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Physics-Based Animation

The use of physical simulation to generate animations of:

• Rigid bodies: “Perfectly” stiff or rigid objects

• Deformable objects: flesh, rubber, jello

• Shells/plates: Cloth, paper, sheet metal, plant leaves

• Rods/beams: Hair, strands, cords, slender tree branches

• Gases: Air, fire, smoke, explosions, bubbles

• Liquids: Water, oil, honey, slime, goop, oceans, waves

…and (m)any other visually interesting physical phenomena.



Why Use Simulated Physics?

• Too many degrees of freedom to model by hand.

• Humans are good at spotting physical irregularities (“weird” motion).

• Save artists time (avoid “simulating” in their heads!); can instead 
focus on characters, story, aesthetics, etc.

• Directly capturing real motion (via video camera or motion capture, 
etc.) can be limiting.

• Simulation is often cheaper, safer, and makes otherwise “impossible” 
animations feasible.

• For interactive applications, animations must respond on-the-fly in a 
flexible way.















Applications

• Computer gaming

• Visual effects & animated movies

• Various interactive tools 
• Virtual surgery (training)

• Educational software

• Virtual fitting room

• Interactive/iterative design software
• architecture, tailoring, etc.



Course Organization

Tues/Thurs at 10:00-11:20am in DC 3313.

Instructor: Christopher Batty (DC 3605)
E-mail: christopher.batty@uwaterloo.ca
Feel free to send questions/comments, put “CS888” in the subject.

Office hours by appointment.

Course web page:

http://www.cs.uwaterloo.ca/~c2batty/courses/CS888_2014/

mailto:christopher.batty@uwaterloo.ca
http://www.cs.uwaterloo.ca/~c2batty/courses/CS888_2014/


Course Organization

• Primarily seminar-style – paper presentations and group discussion. 

• A few lectures to set the stage.

• Course project – implement a physical simulation technique.

• One paper review per week.

• See preliminary schedule on the website. Roughly: first 2/3 on solids, 
last 1/3 on fluids.



Grade Breakdown

• Project: 40%

• Presentations: 25%

• Reviews: 20%

• Participation/discussion: 15%

Late penalty of 20% per day.

Attendance is expected to all classes. If a class must be missed for 
research (conference, deadline, etc.), notify me one week prior.



Background

• You should have some familiarity with computer graphics and 
numerical methods.

• I’ll cover some background in the first few lectures.

• A good general source is Baraff & Witkin’s SIGGRAPH course notes.

• Links to additional (optional) material are on the web site.



Presentations

Describe : 

• Key novel elements of the paper, and their significance.

• Relationship to similar work.

• Strengths and weaknesses.

• Future directions.

Length: 20-25 minutes.

Probably 2-3 presentations each.

Steve Mann has some advice for giving talks:

http://www.cgl.uwaterloo.ca/~smann/Talks/CGL.98.11.24/

http://www.cgl.uwaterloo.ca/~smann/GSInfo/talk_guidelines.html

http://www.cgl.uwaterloo.ca/~smann/Talks/CGL.98.11.24/
http://www.cgl.uwaterloo.ca/~smann/GSInfo/talk_guidelines.html


Presentations

See the list of topics (by week) and papers to choose from on the course 
website.

Email me your top 3 preferred slots for the first round of presentations. No 
guarantees. First slot is Jan 16.

Assuming 10 students, the first round topics are:

• Rigid bodies

• Deformables & FEM/FVM

• Cloth & shells



Course Project

• Pick a method or technique for a physical system, and implement it.

• Should be non-trivial, but need not be novel.

• Solo or with a partner.

• Can rely on existing code/libraries, but must be documented.



Course Project: Deliverables

• 1-2 page project proposal – due Feb. 14.

• Short presentation & demo during the last week of class (Apr. 1 or 3).

• Final submission – tentatively due April 4. (Won’t be earlier.)
• Final report (PDF) in SIGGRAPH paper format.

• An animation clip illustrating the project results.

• Code.



Paper Reviews

• Pick one of the papers to be presented each week.

• Write a SIGGRAPH-style review of the paper (I’ll post a form to 
follow.)

• Due Sunday at 10pm prior to the week of the presentation.

• Starting with the papers from the 3rd week.



Questions for you…

1. What level of computer graphics courses have you taken (at 
Waterloo or elsewhere)?

2. What level of scientific computing / numerical methods courses 
have you taken?

3. Summarize any other relevant background or experience.

4. What topic(s) are you most interested in?

5. What do you anticipate being most challenging about the course?



Introductions



Particle Systems



Particle Systems

Particle system: A collection of particles that obey rules dictating their 
creation, movement, deletion, and other attributes and behaviors.



Particle Systems

• Often used to model “fuzzy”/complex phenomena, with… 
• ill-defined or changing boundaries
• chaotic motion
• e.g., fire, waterfalls, dust, clouds, flocking animals, etc.

• Common in 3D software (Maya, 3DSMax, Houdini, etc.)

• First used in 1982’s “Star Trek II: The Wrath of Khan” to model a fiery 
explosion transforming a planet. 

• Another classic animation is Karl Sims’ “Particle Dreams” (1988).



Genesis Effect from Star Trek II: The Wrath of Khan





More Recent Example – “Spore”

http://www.imagesavant.com/

http://www.imagesavant.com/


Particle Systems

Possible particle data/attributes:

• Position (x,y,z)

• Velocity

• Color

• State

• Age

• Temperature

• etc. (whatever else you like!)



Particle Systems

At each frame:

• Create new particles and assign initial attributes.

• Update existing particle position/velocity/attributes according to 
chosen rules.

• Delete “expired” (old) particles.

Rules can also incorporate some randomness.

Designing the rules is where the art (and maybe science) comes in.



Example: Star Trek II: Genesis Effect

From [Reeves 1983]



Flocking (“Boids”)

Simple rules relating to interactions between nearby particles can yield 
emergent, flocking-like behaviour.

• Collision Avoidance (separation)

• Velocity Matching (alignment)

• Flock Centering (cohesion)

For details see: 

“Flocks, herds and schools: A distributed behavioral model.” [Reynolds, 
1987]



Simple Flocking Animation in 3D



Vector Fields
Often particle motion is dictated by a function that takes a 3D position 
and returns a 3D velocity vector, i.e., a vector field.

Rotational Vortex: 𝑉 = (−𝑦, 𝑥)Radial expansion: 𝑉 = (𝑥, 𝑦) Constant Wind: 𝑉 = (7,2)



Basic Time 
Integration



Solving For Particle Motion

Given a particle P at time T=t with:

• Current position X=(x,y)

• Velocity function V(X,t) = (u,v)

…how do we determine the new particle position at time T = t+∆t?

This task is called time integration. ∆t is the time step.



Time Integration (for 1st order dynamics)

Recall: velocity V is the time derivative of position X.
i.e., rate of change of the particle position with respect to time.

𝑑𝑋

𝑑𝑡
= 𝑉

This is a differential equation relating X and V by a (time) derivative. 
Given initial values for X, solve for X at subsequent times.



Time Integration

e.g., consider a particle with current position X = (1,2) and (constant) 
velocity V = (-1,-1) m/s, taking a time step of length ∆t = 0.5 s.

?

𝑋𝑡+∆𝑡 = 𝑋𝑡 + 𝑉∆𝑡

Solution: 𝑋𝑡+∆𝑡 = (0.5, 1.5)  



Time Integration

Finding the new position requires integrating velocity over time.

𝑋𝑡+∆𝑡 = 𝑋𝑡 + 
𝑡

𝑡+∆𝑡

𝑉𝑑𝑇

Time

V
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ty

t0 t1 = t0+∆t

v0

v1
i.e., find the area 
under the curve.



Time Integration

In our example, velocity was a constant, so the (rectangular) area 
was exactly 𝑉∆𝑡.

t0 t1 = t0+∆t

v1v0

V
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Time

𝑋𝑡+∆𝑡 = 𝑋𝑡 + 𝑉∆𝑡



What About Time-Varying Velocity?

Velocity could depend on many factors, including current time, 
position, state…

e.g., 𝑉 = 17𝑡 log 𝑡 tan(𝑦) , arcsinh(𝑡)𝑡𝑥2 .

In general, we can’t solve the integral exactly / analytically. We must 
approximate.

𝑑𝑋

𝑑𝑡
= 𝑉(𝑡, 𝑋 𝑡 , … )



Numerical Integration

We will use numerical integration.

First idea: “Ignore” that the velocity may change during the time step. 
Then…

𝑋𝑡+∆𝑡 = 𝑋𝑡 + 𝑉(𝑡)∆𝑡

i.e., Evaluate V at the current time t, and use it to take only a single 
step. Repeat on the next step.



Numerical Integration

V
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ty

t0 t1 = t0+∆t

v1

v0

Effectively, we are approximating the true area as a rectangle, using the 
starting velocity, v0.

Time



Forward Euler

This simple scheme is called Forward Euler.

𝑋𝑡+∆𝑡 = 𝑋𝑡 + 𝑉(𝑡, 𝑋(𝑡))∆𝑡
Example: 

• X(t=0) = (0, 1) 

• V = (-y, x), 

• ∆𝑡=0.5  

Find X(t=1.5).

X(0.5) = (0,1) + 0.5(-1,0) = (-0.5, 1)
X(1) = (-0.5, 1) + 0.5 (-1, -0.5) = (-1, 0.75)
X(1.5) = (-1,0.75) + 0.5(-0.75,-1) = (-1.375, 0.25)
…



Vector Fields

This is the vector field V = (-y,x).

Compare the expected true 
trajectory to the behaviour of our 
numerical solution…



Forward Euler – Points to Note

1. Accumulated error can cause the numerical 
solution to drift away from the true solution.

2. But, the smaller the time step ∆𝑡, the more 
accurate the approximate trajectory becomes.

3. If the time step is too large, the result can 
“blow up” and yield garbage answers. Forward 
Euler has a (problem-dependent) maximum 
stable time step…



Forward Euler – Instability

Consider the 1D function:
𝑑𝑥

𝑑𝑡
= −𝑥, with x(t=0) = 1.

True solution is: 𝑒−𝑡

Always positive, decays smoothly.

Numerical solution for ∆𝑡 = 3?

Result: 1, -2, 4, -8,  16, etc.

Wrong!

The sign flips madly, the magnitude increases instead of decreasing.



Other Time Integration Schemes

Forward Euler uses the velocity at the start of a time step to perform 
the integration.

Other common schemes use the (possibly approximate) velocity at the 
middle, end, and/or other instants within a time step to increase 
accuracy and stability.

e.g. midpoint method, trapezoidal rule, implicit Euler, Runge Kutta
schemes, etc. 



(Explicit) Midpoint method

V
el
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t0 t1 = t0+∆t

v1

v0

Use the velocity at the midpoint to estimate the integral. (Also known 
as 2nd order Runge Kutta or RK2).

Time



(Explicit) Midpoint method

Estimate the midpoint position halfway through a time step:

Then, use the velocity evaluated at the midpoint to determine the final 
position.

E.g., Try the midpoint method on the velocity V = (-y,x).

𝑋𝑡+∆𝑡 = 𝑋𝑡 + 𝑉 𝑡 + 1
2
∆𝑡, 𝑋𝑚𝑖𝑑 ∆𝑡

𝑋𝑚𝑖𝑑 = 𝑋𝑡 +
𝑉 𝑡, 𝑋𝑡 ∆𝑡

2



Adding Some 
Physics



Newton’s 2nd Law

Rather than prescribe velocities, we often want to use physics (classical 
mechanics) to solve for both X and V, given a set of applied forces, F.

First, assign each particle i some fixed mass, Mi.

Then, recall Newton’s 2nd law: Force = Mass x Acceleration.



Forces

What physical forces might we use to drive a particle system?
• Gravity
• Wind
• Springs / Elasticity
• Damping / Viscosity
• Friction
• Collisions/Contact
• …

Given the set of forces 𝐹1, 𝐹2, … , 𝐹𝑛, sum to get net force on a particle.



2nd order dynamics

Earlier, we had a given velocity, V, dictating how we update position X.

Now, we instead have given forces, F, and Newton’s 2nd law, F=ma.  

Recalling that acceleration is the 2nd time derivative of position, we 
have a new (2nd order) differential equation…

𝑑𝑋

𝑑𝑡
= 𝑉

𝑚
𝑑2𝑋

𝑑𝑡2
= 𝐹



2nd order dynamics

We can split this into two 1st order equations…

Then time integrate each of these (using e.g. forward Euler).

𝑚
𝑑𝑉

𝑑𝑡
= 𝐹

𝑑𝑋

𝑑𝑡
= 𝑉𝑚

𝑑2𝑋

𝑑𝑡2
= 𝐹



Forward Euler, revisited

Position Update:

Velocity Update:

𝑚
𝑑𝑉

𝑑𝑡
= 𝐹

𝑑𝑋

𝑑𝑡
= 𝑉 𝑋𝑡+∆𝑡 = 𝑋𝑡 + 𝑉𝑡∆𝑡

𝑉𝑡+∆𝑡 = 𝑉𝑡 +
𝐹 𝑡, 𝑋𝑡

𝑚
∆𝑡



Forces: Gravity

1. Earth-specific gravity (treated as a constant):

𝐹 = 0,−9.81, 0 𝑚/𝑠2

Consider a 1D example: An initially stationary 
apple at a height of 10m falling under gravity, 
with time steps of length 0.1 seconds.



Forces: Gravity

2. N-body gravitation:  𝐹 = −
𝐺𝑚1𝑚2

 𝑟 3  𝑟

 𝑟 = 𝑋1 − 𝑋2

𝑿𝟏
𝑿𝟐



Gravitation Simulation http://wxs.ca/js/jsgravity/

http://wxs.ca/js/jsgravity/


Forces: Springs!

A simple way to model complex structures 
(e.g., hair, cloth, jello) is joining particles 
with spring forces.

AKA Mass-spring systems.

Each spring… 
• connects two particles
• has a given rest length, L
• has a given “spring constant” or stiffness, 

k



Spring in 1D

M

Fixed, Static Wall

Rest length, L



Spring in 1D

M

Fixed, Static Wall

Displacement, ∆𝑥Rest length, L

F



Hooke’s Law for linear springs

The restoring force…

• Is linearly proportional to the amount of displacement (from the rest 
length).

• Acts in the opposite direction to the displacement.

𝐹 = −𝑘∆𝑥
where k is the proportionality constant that controls the spring 
stiffness. (Note: Stiffer materials typically require smaller timesteps!)



Hooke’s Law  in 3D

For a spring joining 2 particles with position vectors 𝑋1 and 𝑋2:

𝐹1 = −𝐹2 = −𝑘( 𝑋1 − 𝑋2 − 𝐿)
𝑋1 − 𝑋2
𝑋1 − 𝑋2

Direction

Displacement



Springs for Hair and Cloth

A single chain of masses and springs can model a strand of hair.

What about bending?



Springs for Hair and Cloth

Add alternating springs. This discourages the hair from collapsing when 
you bend it.

What about twisting?
See “A Mass Spring Model for Hair Simulation” [Selle et al. 2008]



[Selle et al. 2008]



Springs for Cloth 

Using a grid of particles, a similar approach has been used to model 
cloth. 

• Red springs model stretching/shearing. 

• Blue springs model bending.

From “Stable but responsive cloth”, 
Choi and Ko, 2002.



From “Robust treatment of 
collisions, contact and friction for 
cloth animation”, Bridson et al. 2002



Can we control stretching and bending 
strength independently?

No! The bending springs also affect 
stretchiness of the material in an unclear way.

Problems with mass-spring systems…



If we double the mesh resolution, will the behaviour remain the same?

Ideally, want the motion to approach a “true” solution as we refine the 
mesh. In general, springs do not.

More accurate finite element and finite volume approaches are often 
preferred in VFX now; games still mostly use mass-spring models.

Problems with springs…



Forces: Damping

It’s often helpful to gradually slow down the motion, so it doesn’t 
oscillate forever.

This models internal friction or energy dissipation.

A typical damping/drag force opposes the motion of the particle(s), 
and is proportional to the velocity.

𝐹 = −𝑘𝑑𝑉

Note: Too much damping can yield unrealistic behavior.



Forces: Collisions

One strategy for modeling collisions is penalty/repulsion forces.

Essentially, temporary springs that oppose inter-penetration of objects.



Recap

• Particle systems can model diverse phenomena, in non-physical and 
physical ways.

• Time integration methods advance a simulation through time 
• e.g. forward Euler, midpoint, etc.

• By solving the equations of motion for particles and particle systems, 
we can capture more physically meaningful behaviours.



References

Reminder: A great reference to get more details is the set of SIGGRAPH 
course notes by Baraff and Witkin, from Pixar.

http://www.pixar.com/companyinfo/research/pbm2001/

http://www.pixar.com/companyinfo/research/pbm2001/

