
Physics-Based Animation

Jan 30, 2014

Administrative Items

Scheduling

Next week: Discussion of 2 meshing papers on Tues, NO CLASS THURS.

Feb 11 & 13: Collisions and constraints – Will pick these ASAP.

Feb 18 & 20: Reading week

Presentation scheduling:

Feb 25 & 27: Rods and Hair

March 4 & 6: Fracture and Cutting

Presentations

Grades posted in LEARN.

Changes for next round:

1. Peer feedback.

2. Clear grading rubric.

3. Send me your slides afterwards, and I will provide more detailed
feedback.

Proposals

Describe your project, summarize the methods you will use.

Break the project into 3-5 concrete steps/milestones.

1-2 pages, including references.

I can try to suggest references if you tell me your topic.

E.g. Shells simulator:
• Implement in-plane elastic/stretching forces – explicit integration.
• Implement bending force – explicit integration (“Discrete Shells”).
• Add collisions with simple objects (spheres, planes).
• Convert to implicit integration for stability/speed.
• Add a physical damping model.

Proposals

You can pursue novel extensions after demonstrating basic techniques.

If you’re quite ambitious, the Symposium on Computer Animation
deadline coincides with the project deadline (April 15).

A Bit of Curvature

Curvature of Surfaces

• Curvature is 𝜅 =
1

𝑅
for a circle fit to a curve

(per Richard’s talk).

• In 3D, pick a plane, slice the surface with it,
and fit a circle to the curve in that plane.
Many possible curvatures!

• There will always be a max and a min
curvature: the principle curvatures: 𝜅1, 𝜅2.

Mean Curvature

…is what it sounds like: 𝐻 =
1

2
(𝜅1 + 𝜅2)

Surfaces with zero mean curvature are called minimal surfaces.

Loosely speaking, they minimize area and behave “like soap films”.

Gaussian Curvature

The product of principal curvatures: Κ = 𝜅1𝜅2

Surfaces with zero Gaussian curvature are called developable surfaces.

Planes, conical surfaces, (generalized) cylinders, “oloids”, …

Ruled Surface

There is always a straight line through any
point on the surface.

Note: Developable surfaces are ruled, but
ruled does not imply developable.

e.g, Hyperboloid is not developable.

Isometric deformations

Deformations which do not stretch the surface.
i.e., distance between points (measured within the surface) do not change.

For shells, this corresponds to (hypothetically) infinite
stretching/membrane stiffness.

More on differential geometry for graphics, see Mark Pauly’s slides:
http://www.pmp-book.org/download/slides/Differential_Geometry.pdf

http://www.pmp-book.org/download/slides/Differential_Geometry.pdf

A Bit of Time Integration

Propagation of deformations
Explicit integration: Uses only local information from the current step.

∴Deformations propagate slowly through the mesh, one step at a time.

𝑡0 𝑡1

Apply strong
force on one
vertex!

𝑡2 𝑡3 𝑡4

Propagation of deformations

Implicit integration: Solves a set of (globally coupled) equations for the
end-of-step positions; allows deformations to propagate “instantly”.

(But recall, each step is far more
expensive.)

𝑡0 𝑡1

Apply strong
force on one
vertex!

A Bit about Autodiff

Automatic differentiation is not…

Symbolic differentiation:

Given a function, symbolic differentiation finds the function that is its
exact analytical derivative.

(e.g., Maple, Mathematica, etc.)

e.g., Given expression for 𝑓(𝑥), you get back an expression for 𝑓′(𝑥).

Automatic differentiation is not…

Numerical differentiation:

Given a function and its arguments, numerical differentiation evaluates
the function at multiple points to approximate the derivative there.

(e.g., finite differences.)

e.g., Given 𝑓(𝑥) and 𝑥 = 2, you get back an approximation of 𝑓′(2).

Automatic differentiation

Given a function, and its arguments, evaluates the derivative, up to
numerical precision.

As each operation of 𝑓 is applied, autodiff evaluates the corresponding
derivatives.

e.g. Given 𝑓(𝑥) and 𝑥 = 2, you get back 𝑓′ 2 (without F.D. errors).

Automatic differentiation

For example, if 𝑓 performs a multiplication, 𝑥 ∙ 𝑥 for 𝑥 = 2, autodiff
evaluates…
𝑑

𝑑𝑥
𝑥 ∙ 𝑥 =

𝑑

𝑑𝑥
𝑥 ∙ 𝑥 + 𝑥 ∙

𝑑

𝑑𝑥
𝑥 = 𝑥 + 𝑥 = 2 + 2 = 4

This allows the final result to be accumulated, op-by-op. (“Forward
accumulation”.)

In C++, you might have a “number” class, that overloads the various
operators, such that behind the scenes it evaluates the necessary
derivatives/chain rules.

Paper Discussion

