is negative ratio of transverse to axial strain.
- If stretched in one direction, how much does it compress in the others?
- Expresses tendency to preserve volume.
- 0.5 = incompressible (e.g., rubber)
- 0 = no compression (e.g., cork)
- Negative is possible, though weird...

The "linear" in linear elasticity

- Describes the stress-strain relationship.
- But, strain itself could still be either linear (small strain, ϵ) or nonlinear (Green strain, E) in the deformation.

Use E instead of ϵ with the same equations gives:

$$
U(F)=\mu E: E+\frac{\lambda}{2} \operatorname{tr}^{2}(E)
$$

Better for larger deformations/rotations. (AKA St. Venant Kirchhoff model)

Other models

- Corotational linear elasticity:
- Try to factor out the rotational part of strain, treat the remainder with linear elasticity.
- We'll see this idea in the "Interactive Virtual Materials" paper
- Neo-Hookean elasticity:
- St.V-K breaks down under large compression (stops resisting)
- Neo-Hookean is a nonlinear model that corrects this

Common
Discretization
Methods

Discretization

Need to turn our continuous model...

$$
F_{b o d y}+\nabla \cdot \sigma=\rho \ddot{x}
$$

...into a discrete model that approximates it (and thus can be computed).

Common choices: Finite difference (FDM), finite volume (FVM), and finite element methods (FEM).
I'll give a brief flavour, but...

- There's a truly vast literature. (See e.g. Numerical PDE course, CS778.)

Discretization

- Notice: Time integration schemes (FE, RK2, BE, etc.) are just discretizations of time derivatives, along the 1D time axis.
- We will distinguish time discretization from spatial discretization.

Finite differences

Dice the domain into a grid of sample points holding the relevant data.

Replace all (continuous) derivatives with finite approximations. e.g.,

$$
\frac{d y}{d x} \approx \frac{y(x+\Delta x)-y(x)}{\Delta x}
$$

Finite differences

Quite common for fluids... less so for elastic solids.

Some graphics papers use FDM for solids: e.g.,
 "An efficient multigrid method for the simulation of high-resolution elastic solids"

Advantages: maybe simpler, grid structure offers various optimizations, cache coherent memory accesses...
Disadvantages: trickier for irregular shapes, boundary conditions

Finite volume

- Divide the domain up into a set of nonoverlapping "control volumes."
- Could be irregular, tetrahedra, hexahedra, general polyhedral, etc.
- Apply the relevant equations to each discrete control volume.

Finite volume

Instead of differential/strong form, return to the integral form of equations...

$$
\int_{\Omega} F_{\text {body }} d X+\int_{\Omega} \nabla \cdot \sigma d X=\int_{\Omega} \rho \ddot{x} d X
$$

Convert divergence terms into surface integrals by divergence th'm.
e.g.

$$
\begin{aligned}
\int_{\Omega} \nabla \cdot \sigma d X & =\int_{\partial \Omega} \sigma \cdot n d S \\
& \approx \sum_{\text {faces } f}\left(\sigma_{f} \cdot n_{f}\right) L_{f}
\end{aligned}
$$

Integrate remaining terms to get volume-averaged quantities per cell.

Finite volume

Convenient for conserved quantities:

- Exact "flow" leaving one cell enters the next.
- E.g. liquid volume,

Easily applied to irregular shapes.

- ...IF you have a mesh of the domain.

Particularly common in fluids/CFD.

See e.g., "Finite Volume Methods. for the Simulation of Skeletal Muscle" for a nice step by step description of FVM applied to elasticity in graphics.

Finite element methods

Core idea: Can't solve the infinite dimensional, continuous problem instead find a solution that we can represent, in some finite dimensional subspace.

Concretely, choose a representation of functions on a discrete mesh, and we'll try to find the "best" solution that it can describe.

Finite elements - basis functions

In 1D, consider the space of functions representable by (piecewise) linear interpolation on a set of grid points.

Just a linear combination of scaled and translated "hat" functions at each gridpoint, called a basis function.

Many others bases possible (e.g. higher order polynomials).

Finite elements

Then, any function u in this space can be described by:

$$
u(x)=\sum_{k=1}^{n} u_{k} v_{k}(x)
$$

where u_{i} are the coefficients, and $v_{k}(x)$ are the basis functions, ("hats" in our case.)

To find a solution to a problem, want to find the discrete set of coefficients, u_{k}. (Recover the actual shape by interpolation.)

Higher dimensional spaces

This generalizes to higher dimensions.
e.g., two dimensions:

2D mesh with numbered nodes.

2D linear basis function.

Finite elements

1D model problem: $\frac{d^{2} u}{d x^{2}}=f$ on $[0,1]$, with $u(0)=0, u(1)=0$.
For given f, find u.

For a proper solution, it will also be true that

$$
\int \frac{d^{2} u}{d x^{2}} v d x=\int f v d x
$$

for "test functions" v (that are smooth and satisfy the BC).

Finite elements

Integrate LHS by parts to get:

$$
\int \frac{d u}{d x} \frac{d v}{d x} d x=\int f v d x
$$

This is called the weak form of the PDE.

Now, we will replace u, f, and v with our space of discrete, piece-wise linear functions.

Finite elements

Specifically:

- $u(x)=\sum_{k=1}^{n} u_{k} v_{k}(x)$
- $f(x)=\sum_{k=1}^{n} f_{k} v_{k}(x)$
- $v(x)=v_{j}(x)$ for $\mathrm{j}=1$ to n

From our simple (hat) basis functions, we can exactly find the inner products:

$$
\begin{gathered}
\left\langle v_{j}, v_{k}\right\rangle=\int v_{j} v_{k} d x \\
\phi\left(v_{j} v_{k}\right)=\int \frac{d v_{j}}{d x} \frac{d v_{k}}{d x} d x
\end{gathered}
$$

Finite elements

Plug in, do some manipulation, and $\int \frac{d u}{d x} \frac{d v}{d x}=\int f v$ becomes a set of n discrete equations of the form:

Final system

Letting \mathbf{u} be the vector of unknown coefficients, and \mathbf{b} the RHS vector, this becomes a matrix equation:

$$
\mathrm{Lu}=\mathbf{b}
$$

where the entries of L are just the $\phi\left(v_{j}, v_{k}\right)$'s we defined.

See paper "Graphical Modeling and Animation of Brittle Fracture" for details of an early application of FEM to elasticity in graphics.

Example

Discretization

- For FDM/FVM/FEM, much like mass springs, we get a (possibly nonlinear) system of equations to solve for data stored on a discrete mesh/grid.
- However:
- we can use physically meaningful parameters.
- as the mesh resolution increases, we can approach a true/real solution.
- behaviour is independent of the mesh structure (under refinement!)

