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Administrative Items



Scheduling

Next week: Discussion of 2 meshing papers on Tues, NO CLASS THURS.

Feb 11 & 13: Collisions and constraints – Will pick these ASAP.

Feb 18 & 20: Reading week

Presentation scheduling:

Feb 25 & 27:  Rods and Hair

March 4 & 6: Fracture and Cutting



Presentations

Grades posted in LEARN.

Changes for next round:

1. Peer feedback.

2. Clear grading rubric.

3. Send me your slides afterwards, and I will provide more detailed 
feedback.



Proposals

Describe your project, summarize the methods you will use.

Break the project into 3-5 concrete steps/milestones.

1-2 pages, including references.

I can try to suggest references if you tell me your topic.

E.g. Shells simulator:
• Implement in-plane elastic/stretching forces – explicit integration.
• Implement bending force – explicit integration (“Discrete Shells”).
• Add collisions with simple objects (spheres, planes). 
• Convert to implicit integration for stability/speed.
• Add a physical damping model.



Proposals

You can pursue novel extensions after demonstrating basic techniques.

If you’re quite ambitious, the Symposium on Computer Animation 
deadline coincides with the project deadline (April 15).



A Bit of Curvature



Curvature of Surfaces

• Curvature is 𝜅 =
1

𝑅
for a circle fit to a curve 

(per Richard’s talk).

• In 3D, pick a plane, slice the surface with it, 
and fit a circle to the curve in that plane. 
Many possible curvatures!

• There will always be a max and a min 
curvature: the principle curvatures: 𝜅1, 𝜅2.



Mean Curvature

…is what it sounds like: 𝐻 =
1

2
(𝜅1 + 𝜅2)

Surfaces with zero mean curvature are called minimal surfaces.

Loosely speaking, they minimize area and behave “like soap films”.



Gaussian Curvature

The product of principal curvatures: Κ = 𝜅1𝜅2

Surfaces with zero Gaussian curvature are called developable surfaces.

Planes, conical surfaces, (generalized) cylinders, “oloids”, …



Ruled Surface

There is always a straight line through any 
point on the surface.

Note: Developable surfaces are ruled, but 
ruled does not imply developable.

e.g, Hyperboloid is not developable.



Isometric deformations

Deformations which do not stretch the surface.
i.e., distance between points (measured within the surface) do not change.

For shells, this corresponds to (hypothetically) infinite 
stretching/membrane stiffness.

More on differential geometry for graphics, see Mark Pauly’s slides: 
http://www.pmp-book.org/download/slides/Differential_Geometry.pdf

http://www.pmp-book.org/download/slides/Differential_Geometry.pdf


A Bit of Time Integration



Propagation of deformations
Explicit integration: Uses only local information from the current step.

∴Deformations propagate slowly through the mesh, one step at a time.

𝑡0 𝑡1

Apply strong 
force on one 
vertex!

𝑡2 𝑡3 𝑡4



Propagation of deformations

Implicit integration: Solves a set of (globally coupled) equations for the 
end-of-step positions; allows deformations to propagate “instantly”.

(But recall, each step is far more 
expensive.)

𝑡0 𝑡1

Apply strong 
force on one 
vertex!



A Bit about Autodiff



Automatic differentiation is not…

Symbolic differentiation: 

Given a function, symbolic differentiation finds the function that is its 
exact analytical derivative.

(e.g., Maple, Mathematica, etc.)

e.g., Given expression for 𝑓(𝑥), you get back an expression for 𝑓′(𝑥).



Automatic differentiation is not…

Numerical differentiation: 

Given a function and its arguments, numerical differentiation evaluates 
the function at multiple points to approximate the derivative there. 

(e.g., finite differences.)

e.g., Given 𝑓(𝑥) and 𝑥 = 2, you get back an approximation of 𝑓′(2).



Automatic differentiation

Given a function, and its arguments, evaluates the derivative, up to 
numerical precision.

As each operation of 𝑓 is applied, autodiff evaluates the corresponding 
derivatives.

e.g. Given 𝑓(𝑥) and 𝑥 = 2, you get back 𝑓′ 2 (without F.D. errors).



Automatic differentiation

For example, if 𝑓 performs a multiplication, 𝑥 ∙ 𝑥 for 𝑥 = 2, autodiff
evaluates…
𝑑

𝑑𝑥
𝑥 ∙ 𝑥 =

𝑑

𝑑𝑥
𝑥 ∙ 𝑥 + 𝑥 ∙

𝑑

𝑑𝑥
𝑥 = 𝑥 + 𝑥 = 2 + 2 = 4

This allows the final result to be accumulated, op-by-op. (“Forward 
accumulation”.)

In C++, you might have a “number” class, that overloads the various 
operators, such that behind the scenes it evaluates the necessary 
derivatives/chain rules.



Paper Discussion


